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Abstract 
In this work, we study the problem of tax evasion on Erdös Rènyi random 
graphs. Here, we consider that the agents may be in three different states, 
namely honest tax payers, tax evaders, and undecided that are individuals in 
an intermediate class among honests and evaders. Every individual can change 
his/her state following an Ising model dynamics with spin S = 1. In addition, 
we consider the punishment rules of the Zaklan econophysics model, for 
which there is a probability ap  of an audit each agent is subject to in every 
period and a length of time k detected tax evaders remain honest. The dy-
namic of temporal evolution of the Zaklan model was studied initially via the 
equilibrium Ising model with two opinions (−1 and +1), and recently via a 
non-equilibrium three-state kinetic agent-based model on a fully-connected 
population. Here, through Monte Carlo simulations, we study the problem of 
the tax evasion fluctuations using an Ising model with spin S = 1 (−1, 0, and 
+1) on Erdös Rènyi random graphs in the dynamic of the temporal evolution 
of the Zaklan model. Then, we found that the Ising model with spin S = 1 is 
as efficient as the Ising model and non-equilibrium three-state kinetic agent- 
based model in controlling the tax evasion fluctuations. This control is even 
better when we use strong punishment values k even for low audit probabili-
ties ap . 
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1. Introduction 

In several branches of science, it is common to formulate problems using struc-
tures in networks (graphs). This approach considers the forming parts as well as 
the interactions of these parts and is able to explain the emergence of effects 
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arising from emergent behavior. In economic sciences, they are present in a sys-
tem of interaction between consumers and producers, a network of suppliers for 
the synthesis of high technology and high added value products. Research in com-
plex networks benefits from the increase of processing power, which allows the 
analysis of real network data. Initial research of real networks was guided by the 
modelsŕandoms from Erdös & Rènyi (1959). An Erdös Rènyi (ER) random graph 
is a set of N vertices (sites or nodes) connected by c links (bonds) (Erdös et al., 
1959, 1960, 1961). The probability p that a given pair of sites is connected by a 
bond is ( )2 1p c N N= − . The connectivity of a site is defined as the total num-
ber of bonds connected to it, that is i ijjb k= ∑ , where ijk  assumes values 1 if 
there is a link between the sites i andj and 0ijk =  otherwise. Networks are 
completely characterized by the mean number of bonds per site or the average 
connectivity ( )1z p N= − . The distribution of connectivities is given by the Pois-
son distribution when N →∞ . 

In social systems, humans tend to adopt herding behavior and follow the crowd 
because they feel more comfortable when their decisions are supported by the 
like decisions of other people. In financial markets, this behavior is reinforced by 
so-called noise traders agents, who follow trends and over-react to both good 
and bad news when they buy and sell. In contrast, some agents find that follow-
ing the global minority brings the best return, i.e., they buy when noise traders 
depress prices and sell when noise traders push prices up. These contrarian traders 
are also called fundamentalists, sophisticated traders or α-investors (Lux, 1996, 
1999, 2000; Bornholdt, 2001; Kaizoji et al., 2002; Takaishi, 2005; Long et al., 1990; 
Day et al., 1990; Mukherjee & Chatterjee, 2016). They base their decisions not on 
market euphoria but on rational expectation, and they push prices toward fun-
damental values. Another classification of agents in terms of two basic financial 
market strategies has also been investigated using realistic models. These models 
considered the presence of two subgroups containing individuals who are opti-
mistic or pessimistic about the future development of the market (Lux et al., 1999, 
2000). 

Does Econophysics make sense? (Stauffer, 1999) Econophysics is an approach 
to quantitative economy using ideas, models, conceptual and computational me-
thods of statistical physics (Ausloos, 2013). The name econophysics, a hybrid of 
economyand physics, was coined to describe applications of methods of statis-
tical physics to economy in general. In practice, majority of the research con-
cerned the finances. In such a way, physicists entered officially and scientifically 
the field of financial engineering. On top of similar statistical methods used by 
financial mathematicians, physicists concentrated on the analysis of experimen-
tal data using tools borrowed from the analysis of real complex systems. 

Bloomquist (2006), Föllmer (1974), Andreoni (1998), Lederman (2003), Sle-
mrod (2007), Wintrobe & Gërxhani (2004) through an analysis of the social and 
economic behavior of a community of people fulfilled indicate that tax evasion 
in a community is a major cause of concern for governments and through em-
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pirical evidence Gächter (2006), Frey & Torgler (2006) have provided that the 
group members or neighborhood of tax evaders are important in deciding wheth-
er or not to pay taxes. 

In 2008 physicist D. Stauffer and economists Zaklan et al. (2008a, 2008b) and 
Westerhoff (2008) developed an economics model to study the problem of tax 
evasion dynamics on a people community using the equilibrium Ising model with 
spin S = 1/2 (two states +1 and −1) on a square lattice (SL) and Monte-Carlo si-
mulations with the Glauber algorithms. On SL the Ising model presents a phase 
transition well-defined second-order phase transition at critical temperature  

2.269cT =  . 
The problem of tax evasion fluctuations can be better described as a non-equi- 

librium than by an equilibrium system. So, different than Zaklan et al. (2008a, 
2008b), Oliveira (1992), Lima (2010) proposed the use of the non-equilibrium 
Majority-Vote Model (MVM) to study the tax evasion in any complex network 
(Lima, 2012a). He points out that people do not live in a social equilibrium, and 
any social noise can drive to a government or market chaos. Then, it is reasona-
ble to expect that a non-equilibrium model (MVM) explains better events of 
non-equilibrium. In order to show that the problem of tax evasion fluctuations is 
better described by a non-equilibrium model than by an equilibrium model, Li-
ma (2012b, 2012c, 2015, 2016) studied the Zaklan model (ZM) on Apollonian, 
Opinion-Dependent, Solomon, and Small-World Networks. In all these cases the 
tax evasion problem was analyzed using the two-state version of MVM, where 
the honest agent was rated +1 and the evaded value −1. 

In 2014, Crokidakis (2014) studied the problem of tax evasion via ZM on a 
fully-connected population. In his work, the agents may be in three different 
states (−1, 0, and +1), namely honest taxpayers (+1), tax evaders (−1) and unde-
cided (0). The undecided agents are individuals in an intermediate class among 
honests and evaders. Each agent can change their state following a kinetic ex-
change opinion dynamics, where the agents interact by pairs with negative (prob-
ability p) and positive (1 − p) affinity parameters ijµ , representing agreement/ 
disagreement between pairs of agents. 

Using Monte Carlo simulations, Lima (Lima, 2012d) has studied the Ising 
model with spin S = 1/2 and 1 on ER random graphs, with z neighbors for each 
spin. In the case with spin S = 1/2, the ER graphs present a spontaneous magne-
tization in the universality class of mean field theory, where on ER random graphs 
the model presents a spontaneous magnetization at ( )2,3, ,p z N z N= =  , 
but no spontaneous magnetization at 1p N=  which is the percolation thre-
shold. For ER graphs with spin S = 1, he finds a first-order phase transition for z 
= 4 and 9 neighbors. 

Here, we study the behavior of the tax evasion on an agents community of 
honest citizens, tax evaders, and undecided where the agents are positioned on 
sites of ER random graphs, but now using an Ising model with spin S = 1 for the 
temporal evolution of ZM. 
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The article is organized as follows: We present, in the next section, the model 
and some of the Monte Carlo simulation details. In Section 3, the results are pre-
sented, and in the final section, some concluding remarks are discussed. 

2. ZM via Equilibrium Dynamics of Ising Model Spin S = 1 

We use the ZM via ferromagnetic spin S = 1 Ising model to study the tax evasion 
fluctuations on a community of homogeneous agents located on ER random 
graphs. In every time period, each ER random graphs site is inhabited by an agent 
(individuals) with opinion iσ , who can either be an honest taxpayer 1iσ = + , a 
cheater or evader taxpayer 1iσ = − , and undecided or indifferent 0iσ = . It is 
assumed that initially, everybody is honest. Each period the agents can rethink 
their behavior and have the opportunity to become the opposite type of agent 
they were in the previous period or undecided. In the same way, an undecided 
individual may become an honest or evader in the next time step. Then, each 
agent’s social on ER random graphs may either prefer tax evasion, reject it or 
remain indifferent. 

The evolution in time of these systems is given by a single spin-flip like dy-
namics with a probability iP  given by 

( )1 1 exp 2 ,i i BP E k T = +                       (1) 

where T is the temperature, Bk  is the Boltzmann constant, and iE  is the energy 
of the configuration obtained from the Hamiltonian  

 
,

,i j
i j

H J σ σ= − ∑                          (2) 

where the sum runs over all neighbor pairs of sites and the spin S = 1 variables 

iσ  assume values ±1 and 0. In the above equation, J is the exchange coupling. 
The spin S = 1 case is well known in the literature (Onsager, 1944; Kaufmann, 
1949; Baxter, 1982). 

The ZM presents an enforcement mechanism that consists of two components: 
a probability of an efficient audit ap ; and a number k of periods. Then once the 
tax evasion is detected, the tax evaders, 1iσ = − , can become honest individuals 

1iσ = +  or undecided 0iσ =  in the presence of an audit probability ap , for a 
number k of periods. One time unit is one sweep through the entire system. The 
ordering in the system is measured by the quantity, namely magnetization (av-
erage opinion) defined by  

 
1

1 ,
N

i
i

m
N

σ
=

= ∑                           (3) 

where ...  denotes configurational average taken at steady states.   
The fraction of tax evaders is  

 honesttax evasion ,
N N

N
−

=                      (4) 

where N is the total number and honestN  is the honest number of agents. The 
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tax evasion is calculated at every time step t of system evolution. Here 410N =  
agents. 

3. Results and Discussion   

Following the ZM, we start with a population of 410N =  individuals on ER 
random graphs, where initially everyone is considered honest ( )0 1i tσ = = + . 
Then we apply the rules of the ZM as the punishment period k and the audit 
probabilities ap . 

In Figure 1, we show the magnetization per spin m of the Ising model spin S 
= 1 (Lima, 2012d) as a function of the temperature T. The system undergoes an 
order-disorder phase transition of first-order at ( )4.5 1cT = , with a paramag-
netic disordered phase defined by the coexistence of the three states 1, 1σ = + −  
and 0 with equal fractions (1/3 for each one). The population size is 410N = , 
and on ER random graphs, each individual or agent has 9z =  neighbors. 

In Figure 2, we show the tax evasion as a function of time via the Ising model 
with three states (−1, 0, and +1) for two different values of ( )4.5 1cT T> = , 
namely 12.0T =  Figure 1(a) and Figure 1(b) and 9.0T =  ((c) and (d)). In 
this case, for cT T> , we will have the baseline case ( 0k =  and 0ap = ), i.e., 
the dynamics defined by Equations (1) and (2) lead the system to a disordered 
state with an equal fraction 1/3 (30%) for ±1 and 0 states. Thus, from Figure 1 
that if the audits are efficient ( 90%ap = ) the tax evasion can be considerably  
 

 
Figure 1. (Color online) Magnetization per spin m of the of Ising model spin S = 1 of 
(Lima, 2012d) as a function of the temperature T, where no punishment rules were con-
sidered. The system undergoes an order disorder phase transition of first-order at ( )4.5 1cT = , 

with a paramagnetic disordered phase defined by the coexistence of the three states  
1, 1σ = + −  and 0 with equal fractions (1/3 for each one). The population size is 410N = , 

the circles are numerical results averaged over 100 independent simulations and the dashed 
line is just a guide to the eyes. 
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Figure 2. (Color online) Time evolution of tax evasion via Ising model spin S = 1 for different values 
of degrees of punishment 10k =  and 50 and two distinct audit probabilities 0.9ap =  ((a) and (c)) 
and 0.05ap =  ((b) and (d)). The results are for 12.0T =  ((a) and (b)) and 9.0T =  ((c) and (d)). 
For realization of each curve, we use a population of size 410N =  individuals at 0.95 cT T= . 

 
reduced to ≈18% for 10k =  and to ≈5.0% for 50k = . This behavior of fluctu-
ations of tax evasion is identical to that reported in ZM on regular lattices and 
networks (Zaklan, 2008a, 2008b; Lima, 2010, 2012). For the cases where 5%ap = , 
considered more realistic by the literature, the punishment is more efficient when 
the penalty duration is high as 50k = . In this case, the tax evasion can be re-
duced for values around 30%. Notice that when the value of T decrease, the frac-
tion of tax evaders also decreases, this is, for high T, the fraction of opinions −1 
is greater than in the cases of lower values of T. 

In Figure 3(a) and Figure 3(b), we present results for 5.0T = , this is, another 
value of cT T>  which is very close to the critical point cT . See that for a high 
audit probability 90%ap =  the tax evasion can be dramatically reduced for 
both punishment periods 10k =  and 50k = . See also that even for 5%ap =
considered here as the realistic value in a community of tax evaders, the applica-
tion of severe punishments as 50k =  can lead the evasion to low levels like 
22%, see Figure 3(b). Still, in the Figure 3, we show results for cT T< , Figure 
3(c) and Figure 3(d). Then for 1.6T = , the time dynamics of the Ising model 
spin S = 1 drive the system to a steady-state with a large number of honest indi-
viduals ( 1iOσ = + ). For 90%ap =  (Figure 3(c)) the tax evasion is reduced to 
1.7% as 10k =  and to 1.5% as 50k =  and as 5%ap =  (Figure 3(d)) the tax  
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Figure 3. The same of the Figure 1, but now to 5.0T =  ((a) and (b)), and 1.6T =  ((c) and (d)). 

 
evasion is now reduced to 1.75% regardless of the values of the punishment pe-
riods 10k =  and 50. 

In Figure 4, we exhibit the average tax evasion in the stationary states as a 
function of the audit probability ap . Figures 4(a)-(c) display the results for 

1.6,9.0T =  and 18.0, respectively, and for punishment period values of  
10,50k =  and 100. For 1.6T = , i.e., cT T< , the average tax evasion is small 

enough and decreases with the growth of ap . This decreases to 0.22% for high 
punishment period values like 100k = . Otherwise, the tax evasion for 100k =  
and values of cT T>  as 9.0 and 18.0 decrease for 1% and 0.5%, respectively. In 
Figure 4(d), we show the behavior of the tax evasion for 10k =  and for  

1.6,9.0T = , and 18.0. One can see that for cT T<  the tax evasion remains con-
stant for all values of ap . For values of cT T>  the tax evasion is reduced to 
≈15% for both 9.0 and 18. 

In Figure 5, we exhibit the stationary fractions of the three classes of agents as 
functions of the audit probability ap  for 10k =  and typical values of T. One 
can see that, in general, the stationary fraction of undecided individuals is great-
er than the stationary fraction of tax evaders, and the former is always >1.5 of the 
population. The evaders in the long-time limit are the majority in comparison 
with undecided agents only for large densities of interactions T, like 12.0T =  
[see Figure 5(d)]. Even in this case, the honests are the majority of the popula-
tion. For increasing values of ap , the fraction of honest agents grows slowly for 

cT T<  [see Figure 5(a)] and fastly for cT T>  [see Figures 5(b)-(d)]. 
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Figure 4. (Color online) Average stationary tax evasion as a function of the audit proba-
bility ap . In the Figures (a), (b) and (c), we show the results for 1.6,9.0T =  and 18.0, 
respectively, and values of degrees of punishment 10,50,100k = . In the last Figure (d) it 
is shown the results for 10k =  and different fractions of interactions T. Each point is 
averaged over 100 independent simulations for population size 410N = , and the dashed 
lines are just guides to the eye.  

 

 
Figure 5. (Color online) Average stationary fractions of evaders (circles), undecided 
(squares) and honests (triangles, in the insets) as functions of ap  for 10k =  and typi-
cal values of T, namely 1.6T =  (a), 6.0t =  (b), 9.0T =  (c) and 12.0T =  (d). Each 
point is averaged over 100 independent simulations for population size 410N = , and the 
dashed lines are just guides to the eye. 
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4. Conclusion   

Zaklan et al. (2008a) using Monte Carlo Simulation and the Ising model in two- 
dimensional with two states (−1 and +1) (equilibrium model) performed the 
first numerical attempt to model the fluctuations tax evasion problem. Then Is-
ing model was used as a tool for the dynamic evolution of the Zaklan model. 
However, the Ising model cannot be used in some geometries, such as Apollonius 
and Barabasian networks due to the lack of phase transition. Lima (2010) over-
came this obstacle by proposing to use the majority vote model (non-equilibrium 
model) as a temporal evolution of the Zaklan model. Both proposals were suc-
cessful in their particular topologies. 

Here, we studied the behavior of the tax evasion via the Ising model with spin 
S = 1 (equilibrium model) that presents three states −1, 0, and +1. As we saw 
above, −1 represents evaders, 0 undecided, and +1 the honests. We have also ve-
rified that the fraction of undecided agents favors the reduction of tax evasion. 
This fact, together with the control given by the public policies may lead to low 
levels of evasion. 

The behavior of the Ising model with spin S = 1 in relation to controlling the 
tax evasion fluctuation is very similar to those found by the Ising and majority 
vote models. Then, its model is another useful tool for studying the tax evasion 
problem in a community. We still verify that our results are in agreement with 
the results of Crokidakis (2014) for the non-equilibrium model with three dif-
ferent states (−1, 0, and +1) disagreement between pairs of agents. 

Therefore, we found the plausible result that tax evasion is diminished by 
stronger punishment k and audit probability ap . 
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