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1. Magnetism of the Rare-Earth ions in Crystals 

In this chapter we present the basic facts regarding the physics of magnetic phenomena of rare-earth ions in crystals. 
We discuss the theory of quantized angular momentum and the theory of the crystal field (CF) splitting of the electronic 
energy levels of the rare-earth ions in these crystals as required to give a better understanding for the material discussed 
in detail in later chapters in this book. Additional data and analyses can be found in corresponding references, which 
expand on topics that are discussed in each of the chapters in this book. 

1.1. Electronic Structure and Energy Spectra of the “Free” Rare-Earth Ions 

In rare earth (RE) compounds, the lanthanide ions (from Ce to Yb) are usually found in the trivalent state RE3+. The 
ground electronic configuration of the RE ions may be written as [Xe]4f n, where [Xe] = 1s22s22p63s23p63d104s24p64d10 

5s2p6 is the closed-shell configuration of the noble gas xenon, and n is the number of electrons in the unfilled 4f n shell, 
ranging from n = 1 for Ce3+ to n = 13 for Yb3+. The characteristic magnetic moment for each RE ion leads to an interac-
tion between that ion and an applied external magnetic field H, producing interesting magnetic and magnetooptical fea-
tures in the RE compounds.  

Over the years, methods of numerical analysis have been developed to calculate the energy states of “free” RE ions 
(that is, for ions that are not in a ligand or crystal-field environment). These methods allow evaluation of the multiplic-
ities of states and the energy-level positions of excited electronic configurations relative to the ground state. Energy 
intervals for 4f n, 4f n-15d, 4f n-16s, and other excited electronic configurations for free RE ions are presented in Refs. 
[1,2]. Also presented are energy level schemes for the energy levels of the 4f n configuration for all trivalent RE ions. 
From these results it follows that the excited RE ion configurations, such as 4f n-15d, 4f n-16s, are separated from the 4f n 
ground state by an energy interval typically on the order of 105 cm–1. 

The repulsion between the equivalent 4f electrons within the shell, usually called the correlation Coulomb interaction 
of the RE ion, splits the states into terms characterized by the orbital (L) and spin (S) momenta. A term with fixed val-
ues of L and S has (2L + 1)(2S + 1) degenerate states distinguished by the mL and mS projections of the orbital and spin 
momenta. The wave functions of these degenerate states are given by |LSmLmS>, where –L  mL  L, –S  mS  S and 
the index  distinguishes between terms with the same L and S. Neighboring terms are separated from each other by an 
energy interval on the order of 104 cm–1 [3-5].  

To determine the ground term of the 4f n electronic configuration, one usually applies Hund’s rules and the Pauli ex-
clusion principle [4,6]. Hund’s first two rules assert: 

1) For a given electronic configuration the term (i.e., a quantum state with fixed L and S) with maximum multiplicity 
(i.e., with maximum S) has the lowest energy.  

2) For a given multiplicity (i.e., S = Smax), the term with the largest value of L has the lowest energy. 
For instance, let us apply Hund’s rules for the determination of the ground term of the rare-earth Tb3+ ion that has 

eight electrons in the unfilled 4f 8 electronic configuration. In this regard, we can construct Table 1.1 for the orbital (ml) 
and spin (ms) momentum projections of the eight f electrons. Hund’s first rule indicates that the first seven electrons will 
fill states of the same spin momentum (ms); Hund’s second rule indicates that the eighth electron will fill one of the re-
maining (opposite-spin) states having the largest angular momentum (ml). This is shown in Table 1.1. In spectroscopic 
language, the ion Tb3+ has a ground term of 7F, where the conventional notation is (2S + 1)L with (2S + 1) being the 
multiplicity. 

The quantum degeneracy of the RE ion terms is removed by the spin-orbit interaction WSO that has a value on the or-
der of 103 cm–1. The effective Hamiltonian of the spin-orbit interaction that describes the splitting of the term with fixed 
values of L and S has the form, 

LSH L S  
 

,                                                                                  (1.1) 

 
Table 1.1. Arrangement of the orbital (ml) and spin (ms) momentum projections in the 4f 8 electronic configuration of Tb3+. The max-
imum number of f electrons in the shell is N = 14. 

                ml 
ms 

–3 –2 –1 0 +1 +2 +3 
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where L


 and S


 are the operators of  the orbital and spin momenta, respectively, and   is the spin-orbit coupling con-
stant defined by the well-known Goudsmit formula [5]. From a qualitative point of view, the spin-orbit interaction WSO 
corresponds to the magnetic interaction between the spin magnetic momentum and the magnetic field caused by the 
motion of the 4f electron around the nucleus. In the one-electron approximation, WSO can be written as [7], 

 2 2

2 2 32SO

e l s
W

m c r






 
,                                                                        (1.2) 

where   is the Plank constant, m and e are the mass and charge of the electron, c is the speed of light, r is the radius of 
electron orbit, and l and s are the orbital and spin moments of the electron, respectively.  

The spin-orbit interaction splits the (2S + 1)L-terms into multiplets characterized by the total angular momentum J (with 
|L – S|  J  L + S) whose wavefunctions are spherical functions expressed in terms of |J,MJ> [8]. Each multiplet is 
many-fold degenerate in terms of its angular momentum projection MJ; this degeneracy can be removed by an external 
action (relative to the RE ion), such as crystalline electric or magnetic fields. In the case of an applied external magnetic 
field, Н, a complete lifting of the degeneracy takes place, with the (2S + 1)LJ multiplet split into (2J + 1) equidistant sub-
levels. The energy interval between sublevels is defined by the magnetic field intensity and by the value of the g-factor. 
We write the Hamiltonian (1.1) in the form, 

 2 2 21

2LSH J L S   
  

.                                                                    (1.3) 

For the diagonal matrix elements that define the multiplet energy E we obtain, 

       1
1 1 1

2
E J J J L L S S         .                                                   (1.4) 

From this expression, the Lande’ “rule of intervals” is determined as, 

       1
1 1 1

2
E J E J J J J J J            ,                                            (1.5) 

which gives the difference in energy between neighboring multiplets having the same L and S [3].  
The nomenclature of the multiplets in a term depends on the sign of the spin-orbit coupling constant  . For the 

“heavy” RE ions (from Tb3+ to Yb3+) with the 4f shell more than half filled   < 0, so the lowest-energy multiplet will 
have the largest possible value of J for a given L and S, that is, J0 = L0 + S0. For the “light” RE ions (from Ce3+ to Gd3+) 
with less than a half-filled 4f shell,   > 0. In this case, the lowest-energy multiplet will have the smallest possible value 
of J for a given L and S, that is, J0 = |L0  S0|. This is known as Hund’s third rule, which asserts that:  

3) For the less-than-half filled shell, the state with the smallest allowed value of J is the lowest energy state; for the 
more-than-half filled shell, the state with the largest allowed value of J is the lowest energy state.  

A general scheme for the energy spectrum for the 4f n configuration of the free rare earth ion based on these energy 
terms is presented in Figure 1.1. The ground term for each trivalent RE ion and the ground and first excited multiplets 
associated with each of these terms in the 4f n configuration are presented in Table 1.2. 

 

cm–1

cm–1

 
Figure 1.1. Splitting scheme for the energy levels of the free rare-earth ions [3]. 
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Table 1.2. Ground and first excited energy levels of the free RE ions. 

RE3+ Ground electronic configuration Ground term Ground multiplet First excited multiplet E1 – E0 (cm–1) 

Ce 4f 1 2F 2F5/2 
2F7/2 2200 

Pr 4f 2 3H 3H4 
3H5 2200 

Nd 4f 3 4I 4I9/2 
4I11/2 1800 

Pm 4f 4 5I 5I4 
5I5 1600 

Sm 4f 5 6H 6H5/2 
6H7/2 1000 

Eu 4f 6 7F 7F0 
7F1 350 

Gd 4f 7 8S 8S7/2 – – 
Tb 4f 8 7F 7F6 

7F5 2300 
Dy 4f 9 6H 6H15/2 

6H13/2 3400 
Ho 4f 10 5I 5I8 

5I7 5000 
Er 4f 11 4I 4I15/2 

4I13/2 6400 
Tm 4f 12 3H 3H6 

3H5 8200 
Yb 4f 13 2F 2F7/2 

2F5/2 10100 

 
The classification of free RE ion states is based on the Russell-Saunders approximation (also called normal- or LS-

coupling), which requires that the energy separation between the terms be much greater than the value of the term-
splitting into multiplets by the spin-orbit interaction. For the ground term of the 4f n configuration, this approximation is 
generally valid. However, significant deviation from LS-coupling is observed for excited RE ion states [3,4]. Neverthe-
less, LS-coupling is still a sufficiently good approximation to calculate the energy spectra and the classification of states 
for both the ground 4f n configuration and the lower states of the first excited 4f n-15d and 4f n-16s configurations of the 
free RE ions. As shown by the results from direct calculations (see, for example, Refs. [9,10]), the energy value of the d 
electron interaction with the f electrons of the 4f n-1 “core” of the 4f n-15d configuration is on the order of 104 cm–1, while the 
value of the spin-orbit interaction for the d electron is on the order of 103 cm–1. The lower states of the 4f n-15d (or 4f n-16s) 
configuration of the free RE ion can be described in the LS-coupling approximation as vector sums of the quantum 
numbers L and S that characterize the ground state of the 4f n-1 “core” with the quantum numbers l and s of the “va-
lence” 5d (or 6s) electron [4,5,7]. 

1.2. Paramagnetism of the “Free” RE Ions 

Let us consider the interaction between the “free” RE ion (as defined in Sec. 1.1) with an external magnetic field H. 
An interaction Hamiltonian of the ion with an external magnetic field (denoted the Zeeman Hamiltonian) is usually 
written as, 

   2Z B BH L S H J S H    
    

.                                                              (1.6) 

If the field H is directed along the z-axis of the coordinate system, the Hamiltonian can be written in the following 
form, 

 Z B Z ZH J S H 
 

.                                                                         (1.7) 

Based on the state wave functions, |LSJMJ>, that are distinct for each state, we can write the matrix elements for this 
Hamiltonian as [3], 

J Z J J B JLSJM H LSJM g M H


,                                                            (1.8) 

where 
     

 
1 1 1

1
2 1J

J J S S L L
g

J J

    
 


 is the Lande’ factor for the multiplet of the RE ion, 

and 

   
1/22 21 1J Z J J B JLS J M H LSJM g H J M       


                                          (1.9) 

where 
    

    

1/2

2

2 1 1

4 1 2 1 2 3
J

J L S L J S J L S J L S
g

J J J

           
   

    
. 

Let us consider now the behavior of an ensemble of free RE ions in an external magnetic field. In this case, the mag-
netic field tends to orient the magnetic moments M


 of the ions, whereas the thermal motion tends to disorient them. As 

M


 is spatially quantized, the energy of the interaction between the magnetic moment M


 of the RE ion with the 


