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Chapter 1. The Scalar Laplace PDE 

1.1. SKEF Functions 

A method of Decomposition in Invariant Structures (DIS) is introduced in Section 1.1 by solv-

ing the scalar Laplace Partial Differential Equation (PDE) through a Stationary Kinematic Euler 

(SKE) structure with complex parameters. The DIS method generalizes the Euler method of 

solving Ordinary Differential Equations (ODEs) through an exponential function with complex 

parameters, the method of separation of variables, and the method of series solutions. It is also 

shown in Section 1.2 that the exponential function itself is an invariant hyperbolic structure.  

1.1.1. Mathematical Formulation 

Find Stationary Kinematic Euler-Fourier (SKEF) functions as partial solutions to a global La-

place PDE  

 
𝜕2ℎ

𝜕𝑥2
+

𝜕2ℎ

𝜕𝑧2
= 0 (1.1) 

for a scalar variable ℎ𝑛(𝑥, 𝑧, 𝑡), depending on two spatial variables (𝑥, 𝑧) and time 𝑡 through  

the SKE structure  

 ℎ = 𝐻 exp(𝐾𝑥 𝑋 + 𝐾𝑧 𝑍), (1.2) 

where 𝐻 is a real coefficient,  

 [𝐾𝑥 = 𝐿𝑥 + 𝑖 𝑀𝑥,  𝐾𝑧 = 𝐿𝑧 + 𝑖 𝑀𝑧] (1.3) 

are complex parameters in the 𝑥- and 𝑧-directions, 𝑖 is the imaginary unit, [𝐿𝑥, 𝐿𝑧] are real 

parts of [𝐾𝑥, 𝐾𝑧],  [𝑀𝑥, 𝑀𝑧] are imaginary parts of [𝐾𝑥, 𝐾𝑧],   

                    [𝑋 = 𝑥 − 𝑥0 − 𝑉𝑥 (𝑡 − 𝑡0),   𝑍 = 𝑧 − 𝑧0 − 𝑉𝑧 (𝑡 − 𝑡0)], (1.4) 

                    [𝑋 = 𝑥 − 𝑉𝑥 𝑡 + 𝑆𝑥,               𝑍 = 𝑧 − 𝑉𝑧 𝑡 + 𝑆𝑧] (1.5) 

are propagation variables in the mathematical (1.4) and computational (1.5) forms, [𝑥0, 𝑧0, 𝑡0] 
are reference values of the Cartesian coordinates and time, [𝑉𝑥, 𝑉𝑧] are components of the 

propagation velocity of a harmonic wave, and  

                      [𝑆𝑥 = −𝑥0 + 𝑉𝑥 𝑡0,                𝑆𝑧 = −𝑧0 + 𝑉𝑧 𝑡0] (1.6) 

are spatiotemporal shifts in the 𝑥- and 𝑧-directions, correspondingly. Use the superposition 

principle to find a fundamental SKEF structure of type 𝑎.  

When (𝑥, 𝑧, 𝑡) = [𝑥0, 𝑧0, 𝑡0],  then (𝑋, 𝑍) = [0,0].  These relations mean that the origin 

[0,0] of the reference frame (𝑋, 𝑍), moving with the wave velocity [𝑉𝑥, 𝑉𝑧], is located at the 

reference point [𝑥0, 𝑧0] of the laboratory frame (𝑥, 𝑧) at the reference moment 𝑡 = 𝑡0. If 

(𝑥, 𝑧, 𝑡) = [0,0,0], then (𝑋, 𝑍) = [𝑆𝑥, 𝑆𝑧]. The latter relationships signify that the origin [0,0] 
of the laboratory frame (𝑥, 𝑧) is located at the initial point [𝑆𝑥, 𝑆𝑧] of the moving frame 
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(𝑋, 𝑍) at the initial moment 𝑡 = 0. Thus, the SKE structure (1.2)-(1.6) describes a two-dimen-

sional (2-D) propagation of the harmonic wave with stationary parameters in two dimensions.  

1.1.2. Reduction of the Laplace PDE to Characteristic AEs 

We readily find first derivatives of the SKE structure ℎ with respect to (𝑥, 𝑧, 𝑡) as  

 
𝜕ℎ

𝜕𝑥
= 𝐾𝑥 ℎ,  

𝜕ℎ

𝜕𝑧
= 𝐾𝑧 ℎ,  

𝜕ℎ

𝜕𝑡
= −(𝐾𝑥 𝑉𝑥 + 𝐾𝑧 𝑉𝑧) ℎ. (1.7) 

Since spatial and temporal derivatives vary only in structural coefficients of ℎ, the SKE struc-

ture ℎ is structurally invariant with respect to spatial and temporal differentiation of any order.  

Second derivatives of ℎ in with respect to 𝑥 and 𝑧 become  

 
𝜕2ℎ

𝜕𝑥2
= 𝐾𝑥2ℎ,  

𝜕2ℎ

𝜕𝑧2
= 𝐾𝑧2ℎ. (1.8) 

Substitution of spatial derivatives (1.8) in (1.1) and collection of like terms reduce the scalar 

Laplace PDE to the Laplace Algebraic Equation (AE)  

                                                    (𝐾𝑥2 + 𝐾𝑧2) ℎ = 0. (1.9) 

For the Laplace AE to be satisfied for all independent variables and structural parameters 

[𝑥, 𝑧, 𝑡, 𝐿𝑥, 𝐿𝑧, 𝑀𝑥, 𝑀𝑧, 𝑉𝑥, 𝑉𝑧, 𝑆𝑥, 𝑆𝑧], a structural coefficient of ℎ should vanish:  

                                                      𝐾𝑥2 + 𝐾𝑧2 = 0. (1.10) 

Expressing structural parameters [𝐾𝑥, 𝐾𝑧] through the real and imaginary parts by (1.3), 

vanishing the real and imaginary parts, and multiplying the imaginary part by 1 2⁄  transform 

the characteristic AE in complex variables (1.10) to a characteristic system of AEs in real vari-

ables. The first AE describes length invariance of vectors [𝐿𝑥, 𝐿𝑧] and [𝑀𝑥, 𝑀𝑧] by  

 𝐿𝑥2 + 𝐿𝑧2 − (𝑀𝑥2 + 𝑀𝑧2) = 0. (1.11) 

The second AE  

 𝐿𝑥 𝑀𝑥 + 𝐿𝑧 𝑀𝑧 = 0 (1.12) 

sets for these vectors the orthogonality condition.  

To summarize, the DIS method enables to reduce the Laplace PDE through the Laplace AE 

and the characteristic AE in complex variables to the characteristic system in real variables 

[𝐿𝑥, 𝐿𝑧] and [𝑀𝑥, 𝑀𝑧].  

1.1.3. Structural Parameters 

Primarily, we separate variables of (1.11)-(1.12) using a polar coordinate system. Set polar 

presentations of [𝐿𝑥, 𝐿𝑧] and [𝑀𝑥, 𝑀𝑧] with the same radial distance 𝑅𝑧 and various polar 

angles 𝛼 and Α as follows:  

                                    [𝐿𝑥 = 𝑅𝑧 cos(Α),    𝐿𝑧 = 𝑅𝑧 sin(Α)], (1.13) 

                                    [𝑀𝑥 = 𝑅𝑧 cos(𝛼) ,  𝑀𝑧 = 𝑅𝑧 sin(𝛼)]. (1.14) 

Set substitutions, which are produced by the Pythagorean identities, by  

 cos2(Α) = 1 − sin2(Α),  cos2(𝛼) = 1 − sin2(𝛼). (1.15) 

Substitution of (1.13)-(1.15) in (1.11) confirms that the first characteristic AE is satisfied.  
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Secondly, we substitute (1.13)-(1.14) in the second characteristic AE, vanish a coefficient of 

𝑅𝑧2, and combine terms by the trigonometric identity  

 cos(Α) cos(𝛼) + sin(Α) sin(𝛼) = cos(Α − 𝛼) (1.16) 

to yield a trigonometric equation for polar angles  

 cos(Α − 𝛼) = 0. (1.17) 

A general solution of (1.17) is  

 Α = 𝛼 +
𝜋

2
+ 𝜋𝑗, (1.18) 

where an integer 𝑗 = 0, ±1, ±2, …. 
Finally, substituting relationship (1.18) into (1.13) and evaluating the trigonometric functions 

give the following solution for the real parts [𝐿𝑥, 𝐿𝑧]:  

 [𝐿𝑥 = −(−1)𝑗  𝑅𝑧 sin(𝛼),  𝐿𝑧 = (−1)𝑗  𝑅𝑧 cos(𝛼)], (1.19) 

while the imaginary parts [𝑀𝑥, 𝑀𝑧], which are independent parameters, are defined by (1.14).  

1.1.4. SKEF Functions 

The Euler formula for expansion of an exponential function of a complex argument reads:  

 exp(𝑎 + 𝑖𝑏) = exp(𝑎) [cos(𝑏) + 𝑖 sin(𝑏)], (1.20) 

where 𝑎 and 𝑏 are real and imaginary parts, respectively. Substitution of (1.3), (1.19), (1.14) 

in (1.2) and use of (1.20) represent  

 ℎ = 𝐻(𝑓 + 𝑖𝑔) (1.21) 

as a superposition of SKEF functions [𝑓, 𝑔](𝑥, 𝑧, 𝑡) with structural coefficients [𝐻, 𝑖𝐻], where 

[𝑓, 𝑔] are computed as follows:  

 𝑓 = 𝑒−(−1)𝑗𝑅𝑧 [sin(𝛼) 𝑋−cos(𝛼) 𝑍] cos(𝑅𝑧 [cos(𝛼) 𝑋 + sin(𝛼) 𝑍]), (1.22) 

 𝑔 = 𝑒−(−1)𝑗𝑅𝑧 [sin(𝛼) 𝑋−cos(𝛼) 𝑍] sin(𝑅𝑧 [cos(𝛼) 𝑋 + sin(𝛼) 𝑍]). (1.23) 

In the general case, the polar angle 𝛼 varies from a propagation angle 𝜙, which is defined 

through the propagation velocities [𝑉𝑥, 𝑉𝑧] by  

 cos(𝜙) =
𝑉𝑥

√𝑉𝑥2 + 𝑉𝑧2
,  sin(𝜙) =

𝑉𝑧

√𝑉𝑥2 + 𝑉𝑧2
. (1.24) 

We assume that the reference frame (𝑋, 𝑍) moves along the 𝑥-axis. The polar axis then co-

incides with the 𝑥-axis of the Cartesian coordinate system, i.e. 𝛼 = 0, 𝑉𝑧 = 0, 𝑆𝑧 = 0, 𝜙 = 0. 
The SKEF functions (1.22)-(1.23) then are reduced to  

 𝑓 = 𝑒(−1)𝑗 𝑅𝑧 𝑧 cos(𝑅𝑧 𝑋),  𝑔 = 𝑒(−1)𝑗 𝑅𝑧 𝑧 sin(𝑅𝑧 𝑋). (1.25) 

For 𝑗 = 1 and 𝑗 = 0, the SKEF functions (1.25) match the eigenfunctions computed by the 

method of separation of variables [3]. They model a one-dimensional (1-D) propagation of a  

2-D harmonic wave, which decays in the 𝑧-direction. Hence, the DIS method produces more 

general eigenfunctions (1.22)-(1.23) than the method of separation of variables.  
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1.1.5. The Fundamental SKEF Structure of Type a 

We should satisfy an upper condition on vanishing at infinity,  

 ℎ|𝑧=+∞ = 0, (1.26) 

for an upper solution of the Laplace PDE (1.1) in an upper domain (see Figure 1.1)  

 𝑈 = {𝑥 ∈ (−∞, +∞),  𝑧 ∈ (0, +∞)} (1.27) 

and a lower condition on vanishing at infinity,  

 ℎ|𝑧=−∞ = 0, (1.28) 

for a lower solution of (1.1) in a lower domain  

 𝐿 = {𝑥 ∈ (−∞, +∞),  𝑧 ∈ (−∞, 0)}. (1.29) 

In (1.25), the sign index 𝑗 = 1 and 𝑗 = 0 for upper and lower harmonic waves, respectively.  

Two laboratory frames for the upper and lower harmonic waves in 𝑈 and 𝐿 are shown in 

Figure 1.1. The harmonic internal waves propagate along the 𝑥-axis and decay along the 𝑧-axis. 

A generation area of the internal waves is shaded. There are different realizations of the gener-

ation area in various applications. For instance, the generation area may be implemented by a 

charged strip in electromagnetism, a source of heat in heat transfer, an area of surface waves in 

fluid dynamics, etc. Surface forcing of excitation, propagation, and interference of the internal 

waves via the generation area is modelled by the Dirichlet and Neumann conditions on the lower 

boundary 𝑧 = 0 of the upper domain 𝑈 and the upper boundary 𝑧 = 0 of the lower domain 

𝐿. Problems with these boundary conditions are considered in Sections 1.4 and 1.5.  

Using the superposition principle [3], we set up a global solution ℎ(𝑥, 𝑧, 𝑡) of the global La-

place PDE (1.1) in U  and L  as a superposition of local solutions ℎ𝑛(𝑥, 𝑧, 𝑡) by  

 ℎ = ∑ ℎ𝑛,

𝑁

𝑛=1

 (1.30) 

where 𝑁 is a number of internal waves. The local solutions then obey a local Laplace PDE  

 
𝜕2ℎ𝑛

𝜕𝑥2
+

𝜕2ℎ𝑛

𝜕𝑧2
= 0,   ∆ ℎ𝑛 = 0,   ∆ =

𝜕2 

𝜕𝑥2
+

𝜕2 

𝜕𝑧2
, (1.31) 

where ∆ is the Laplacian.  

Define Stationary Kinematic Fourier (SKF) functions  

 𝑐𝑥𝑛 = cos(𝑅𝑧𝑛 𝑋𝑛) ,  𝑠𝑥𝑛 = sin(𝑅𝑧𝑛 𝑋𝑛), (1.32) 

and a Stationary Kinematic Euler (SKE) function 𝑒𝑧𝑛 in real variables for 𝑛 = 1,2, … , 𝑁 by  

 𝑒𝑧𝑛 = exp((−1)𝑗  𝑅𝑧𝑛 𝑧) ,  𝑒𝑧𝑛 = exp(𝑍𝑛), (1.33) 

where the propagation variable 𝑋𝑛 and the decay variable 𝑍𝑛 are  

 [𝑋𝑛 = 𝑥 − 𝑉𝑥𝑛 𝑡 + 𝑆𝑥𝑛,  𝑍𝑛 = (−1)𝑗  𝑅𝑧𝑛 𝑧]. (1.34) 

The expression of 𝑒𝑧𝑛 through 𝑧 is required to take into account the conditions at infinity. 

The expression of 𝑒𝑧𝑛 in terms of 𝑍𝑛 is used to process compatibility conditions both in 𝑈 

and 𝐿 simultaneously.  
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Figure 1.1. Configuration of the upper domain 𝑈 and the lower domain 𝐿 of genera-

tion, propagation, and interference of internal waves in two dimensions. 

We then construct a local solution ℎ𝑛 both in the upper and lower domains using a funda-

mental SKEF structure of type 𝑎, which is defined as a superposition of the SKEF functions  

                                          [𝑓𝑛 = 𝑒𝑧𝑛 𝑐𝑥𝑛,  𝑔𝑛 = 𝑒𝑧𝑛 𝑠𝑥𝑛] (1.35) 

with structural coefficients [𝐹ℎ𝑛, 𝐺ℎ𝑛] as follows:  

 ℎ𝑛 = 𝑎ℎ𝑛 = (𝐹ℎ𝑛 𝑐𝑥𝑛 + 𝐺ℎ𝑛 𝑠𝑥𝑛) 𝑒𝑧𝑛. (1.36) 

The fundamental SKEF structure 𝑎ℎ𝑛 satisfies the conditions on vanishing at infinity (1.26) 

and (1.28) since  

 𝑎ℎ𝑛|
𝑧=−(−1)𝑗 ∞ = 0. (1.37) 

For waves propagating along the 𝑦-axis and decaying along the 𝑧-axis, the propagation co-

ordinate 𝑌𝑛, the SKF functions [𝑐𝑦𝑛, 𝑠𝑦𝑛], and the SKEF functions [𝑓𝑛, 𝑞𝑛] are  

 𝑌𝑛 = 𝑦 − 𝑉𝑦𝑛 𝑡 + 𝑆𝑦𝑛, (1.38) 

 𝑐𝑦𝑛 = cos(𝑅𝑧𝑛 𝑌𝑛) ,  𝑠𝑦𝑛 = sin(𝑅𝑧𝑛 𝑌𝑛), (1.39) 

                                          [𝑓𝑛 = 𝑒𝑧𝑛 𝑐𝑦𝑛,   𝑞𝑛 = 𝑒𝑧𝑛 𝑠𝑦𝑛], (1.40) 

where the decay coordinate 𝑍𝑛 is given by (1.34) and the SKE function by (1.33).  

For waves propagating along the 𝑥-axis and decaying along the 𝑦-axis, the SKE function 

𝑒𝑦𝑛 and the decay variable 𝑌𝑛 become  

 𝑒𝑦𝑛 = exp((−1)𝑗  𝑅𝑦𝑛 𝑦) ,  𝑌𝑛 = (−1)𝑗  𝑅𝑦𝑛 𝑦,  𝑒𝑦𝑛 = exp(𝑌𝑛), (1.41) 

while the propagation variable 𝑋𝑛 and the SKF functions [𝑐𝑥𝑛, 𝑠𝑥𝑛] are defined by (1.34) and 

(1.32), respectively, and the SKEF functions [𝑓𝑛, ℎ𝑛] are  

                                             [𝑓𝑛 = 𝑒𝑦𝑛 𝑐𝑥𝑛,   ℎ𝑛 = 𝑒𝑦𝑛 𝑠𝑥𝑛]. (1.42) 

In notation of the SKF functions, a first symbol from the list [𝑐, 𝑠] stands for the trigonomet-

ric functions [cos,  sin], respectively, and a second symbol from the list [𝑥, 𝑦] signifies the di-

rection of wave propagation. In notation of the SKE functions, the first symbol 𝑒 always de-

notes the exponential function exp and a second symbol from the list [𝑦, 𝑧] means the direc-

tion of wave decay.  

 

z 

x 

Generation Domain 

Upper Domain 

z x 

Lower Domain 



 Harmonic Wave Systems: Partial Differential Equations of the Helmholtz Decomposition 

 

8 

 

The same approach is used for notation of structural parameters. A first symbol stands for the 

name of a structural parameter, for instance, 𝑉 for velocity, 𝑆 for shift, and 𝑅 for scale (ra-

dius). A second symbol from the list [𝑥, 𝑦, 𝑧] means the direction. Consequently, names of 

structural parameters are capitalized, like 𝑉𝑥𝑛, 𝑉𝑦𝑛, 𝑆𝑥𝑛, 𝑆𝑦𝑛, 𝑅𝑥𝑛, 𝑅𝑦𝑛, 𝑅𝑧𝑛,  but names of 

structural functions are written in lower case, similar to 𝑐𝑥𝑛, 𝑐𝑦𝑛, 𝑠𝑥𝑛, 𝑠𝑦𝑛, 𝑒𝑧𝑛, 𝑒𝑦𝑛.  

1.2. Fundamental Scalar Solutions  

The SKEF functions derived in Section 1.1 are used in Section 1.2 to construct a complete set 

of the fundamental SKEF structures, which constitute an orthogonal SKEF structural basis to 

the scalar Laplace PDE in two dimensions. Differential, integral, and algebraic properties of the 

SKEF structural basis are considered, as well.  

1.2.1. Mathematical Formulation 

For a harmonic variable ℎ𝑛(𝑥, 𝑧, 𝑡), which is expandable in the invariant SKEF structures, 

show that there are two independent fundamental SKEF structures  

 𝑎ℎ𝑛 = (𝐹ℎ𝑛 𝑐𝑥𝑛 + 𝐺ℎ𝑛 𝑠𝑥𝑛) 𝑒𝑧𝑛, (1.43) 

 𝑏ℎ𝑛 = (𝐺ℎ𝑛 𝑐𝑥𝑛 − 𝐹ℎ𝑛 𝑠𝑥𝑛) 𝑒𝑧𝑛, (1.44) 

which constitute the orthogonal SKEF structural basis to the scalar Laplace PDE (1.31), where 

[𝐹ℎ𝑛, 𝐺ℎ𝑛] are fundamental SKEF coefficients, [𝑐𝑥𝑛, 𝑠𝑥𝑛, 𝑒𝑧𝑛] are the SKF and SKE func-

tions (1.32)-(1.34).  

In notation of the fundamental SKEF coefficients, a first capitalized symbol from the list 

[𝐹, 𝐺] refers to the name of the SKF function (1.35) from the list [𝑓, 𝑔], correspondingly. A 

second symbol stands for the name of a harmonic variable, for instance, ℎ for a scalar field, 

[𝑢, 𝑤] for components of a vector field 𝒖. In notation of the fundamental SKEF structures, a 

first symbol corresponds to the structure type (1.43)-(1.44) from the list [𝑎, 𝑏] and a second 

symbol stands for the name of a harmonic variable. To summarize, names of structural coeffi-

cients are capitalized, but names of harmonic variables and fundamental SKEF structures are 

written in lower case.  

When [𝐹ℎ𝑛, 𝐺ℎ𝑛] are given numerically, the structural invariance allows for construction of 

any of two fundamental SKEF structures: 𝑎ℎ𝑛 or 𝑏ℎ𝑛, see examples and exercises provided 

in Section 1.6.  

1.2.2. Derivatives of Structural Functions 

In the current subsection, we calculate spatial and temporal derivatives of the first and second 

orders of the SKE, SKF, and SKEF functions.  

Taking first and second spatial derivatives of the SKF functions with respect to 𝑥 yields  

                                   
𝜕𝑐𝑥𝑛

𝜕𝑥
= −𝑅𝑧𝑛 𝑠𝑥𝑛,     

𝜕𝑠𝑥𝑛

𝜕𝑥
= +𝑅𝑧𝑛 𝑐𝑥𝑛, (1.45) 

                                 
𝜕2𝑐𝑥𝑛

𝜕𝑥2
= −𝑅𝑧𝑛

2 𝑐𝑥𝑛,   
𝜕2𝑠𝑥𝑛

𝜕𝑥2
= −𝑅𝑧𝑛

2 𝑠𝑥𝑛. (1.46) 

The first derivatives are structurally covariant since they change the SKF functions [𝑐𝑥𝑛, 𝑠𝑥𝑛] 
to cofunctions [𝑠𝑥𝑛, 𝑐𝑥𝑛] and the second derivatives are structurally invariant as they do not 
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