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Abstract 
The goal of this work was: 1) to present the assumptions for use of the esti-
mators used in CFA/SEM and EFA, and their advantages/disadvantages; 2) to 
highlight that the variables were treated either as continuous or as ordinal ca-
tegorical during the estimation process should be consistently treated for the 
rest of the study analyses (keeping a consistent level of measurement). Two 
estimator groups exist 1) Maximum Likelihood and 2) Least Squares. Robust 
alternatives exist in both groups. Desirable estimator properties include con-
sistency, non-biasness, efficiency, scale freeness, and scale invariance. Scho-
lars propose selecting an estimator considering: 1) measurement level; 2) 
non-normality; 3) model type. Not considering these could affect parameter 
significance, chi-square tests, and model fit. A plausible under-highlighted 
issue is the impact of the level of measurement implied during the estimation 
process on the level of measurement assumed for the same variables across 
the study. E.g., when an ordinal categorical level is assumed using categorical 
estimators, the same variables should be treated as ordinal categorical for the 
rest of the study: 1) using ordinal reliability; 2) omitting means; 3) using te-
trachoric/polychoric correlation for the nomological network. Therefore, the 
selection of an estimator impacts all the analytic strategies of the study. 
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1. Introduction 

Model estimation is an essential step in Exploratory Factor Analysis (EFA), 
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Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM). 
it pertains to every research endeavor, whether simple or complicated, affecting 
research results.  

EFA has common elements with CFA/SEM, and estimators are one of them 
(Brown, 2015). Whittaker & Schumacker (2022) explain, that an estimator is a 
discrepancy function used for the estimation of the unknown model parameters. 
Estimation minimizes the difference between the sample covariance matrix (S) 
and the model-implied covariance matrix (Σ). In other words, the different es-
timators, are different weightings of the discrepancies between corresponding 
parts of the observed and implied covariance matrices. They have various ad-
vantages and disadvantages depending on the dataset (Loehlin & Beaujean, 
2017). Both in EFA and CFA/SEM, the researcher must select the most suitable 
estimator based on the dataset analyzed (Whittaker & Schumacker, 2022). 
Moreover, in all three techniques, the model quality and overall fit are influ-
enced by the effectiveness of the estimator used.  

An estimator is effective when it is asymptotically consistent, unbiased, and 
efficient (Bollen, 1989; Lei & Wu, 2012; Gana & Broc, 2019). Specifically, 1) A 
consistent estimation most probably approximates the true value of the popula-
tion parameters estimated as sample size increases; 2) An unbiased estimation 
assumes an expected value that on average in large samples, neither overesti-
mates nor underestimates the equivalent population parameters; and 3) An effi-
cient estimator shows the minimal variance in large samples (Lei & Wu, 2012; 
Wang & Wang, 2020). Several others (e.g., Raykov & Marcoulides, 2006) also 
suggest that an estimator should at least be consistent. Scale-invariance (that is 
the data scale will not affect the fit function) and scale-freeness (that is standar-
dized parameter estimates will not change after any change in the variable scale) 
are equally desirable estimator properties (Kline, 2016). The Maximum Likelih-
ood estimator (ML) became popular in Factor Analysis, (e.g., Jöreskog, 2007; 
Brown, 2015; Stalikas & Kyriazos, 2019), or techniques like bifactor analysis 
(e.g., Stalikas et al., 2018). However, ML may not always be the best choice 
(Schumacker & Lomax, 2016), given that multivariate normality rarely holds in 
psychology studies (e.g., Jöreskog, 2007; Beaujean, 2014; Byrne, 2012; Kline, 
2016; Lei & Wu, 2012; Micceri, 1989; Watkins, 2021 among many others).  

The first goal of this work is to discuss concerns when choosing an estimator 
in CFA/SEM, and EFA (Part A) and the impact of this choice on the overall 
study design and the rest of the analyses performed (Part B). In Part A, the focus 
will be on 1) Introduction; 2) Preliminary steps: Considerations About the Data 
Properties; 3) Description of the EFA, and CFA/SEM Estimation Process; 4) 
EFA Estimator Classification and the Assumptions for Their Use; 5) CFA/SEM 
Estimator Classification and the Assumptions for Their Use. In Part B the 
second goal of the study is addressed, i.e., to highlight: 6) How does Choosing an 
Estimator Can Affect all the Study Analyses? And finally 7) Recap and Conclu-
sions are made. Part B highlights that when we choose to treat variables either as 
continuous or as ordinal categorical during model estimation, the same variables 
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should have identical (consistent) treatment regarding their level of measure-
ment for the rest of the study analyses.  

Part A. Concerns when choosing an estimator in CFA/SEM, and EFA  
Model estimation is a crucial step in both Confirmatory Factor Analysis 

(CFA) and Exploratory Factor Analysis (EFA). A well-estimated model provides 
evidence that the underlying factor structure is a good representation of the data, 
which in turn supports the validity of the constructs being measured. Several 
studies have highlighted the importance of model estimation in CFA and EFA. 
Marsh, Hau, and Wen (2004) demonstrated that proper model estimation tech-
niques, such as maximum likelihood estimation, can improve the fit of the mod-
el to the data and lead to more accurate conclusions about the factor structure, 
and Similarly, Thompson and Daniel (1996) emphasized the importance of se-
lecting appropriate model estimation methods in EFA, noting that different es-
timation methods can produce different factor structures and affect the inter-
pretation of the results. 

2. Preliminary Steps: Considerations of the Data Properties 

Generally, Schumacker and Lomax (2016) propose selecting an estimator based 
on the model type, the measurement level of variables, and non-normality 
(Muthén & Muthén, 2006: pp. 423-426; Schumacker & Lomax, 2016: p. 245).  

Moreover, model estimation often fails because of “messy data” (Schumacker 
& Lomax, 2016). Messy data involves missingness, outliers, or/and multicolli-
nearity (Schumacker & Lomax, 2016; see also Tabachnick & Fidell, 2013).  

Schumacker and Beyerlein (2000) explain that CFA/SEM (and EFA as well) 
are based on correlations therefore all restrictions of the correlation coefficients, 
and the general linear model are also pertinent and exaggerated in CFA/SEM 
and EFA. Despite the availability of asymptotic distribution-free estimation me-
thods, and robust statistics messy data cannot be overlooked (Schumacker & 
Lomax, 2016).  

The impact of overlooking messy data may be estimation convergence fail-
ures, Heywood cases (variables with negative variance), or non-positive definite 
matrices (determinant of the matrix is zero), as Schumacker and Lomax (2016) 
comment (Figure 1). For a detailed description of convergence failure problems 
and possible solutions please refer to Brown (2015) and Byrne (2012). 

An alternative course of action proposed is to use a robust estimator (i.e., 
MLM or MLR) no matter what the distributional data properties are (e.g., see 
Wang & Wang, 2020; Byrne, 2012 on this). Essentially, this alternative strategy 
would be effective in studies applying only CFA/SEM or EFA without any use of 
traditional statistics, which is rather uncommon. In applied research, traditional 
statistical approaches and SEM are usually used in tandem. The most common 
example of this application is the validation studies during the development of a 
new measure (Brown, 2015) or during its cultural adaption. These studies use 
EFA, CFA (or both) together with traditional statistical approaches to compare  
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Figure 1. The impact of messy data on the estimation process. 
 
means, or correlation analysis to test the nomological network of the validated 
construct. See a summary of all issues to be addressed before the estimation 
process in Table 1. 

The presence of many estimators for both EFA and CFA/SEM could put the 
researcher in the position of having two watches, but never knowing the time 
(Loehlin & Beaujean, 2017). Therefore, researchers have to familiarize them-
selves with the estimation process, and the advantages/disadvantages of each es-
timator to make more informed selections (Loehlin & Beaujean, 2017). This is 
the focus of the next sections. 

3. Brief Description of the EFA, and CFA/SEM Estimation  
Process  

Factor analysis (FA) seeks to find out how many factors (latent variables) opti-
mally represent the variance-covariance among items (observed variables or in-
dicators). Two FA techniques exist, based on the common factor model: Explo-
ratory (EFA) and Confirmatory Factor Analysis (CFA). Both intend to represent 
the relationships of an item-set through a smaller factor-set. Their difference is 
the a priori specifications and restrictions they assume (Brown, 2015). EFA is a 
data-driven approach requiring no a priori assumptions. CFA requires a strong 
empirical or conceptual foundation to specify and evaluate the model (Brown, 
2015). In applied research, FA psychometrically evaluates measurement instru-
ments during their construct validation or development (Brown, 2015). Statisti-
cally, FA is correlation-based seeking to replicate the intercorrelation among the 
variables (Schumacker & Beyerlein, 2000).  

When the researcher has uncertain or incomplete assumptions about an un-
derlying model structure, EFA is recommended. When the researcher can make 
clear assumptions about the number and the inter-relationships of an underlying 
structure (factor correlations, number of factors e.tc.) CFA is recommended 
(e.g., Fabrigar & Wegener, 2012). For SEM Whittaker and Schumacker (2022: p. 
1) state that researcher uses SEM to hypothesize and test theoretical models. Spe-
cifically, SEM reproduces the relationships among items (observed variables)  
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Table 1. Model Estimation Check-list: Suggestions for an effective selection of an esti-
mator.  

Deal with outliers. 
Deal with other messy data, i.e., missingness.  
Select an estimator taking into account the randomness of missing data (MCAR, MAR).  
Select an estimator taking into account the distribution of the sample data.  
Select the correct estimator for the data matrix in hand, e.g., covariance, the correlation 
–Pearson, polychoric, polyserial-augmented moment, or asymptotic matrix. Specify the 
matrix type used. 
Caution for Heywood cases occur (correlation greater than 1 or negative variance). 
Caution for multi-collinearity. 
Caution for non-positive definite matrices or/and other inadmissible solutions.   
Caution for other convergence problems.  
Avoid convergence problems by carefully selecting start values. 
Avoid convergence problems by using larger samples.  
If the problem persists test the model with an alternative estimator. 
Cross-validate the estimation with an alternative estimator with similar assumptions. 
Are the results comparable? 

Source. This table was based on a similar table by Whittaker & Schumacker (2022: p. 
357). 
 
and factors (latent variables) seeking to reproduce the theoretical models, pro-
viding hypotheses testing (Whittaker & Schumacker, 2022). 

There are 4 steps for generating an EFA solution: 1) preparing the data; 2) 
factor extraction (that is model estimation in the EFA context; Fabrigar & We-
gener, 2012; Watkins, 2021) of the preliminary (orthogonal) factors; 3) how 
many factors to retain; and 4) rotation of the final solution (Kim & Mueller, 
1978; Brown, 2015). Factor extraction is the mathematical process of obtaining 
factors from a correlation matrix (Watkins, 2021). In EFA different factor ex-
traction methods exist (i.e., estimators, Fabrigar & Wegener, 2012), due to nu-
merous fit (discrepancy) functions. The goal of the extraction process in the EFA 
is to find out the minimum number of common factors, reproducing the corre-
lations among observed variables in an acceptable way. The criteria to stop ex-
tracting common factors involve determining when the difference between the 
reproduced and observed correlations is due to sampling variability (Kim & 
Mueller, 1978). 

As we already said, EFA shares several elements with CFA, and estimators are 
one of them (Brown, 2015). However, for reaching an EFA solution, after the 
researcher decides that data are factorable, factors extraction follows (model es-
timation in the EFA context; Fabrigar & Wegener, 2012), before the researcher 
decides how many factors to retain (Kim & Mueller, 1978; Brown, 2015). On the 
contrary, during the CFA/SEM the researcher is the one that specifies all model 
parameters.  

The steps a researcher takes in conducting a CFA or SEM involve model spe-
cification, identification, estimation, testing, and model modification. Parame-
ters to be estimated in a CFA model include factor loadings, factor variances and 
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covariance (when factors > 1), and measurement error variances (e.g., Lei & Wu, 
2012). In a SEM model, structural regression paths are additionally estimated 
(e.g., Byrne, 2012). In the model estimation, the generated parameter values seek 
to minimize the discrepancy between the sample covariance matrix S and the 
population model implied covariance matrix Σ, through a discrepancy function 
(Byrne, 2012), also called the fit function (Raykov & Marcoulides, 2006; Byrne, 
2012, among many others).  

Lei & Wu (2012) describe the estimation process as follows. Generally, EFA/ 
CFA/SEM estimation procedures are iterative and they use start values to begin 
iteration. The start values replace their corresponding unknown parameters and 
an intermediate model-implied variance-covariance matrix is generated. The 
process iterates until differences in parameter estimates from one iteration to the 
next meet the convergence criteria (the stopping rules of the iterative process). 
Then the parameter estimates of the last iteration replace the unknown parame-
ters of the model (Lei & Wu, 2012). Depending on how the matrix distance is es-
timated during this process, several fit functions result in different parameter es-
timation methods (Raykov & Marcoulides, 2006).  

4. EFA Estimator Classification and the Assumptions for  
Their Use 

Two major estimator classifications exist (Kim & Mueller, 1978): 1) Maximum 
Likelihood (ML) and their variations, e.g., canonical factoring (Rao, 1955). Ca-
nonical factoring entails communality estimates, yielding ML factors (Gorsuch, 
2015); 2) Least Squares (LS) and with their variations, e.g., principal axis factor-
ing, WLS, ULS, GLS, or minimum residual analysis (MINRES). Note that both a 
non-iterated principal axis factoring (PA), and an iterated principal axis factor-
ing version are available, with iterated communalities (IPA, Fabrigar & Wegen-
er, 2012). Note also that some extraction methods have different names. For in-
stance, ULS, OLS, or MINRES imply the same extraction method (Flora, 2018; 
Watkins, 2021). Moreover, an iterative principal axis (IPA) converges to an OLS 
solution (Briggs & MacCallum, 2003; MacCallum, 2009 cited in Watkins, 2021).  

Three additional EFA extraction methods exist Alpha factoring, Image fac-
toring, and Principal Component Analysis (PCA). Alpha factoring (Kaiser & 
Caffrey, 1965) maximizes the alpha, or the Kuder-Richardson coefficient of the 
factors (Gorsuch, 2015). It is extracted like PA (Loehlin & Beaujean, 2017). Im-
age Factor Analysis uses the image of each variable, including only common 
factor variance. Image factoring can also be extracted by ML (Gorsuch, 2015). 
Finally, whether PCA is either an extraction method (Kim & Mueller, 1978; Mu-
laik, 2009), or a classification method unrelated to FA (Brown, 2015; Fabrigar & 
Wegener, 2012) is debatable (Costello & Osborne, 2005).  

Traditionally there was a tendency to prefer ML because it offered additional 
model fit (Fabrigar, Wegener, MacCallum, & Strahan, 1999; Fabrigar & Wegen-
er, 2012; Matsunaga, 2010). However, this advantage is no longer true, given that 
model fit statistics are currently available with all EFA extraction methods in the 
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R environment (R Development Core Team, 2022), e.g., when using the “psych” 
package (Revelle, 2022)1, see Table 2. 

Simulation studies (summarized by Watkins, 2021) compared ML and LS ex-
traction classes regarding factor recovery with different sample sizes and factor 
strength (Briggs & MacCallum, 2003; MacCallum, Browne, & Cai, 2007). LS out-
performed ML when the factors were weak (≤16% explained variance), or there 
 
Table 2. Estimators when carrying out EFA or CFA/SEM in the R environment. 

Estimator Class Used in Description 

MINRESa LS EFA Minimum Residual 

PAb LS EFA Principal Factor Solution (aka PAF) 

WLS LS EFA/CFA/SEM Weighted Least Squares (aka ADF) 

GLS LS EFA/CFA/SEM Generalized Least Squares 

ML ML EFA/CFA/SEM Maximum Likelihood 

DWLS LS CFA/SEM Diagonally weighted least squares 

ULS LS CFA/SEM Unweighted Least Squares 

DLS LS CFA Distributionally-weighted Least Squares 

PML ML CFA/SEM Pairwise Maximum Likelihood 

MLM ML CFA/SEM ML with robust standard errors and SB χ2 

MLR ML CFA/SEM 
ML with robust standard errors and  
Yuan-Bentler χ2 

MLMVS ML CFA/SEM 
ML with robust standard errors and a mean-and 
variance-adjusted χ2 (Satterthwaite technique) 

MLMV ML CFA/SEM 
ML with robust standard errors and a mean-and 
variance-adjusted χ2 (Scale-shifted method) 

WLSM LS CFA/SEM 
WLS with robust standard errors and a 
mean-adjusted χ2 

WLSMV LS CFA/SEM 
WLS with robust standard errors and a 
mean-adjusted χ2 (scale-shifted technique) 

WLSMVS LS CFA/SEM 
WLS with robust standard errors and a 
mean-adjusted χ2, (Satterthwaite technique) 

ULSM LS CFA/SEM 
ULS with robust standard errors and a 
mean-adjusted test statistic. 

ULSMVS LS CFA/SEM 
ULS with robust standard errors and a 
mean-adjusted χ2 (Satterthwaite technique) 

ULSMV LS CFA/SEM 
ULS with robust standard errors and a 
mean-adjusted χ2 (scale-shifted technique) 

Note. CFA/SEM estimators are partly based on a similar table by Beaujean (2014: p. 157). 
aMINRES is slightly different from OLS, ULS, and PA. The derivative of the Minres 
changed making it practically identical to PA and ULS. However, PA tends to generate 
slightly smaller residuals and slightly larger RMSEA values than MINRES. 

 

 

1This work does not refer to a particular software, although familiarity with R environment is as-
sumed (see the R code to help readers to specify an EFA/CFA/SEM estimator in Appendix A). 
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was over-factoring (Brown, 2015), or when the sample was small (100). Similar-
ly, Briggs and MacCallum (2003) proposed that when using OLS in EFA there is 
an increased likelihood to extract all major common factors (p. 54). In contrast, 
ML performs well with larger samples, normal data, and strong factors (Mac-
Callum, Browne, & Cai, 2007; Watson, 2017). Generally, for continuous data, the 
most popular methods are ML and PA (Brown, 2015). When the multivariate 
normality is heavily violated, ML can give distorted and biased model fit and 
significance tests. Moreover, ML is more prone to improper solutions (Brown, 
2015). Conversely, PA is free of distributional assumptions and it is less prone to 
improper solutions (Brown, 2015; Fabrigar et al., 1999). Note, that the R envi-
ronment can compute goodness-of-fit statistics with all estimators (not only 
ML), including PA. Thus, PA is an option when the normality assumption is vi-
olated or ML generates an improper solution, if the improper solution does not 
undercover problems, like weak factors or messy data (Brown, 2015). Osborne 
and Banjanovic (2016) among many other researchers (e.g., Bandalos & 
Gerstner, 2016; Costello & Osborne, 2005, cited by Watkins, 2021) agree that 
EFA literature proposes ML when multivariate normality holds and PA or ULS 
in absence of normality (Watkins, 2021). Nevertheless, both extractions (as a 
rule) tend to yield similar results (Tabachnick & Fidell, 2012). Generally, LS is 
popular because they make no distributional assumptions and they show sensi-
tivity to weak factors, as Watkins (2021) argues (quoting also Carroll, 1993; 
Russell, 2002; Widaman, 2012 among others). Weak factors tend to have load-
ings e.g., <0.32 (Costello & Osborne, 2005; Tabachnick & Fidell, 2012).  

The rotation methods can also be classified into two types (Brown, 2015; Kim 
& Mueller, 1978): orthogonal and oblique. The oblique rotation can be further 
subdivided into those which are based on the direct simplification of loadings in 
the factor pattern matrix or the indirect simplification of the loadings on refer-
ence axes. Within each type, many variations exist (Kim & Mueller, 1978). As a 
rule, oblique rotation calculates more accurately the factor associations in psy-
chology where all constructs tend to affect one another (Costello & Osborne, 
2005), that is why there is a general tendency to consider oblique rotations more 
pertinent than orthogonal ones (Fabrigar & Wegener, 2012; Brown, 2015). In 
fact, some theoretical benefits of orthogonal rotations are now regarded as mis-
conceptions, e.g., offering a simpler structure in comparison to oblique rotations 
(Fabrigar & Wegener, 2012). Oblique rotations make more accurate assump-
tions, providing solutions with comparable or superior simple structures (Fabri-
gar & Wegener, 2012). If the factors are truly uncorrelated, the oblique rotation 
will produce identical results with orthogonal. And in CFA it will reproduce the 
magnitude of the factor relationships more accurately (Brown, 2015). 

5. CFA/SEM Estimator Classification and the Assumptions  
for Their Use  

The two basic estimator classes, already described in the EFA section are perti-
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nent in CFA/SEM too: 1) the Maximum Likelihood (ML), and 2) the Least 
Squares (LS) (Beaujean, 2014; Lei & Wu, 2012). Additionally, based on a different 
classification proposed by Kline (2016) the estimators can be either simultaneous 
or single-equation (Kline, 2016). The simultaneous estimators (full-information) 
estimate all model parameters at the same time, requiring a fully identified mod-
el. In contrast, single-equation estimators (partial information or limited infor-
mation) compute the equation for a single endogenous variable each time 
(Kline, 2016). ML is the most popular full-information estimator. LS class has 
both single and full-information estimators (see Kline, 2016; Lei & Wu, 2012). 
Robust estimators exist in both classes. Robust estimators are less influenced by 
violations of the normality in comparison to ML (Beaujean, 2014).  

Both Loehlin and Beaujean (2017: p. 54) as well as Raykov and Marcoulides 
(2006: p. 28) agree there are 4 fairly standard estimators in CFA/SEM: Unweighted 
Least Squares (ULS), Generalized Least Squares (GLS), ML, and Browne’s (1984) 
Asymptotically Distribution-free (ADF), also referred as Weighted Least Squares 
(WLS). Their application of all four is based on the minimization of an equiva-
lent fit function (see how to specify them in the R environment in Appendix A 
and their formula in Appendix B). Described next are widely used estimators 
and not an exhaustive list. 

5.1. Maximum Likelihood Estimator (ML)  

ML applies to the whole range of SEM models, from non-recursive path models 
to models with substantive latent variables (Kline, 2016). The assumptions for 
using ML are (Bollen, 1989; Brown, 2015; Kline, 2016): 1) large sample; 2) con-
tinuous observed variables; 3) observed variables having multivariate normal 
distribution; 4) complete data; and 5) a correctly specified model to eliminate the 
possibility of specification error dissemination (like all full-information me-
thods). Sample size assumption, small samples are generally tricky with ML be-
cause the estimates and fit tests they generate tend to be non-asymptotic (Lee & 
Song, 2004). Brown (2015) notes that when we assume that ML (or any other es-
timators) is appropriate for continuous data we mean interval-type data. Note 
also that the assumptions (2) and (3) must hold both for the observed variables, 
and the latent variables, but not for all other added observed variables, e.g., co-
variates (Brown, 2015). Under the above conditions, ML is asymptotically con-
sistent, unbiased, and efficient (Bollen, 1989; Lei & Wu, 2012; Wang & Wang, 
2020). Additionally, ML is scale-free (standardized estimates will not change af-
ter any change in their scale), scale-invariant (data scale will not affect the fit 
function), and asymptotically normally distributed, that is as sample size in-
creases the parameter estimates are normally distributed (Wang & Wang, 2020). 
Finally, the ML fitting function multiplied by (n − 1) approaches a χ2 distribu-
tion, so the model χ2 is used to test the overall model fit (Wang & Wang, 2020).  

The principle behind ML is to find what estimates maximize the likelihood 
that the observed covariances (the data) were drawn from the population. The 
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final set of parameter estimates minimizes squared differences between the re-
spective elements of the two matrices. ML being a full information estimator of-
fers standard errors for statistical significance testing and confidence intervals of 
factor loadings and factor correlations, and these may be some of the reasons 
that made ML popular (Brown, 2015).  

FIML is also an ML estimation technique for handling data missing com-
pletely at random (MCAR) or missing at random (MAR). FIML maximizes a 
modified log-likelihood function after raw data input. This approach is regarded 
as a state-of-the-art treatment for handling missingness (Beaujean, 2014; Lei & 
Wu, 2012; Wang & Wang, 2020). Note that MAR is a plausible assumption, 
permitting missingness both in the observed outcome and covariates (Little & 
Rubin, 1987 cited in Wang & Wang, 2020). 

ML is also applicable with variables slightly deviating from normality (e.g., 
Bollen, 1989; Raykov & Widaman, 1995 among many others), especially when 
the primary focus is parameter estimates (Raykov & Marcoulides 2006), but the 
extent of this applicability differs in terms of the data used and the model speci-
fied. However, the use of ML with extremely non-normal data could (Brown, 
2015): 1) spuriously increased χ2 and model over-rejection (e.g., Bollen, 1989); 2) 
slightly under-estimated TLI and CFI values, whereas RMSEA values could be 
overestimated (Byrne, 2012); 3) moderately to extremely underestimated stan-
dard errors. Brown explains biased SEs increase the risk of Type I error—that is 
spuriously indicating that a parameter significantly differs from zero when this 
condition would be unverifiable in the population (West, Finch, & Curran, 
1995). Crucially, the smaller the sample size, the bigger the impact of the estimator 
misuse may be. Additionally, there is an increased risk of non-convergence or 
improper solutions (see Brown, 2015 for more details). On the other hand, pa-
rameter estimates (like factor loadings) may still be accurate, if there are no ex-
treme normality violations with floor effects, thus suggesting the model linearity 
assumption may not hold (Brown, 2015; Byrne, 2012). ML is also considered se-
riously affected by extremely kurtotic data (Brown, 2015). An ML alternative, 
available in the “lavaan” package (Rossel, 2012) is the Pairwise Maximum Like-
lihood (PML).  

Other ML alternatives for estimating non-normal, continuous variables are 
discussed in later sections.  

5.2. Least Squares Estimators (LS) 

Both OLS and 2SLS are noniterative, limited information estimators, and they 
do not require setting start values (Kline, 2016). However, there are also full-in- 
formation, iterative least squares estimators, requiring start values (see Lei & 
Wu, 2012; Kline, 2016). 

Ordinary Least Squares (OLS). Within the SEM framework, the OLS can 
only estimate recursive path models (Kline, 2016), which means its use is limited 
(Lei & Wu, 2012).  
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Two-Stage Least Squares (2SLS). The Two-Stage Least Squares (2SLS) is 
suitable for non-recursive models. 2SLS is essentially identical to the OLS, ap-
plied in 2 steps, i.e., not all parameters are estimated simultaneously (Kline, 
2016). 2SLS does not make distributional assumptions (Lei & Wu, 2012) and it 
may be less susceptible to spreading model misspecification than full informa-
tion estimators (Bollen, Kirby, Curran, Paxton, & Chen, 2007; Kline, 2016). Ac-
cording to Bollen, Kirby, Curran, Paxton, and Chen (2007), 2SLS is consistent, 
asymptotically unbiased, normally distributed, and efficient among limited in-
formation estimators (Lei & Wu, 2012). A 2SLS variation proposed by Jöreskog 
(1983) can generate start values for latent-variable models (Kline, 2016; Lei & 
Wu, 2012). The 3SLS is a variation of the 2SLS, completed in 3 stages, after con-
trolling for correlated errors (Kline, 2016). This means—Kline explains—that 
3SLS is essentially a simultaneous estimator (see Kline, 2016; Bollen, 2012).  

Generalized Least Squares (GLS). GLS is an alternative to ML assuming 
normal, continuous data or mild non-normality with non-extreme kurtosis 
(Browne, 1974; Brown, 2015). Brown (2015) comments that GLS is less compu-
tationally challenging than ML, yielding comparable goodness of fit to ML, par-
ticularly with large samples. Given the above assumptions, GLS estimates are 
considered consistent, unbiased, asymptotically normally distributed, i.e., the 
distribution of its parameter estimate approximates normal distribution as sam-
ple size increases (Wang & Wang, 2020), and efficient (Lei & Wu, 2012). Unlike 
ML, GLS uses a weight matrix (W) for the residuals. In GLS, W is typically the 
inverse of S (Brown, 2015). An alternative for continuous, normally distributed 
data available in the lavaan package (Rossel, 2012) is the Distributionally-weighted 
Least Squares (DLS). For a brief introduction to weight matrices and matrix al-
gebra please refer to Whittaker and Schumacker (2022). For a more detailed de-
scription and the application of matrix algebra in the R environment refer to 
Revelle (2016) or Fieller (2016). 

Alternatives for estimating non-normal, continuous variables (beyond the LS 
variations already presented) are discussed in the following section.  

5.3. CFA/SEM Estimators without Distributional Assumptions  

In presence of non-normality, a common situation in psychology research 
(Beaujean, 2014 among others), possible solutions include (Wang & Wang, 
2020): 1) transformations of non-normally distributed variables to better con-
verge to multivariate normality; 2) removal of outliers; 3) Bootstrapping to esti-
mate variances of parameter estimates for significance tests (Bollen & Stine 
1993); 4) Bayesian estimators (Lee & Song, 2004); 5) asymptotically distribu-
tion-free estimators like ADF (Browne, 1984); 6) adjusting ML χ2 and standard 
errors using rescaling (Satorra & Bentler, 1988); 7) using robust estimators, e.g., 
MLR, or MLM (Wang & Wang, 2020); and 8) item parceling (Brown, 2015).  

5.3.1. Robust ML Variations: MLM, MLR 
A robust method proposed by Satorra and Bentler (1988) is to adjust ML to ac-

https://doi.org/10.4236/psych.2023.145043


T. Kyriazos, M. Poga 
 

 

DOI: 10.4236/psych.2023.145043 810 Psychology 
 

count for normality deviations. This approach uses ML to estimate the model 
together with robust standard errors and Satorra and Bentler’s (1988) rescaled 
model χ2 (SB χ2) for model fit evaluation (e.g., Lei & Wu, 2012; Wang & Wang, 
2020). This is a popular choice for non-normal, continuous data in large samples 
(Brown, 2015; Beaujean, 2014). Simulation studies showed that SB χ2 outper-
formed both the ML and ADF under nonnormality, however, it showed an 
over-rejection tendency in small (more realistic) samples (West, Finch, & Cur-
ran, 1995). 

Furthermore, Wang and Wang (2020) summarize the most popular robust 
ML estimators, for non-normality distributed data: 1) MLM, generating ML pa-
rameter estimates with standard errors and the mean-adjusted χ2 test statistic 
(the SB χ2); 2) MLMV, yielding ML parameter estimates with standard errors 
and a mean- and variance-adjusted χ2 statistic for multilevel modeling with con-
tinuous data; and 3) the MLR (Asparouhov & Muthén, 2005), an ML sandwich 
estimator with robust standard errors and a χ2 statistic that is asymptotically 
equivalent to the Yuan and Bentler (2000) T2 test statistic. MLM and MLMV are 
not appropriate for data containing missing values. In contrast, missingness is 
allowed with MLR. Specifically, MLR allows missingness less strict than MCAR, 
but stricter than MAR. Otherwise, MLM and MLR provide identical parameter 
estimates with ML, with both χ2 and standard errors, adjusted for non-normality 
in large samples (Brown, 2015). MLR uses a pseudo-ML method (Skinner, 1989) 
and adjusted χ2 like the SB χ2 to handle non-normality, or complex sampling de-
signs (Lei & Wu, 2012), because of its capability to handle data with non-inde- 
pendent cases, i.e., Multilevel CFA (Wang & Wang, 2020). MLR allows multile-
vel analyses with unbalanced groups, and random path coefficients (Byrne, 2012; 
Kyriazos, 2019). However, it also requires large samples (Byrne, 2012). MLMV 
possibilities remain unexplored (Lei & Wu, 2012).  

The robust ML estimators give more precise test statistics and robust standard 
errors than the corresponding test statistics with non-normal data (Beaujean, 
2014).  

5.3.2. Least Squares Variations: ADF (WLS), ULS 
If the observed variables are extremely non-normal or categorical, estimators 
such as Browne’s (1984) asymptotic distribution-free or unweighted least squares 
(ULS) are considered more appropriate than ML.  

Asymptotic Distribution-free (ADF) estimator (WLS). ADF (WLS) is a 
weighted least square estimator, closely related to the GLS (Brown, 2015). WLS, 
is an option for models with non-normal, continuous, or categorical data when 
the sample size is adequately large (e.g., Wang & Wang, 2020; Lei & Wu, 2012; 
Thompson, 2004). WLS uses a different W from GLS, deriving from the esti-
mates of the variances/covariances of each element of S, and from 4th moments 
based on multivariate kurtosis (Kaplan, 2000). Therefore, the WLS fit function is 
weighted by variances/covariances and kurtosis to handle multivariate normality 
violations, unlike GLS, (Brown, 2015). Brown (2015) explains that in absence of 
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kurtosis, WLS and GLS will generate an identical minimum fit function value. 
The WLS W matrix signifies a consistent estimate of the asymptotic variance/co- 
variance matrix of the sample variance/covariance matrix S (Wang & Wang, 
2020). Additionally, Bentler and Yuan (1999) proposed an adjusted ADF χ2 
which is able to handle small samples (Wang & Wang, 2020), generating cor-
rected estimates for standard error (Lei & Wu, 2012). It is referred to as Yu-
an-Bentler corrected arbitrary distribution generalized least squares (AGLS) ad-
justed test statistic or Yuan-Bentler AGLS F-statistic (Bentler & Yuan, 1999).  

The WLS requirement on sample size is rather strict, otherwise may generate 
large amounts of bias (Lei & Wu, 2012). Specifically, the sample used with WLS 
should exceed b + p (where b is the number of elements of S and p is the number 
of observed variables) to ensure a nonsingular W. In fact, some software will 
only carry out a WLS estimation only with Ns > b (Brown, 2015). Moreover, 
small samples, are prone to extremely skewed observed variables, making W 
non-invertible. Even in moderate to small samples W may also be susceptible to 
nonpositive definite matrix errors when floor or ceiling effects are present 
(Brown, 2015). In absolute numbers, sample sizes > 1000 cases would be re-
quired (Thompson, 2004; Lei & Wu, 2012). Of course, ML CFA would also re-
quire large samples, even in comparison to ML EFA for the same data (MacCal-
lum, Browne & Sugawara, 1996; Thompson, 2004). Anyhow, the sample size 
would be less crucial with an average loading ≥ |0.80| (Thompson, 2004). More-
over, WLS is computationally demanding (Wang & Wang, 2020), although this 
may not be a primary concern with modern computers. Brown (2015) explains 
that W in WLS is created from the variances and covariances of each S element 
(i.e., “covariances of the covariances”), and it can grow very big when there the 
model contains many observed variables. The storage and inversion of big W 
matrices during the iterative estimation process may be rather demanding in 
computer resources. This process is overloaded further by the strict WLS re-
quirement of very large samples (Brown, 2015). Furthermore, simulation studies 
on estimators for non-normally distributed continuous data suggested that WLS 
is a worse performer than MLM/MLR (e.g., Chou & Bentler, 1995), as Brown 
(2015) comments. Additionally, WLS estimators require pairwise deletion in-
stead of FIML to handle missingness, because they do not assume data MAR. 
However, they are regarded as consistent under the MARX assumption (missing 
at random with respect to X); i.e., only observed covariates with missing values 
are allowed. This assumption is less restrictive than MCAR but more restrictive 
than MAR (Wang & Wang, 2020).  

Considering the above restrictions, WLS remains a possibility when data is 
either continuous or categorical and not normally distributed, but MLM or MLR 
are considered wiser options since they outperform WLS in medium-small sam-
ples (Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992; Brown, 2015). 
The same is true for the WLS performance with ordinal categorical variables 
(e.g., binary, ordered categorical), due to the oversensitivity of χ2 and negatively 
biased standard errors with more complex models (Muthén & Kaplan, 1992; 
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cited in Brown, 2015). Thus, as with non-normal continuous data, WLS may not 
be a wise choice with categorical data, in particular with small to moderate sam-
ples (Flora & Curran, 2004, cited in Brown, 2015). More elaborated options for 
ordinal categorical data are described later. 

Unweighted least squares (ULS). Different weight matrices were used for the 
different LS estimators. When the identity matrix (I) is used, we have the ULS 
estimator. ULS is yet another option for model estimation with non-normal da-
ta. It is a consistent estimator (Bollen, 1989). Nevertheless, ULS assumes all ob-
served variables to be measured on the same scale (i.e., it is not scale-invariant). 
So, ULS remains a possibility when data is not normally distributed, but MLM 
or MLR are again considered more efficient (Kline, 2016; Lei & Wu, 2012).  

However, with robust estimators, like MLM, MLMV, MLMVS, MLR, ULSMV, 
WLSM, and WLSMV, the LR test is not applicable in the model χ2 statistics, be-
cause the difference in χ2 statistic between the nested models does not follow a χ2 
distribution. Therefore, testing the difference between nested models involves 
taking a correction factor into account (Beaujean, 2014; Wang & Wang 2020; 
Brown, 2015 among others). See a table with CFA/SEM estimators available in 
“psych”; Revelle, 2022, and lavaan (Rossel, 2012) in Table 2. 

5.4. CFA/SEM Estimators for Ordinal Categorical Data 

For years, applied research treated ordinal categorical data as continuous (Byrne, 
2012; Gorsuch, 1983; Schumacker & Beyerlein, 2000) both in traditional statistics 
(e.g., ANOVA, MANOVA) and SEM, maybe due to the absence of well-established 
estimators for ordinal categorical data (Byrne, 2012), despite the work of Muthén 
and Kaplan (1985) proposing a “continuous/categorical variable methodology” for 
SEM with any combination of dichotomous, categorical, or continuous observed 
variables (Flora & Curran, 2004; Byrne, 2012), in parallel to the (independent) 
work of Jöreskog (Jöreskog, 1994) and others (Coenders, Satorra, & Saris, 1997; 
Moustaki, 2001). Specifically, the methodologist suggested using the polychor-
ic-correlation coefficient, for calculating the relationship between ordinal va-
riables and the polyserial-correlation coefficient for calculating the relationship 
between an ordered categorical and a continuous variable (Raykov & Marcou-
lides, 2006). For dichotomous variables, tetrachoric correlation is used (a special 
polychoric correlation). Biserial correlation is also a type of polyserial correla-
tion for dichotomous variables (Byrne, 2012). The calculations were followed by 
Browne’s (1984) ADF (WLS) estimator (Byrne, 2012; Raykov & Marcoulides, 
2006). However, Byrne (2012) argues that these past approaches were rather im-
practical, having difficulty meeting assumptions. That is, 1) underneath each ca-
tegorical observed variable a continuous normally distributed latent counterpart 
was assumed; 2) large enough sample size to safeguard reliable estimation of the 
correlation matrix; and 3) the observed variables were to be the lowest possible 
(Byrne, 2012, quoting Bentler, 2005). In fact, Bentler (2005) commented that the 
above assumptions were the main weakness of the methodology (reproduced by 
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Byrne, 2012).  
The above restrictions led to the development of several approaches for testing 

ordinal categorical data. Three are the most popular: ULS, WLS, and Diagonally 
Weighted Least Squares (DWLS). Corrections to estimated means and/or means 
plus variances of the ULS and DWLS generated their robust alternatives (Byrne, 
2012): correction to ULS means and variances (ULSMV), correction to DWLS 
means (WLSM), and correction to DWLS means and variances (WLSMV).  

These robust WLS alternatives are simpler than the full WLS, they make no 
distributional assumptions and they gain popularity in noncontinuous applied 
research, but apart from large samples, they require raw data input (Kline, 2016). 
The same asymptotic variance/covariance matrix of weights is used for WLS, 
WLSM, and WLSMV, but in different ways. That is, while WLS uses the whole 
weight matrix, WLSM and WLSMV use the whole weight matrix only for calcu-
lating standard errors and fit tests and the diagonal of the weight matrix to esti-
mate parameters, which in WLSM and WLSMV are identical. The same is true 
for standard errors, but their adjusted χ2 differ, Wang & Wang, 2020). Their ro-
bust tests of model fit are equivalent to the SB χ2 (Byrne, 2012). Brown (2015) 
suggested that WLSMV is the best option for CFA with ordinal categorical data. 
The WLSMV estimator was designed for small and moderate samples, compared 
to the sample requirements of WLS (Byrne, 2012). 

Additionally, a full-information version of the ML (FIML) estimator for non-
continuous data is available in SEM software. In contrast to the limited informa-
tion WLS, this ML version does not fit the model to bivariate correlations. As an 
alternative, ML directly estimates the latent response variables with numerical 
integration methods based on raw data. That is, it estimates data probabilities 
within the probability tapping the multivariate normal distribution of the latent 
response variables (Kline, 2016).  

ML estimators can handle both missingness and data non-normality more ef-
fectively than the WLS family (i.e., FIML assumes MAR, while WLSM and 
WLSMV are not). Therefore, it is suggested that when a model has both cate-
gorical and non-normally distributed continuous variables, estimators of the ML 
family may be a more efficient option (Wang & Wang, 2020). Note, however, 
that for ML with categorical data some software packages cannot calculate χ2 and 
model fit statistics. Moreover, the FIML algorithm with categorical data may be 
computationally challenging. So, in complex models with numerous latent va-
riables and/or error covariances estimators from the WLS family can be less 
computationally challenging in comparison to ML (Wang & Wang, 2020).  

Kline (2016) also cautions that the robust WLS method in some software is 
called Robust Diagonally Weighted Least Squares (RDWLS). Forero, May-
deu-Olivares, and Gallardo-Pujol (2009) who proposed a ULS variation for ca-
tegorical data found that it performed adequately compared to WLS-although 
not scale-invariant (Kline, 2016). There is also a two-stage estimator for com-
bining continuous and categorical endogenous variables proposed by Lee, Poon, 
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and Bentler (1995). Kline (2016) explains that initially, a special ML estimates 
the correlations between the latent response variables before the calculation of 
an asymptotic covariance matrix. The model is finally estimated with Arbitrary 
Generalized Least Squares (AGLS), which is the full WLS method (Kline, 2016). 
Note that Brown (2015) argues that this AGLS is simply WLS with a different 
name. Other SEM software uses the Bayesian estimation with ordinal data, and 
familiarity with the Bayesian approach is essential (Kline, 2016). See a list with 
CFA/SEM estimators in Table 2. 

There are two different parameterizations for scaling ordinal categorical latent 
response variables where thresholds are treated as free parameters (Kline, 2020): 
1) Delta scaling, where the total variance of the latent response variables is con-
strained to 1, using polychoric correlations, given a change of 1 SD in the com-
mon factor; 2) Theta scaling, where the model fit in a single sample analysis does 
not change, and the residual variance of each latent response variable is con-
strained to 1. The standardized theta scaling equals the corresponding delta 
scaling, which is more interpretable (Kline, 2016). 

Literature supports that with a large number of categories and normally dis-
tributed data (a rarely met condition as we said), failure to address the ordinality 
of the data is likely negligible (Muthén & Kaplan, 1985; Bentler & Chou, 1987). 
Otherwise, overlooking the categorical data attributes, treating categorical va-
riables as continuous could (Raykov & Marcoulides, 2006; Byrne, 2012; Brown, 
2015): 1) generate biased test statistics and standard errors. Especially SEs are 
overly sensitive to this effect with highly skewed variables. This effect is max-
imized with skewness in opposite directions, i.e., differential skewness (Byrne, 
2012; citing Finch, West, & MacKinnon, 1997); 2) The relationships (correla-
tions) among observed variables could be underestimated, especially in presence 
of floor/ceiling effects (Brown, 2015). The underestimation is greater with va-
riables having less than 5 categories when variables are highly and/or differen-
tially skewed (e.g., Byrne, 2012; Bollen & Barb, 1981); 3) Residual variance esti-
mates appear to be most sensitive to underestimation with fewer than 3 catego-
ries, skewness > 1, and opposite skewness (Byrne, 2012); 4) they create “pseudo 
factors” emerging from item difficulty or extremeness and not real constructs 
(Brown, 2015). ML can also produce incorrect parameter estimates, such as in 
cases where marked floor or ceiling effects exist in purportedly interval-level 
measurement scales i.e., because the assumption of linear relationships does not 
hold (Brown, 2015; Byrne, 2012).  

Another crucial consideration in ordinal categorical estimation is how many 
response categories must a response scale has to be treated as ordinal categorical. 
Responses rated on 4 or fewer response categories are (fairly) unanimously tend 
to be treated as ordinal (Kline, 2016; Gadermann, Guhn, & Zumbo, 2012). 
However, simulation results for the WLSMV estimator indicated better model fit 
and more accurate factor loadings with 2 - 3 categories compared to 4 - 6 (Byrne, 
2012; citing Beauducel & Herzberg, 2006; Bentler & Chou, 1987; Gana & Broc, 
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2019), and some experts propose that 4 response categories can also be estimated 
as continuous (with MLM or MLR; Gana & Broc, 2019). However, the use of ca-
tegorical estimators like WLSMV for ≥5 response categories has become more 
frequent in later years (Kline, 2016). Actually, 5 to 7 response categories are es-
sentially a “grey zone” that some researchers propose is an ordinal categorical 
zone (Kline, 2016; Gadermann et al., 2012) whereas others (Beaujean, 2014; Li, 
2016; Raykov, 2012; Rigdon, 1998; Raykov & Marcoulides, 2006) suggest it can 
be treated as a continuous zone. Research (e.g., Rigdon, 1998) has demonstrated 
that with 5 or more response categories, problems due to the ordinal categorical 
nature of responses are expected to be minimized, especially with the robust ML 
approaches (Raykov & Marcoulides, 2006; Byrne, 2012; Gana & Broc, 2019). See 
a Decision tree summarizing the basic considerations when selecting estimators 
in Figure 2 (cf. Gana & Broc, 2019: p. 33). Beyond this debate, examining the 
data distribution becomes essential (Raykov & Marcoulides, 2006), as already 
discussed in Section 2 (Preliminary steps: Considerations about the Data Prop-
erties).  

Part B. The implicit (indirect) effect of the estimator selection on the 
whole analytic strategy of the study 

6. How the Estimator Selection Can Affect All the Study  
Analyses? 

The next plausible question would be: What is the impact of selecting an esti-
mator on the analytical strategy of the study if we want to treat the level of mea-
surement of the variables consistently across the study analyses?  
 

 
Figure 2. Decision tree summarizing the basic considerations when selecting estimators (partially adopted by 
Gana & Broc, 2019: p. 33). 
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Gadermann et al. (2012) (Kline, 2020) cautioned that using Cronbach’s al-
pha—or any other reliability coefficient (see Kyriazos, 2017), like omega—under 
circumstances that violate the assumptions of Pearson correlation coefficient 
(i.e., continuous data) could substantively deflate reliability estimates (Zumbo, 
Gadermann, & Zeisser, 2007).  

Therefore, Zumbo et al. (2007) introduced a coefficient alpha for ordinal data 
(ordinal alpha, see the code in Appendix A) that is calculated based on the poly-
choric correlation matrix. Using a polychoric matrix for calculating alpha agrees 
with the covariance modeling approach for categorical data (Gadermann et al., 
2012), e.g., proposed by Muthén (CVM; 1984) and Jöreskog (Jöreskog, 1994). 
Taking this line of thought further, the issue that arises is how to treat the mea-
surement level of variables consistently across the study. E.g., Can variables, es-
timated as ordinal categorical in a CFA/SEM/EFA model, be treated as conti-
nuous for the rest of the study analyses? A unified course of action, would re-
quire that the measurement level of the variables be consistently treated across 
the entire study, and not only accounted for during the estimation process. 

Specifically, treating a set of variables in a measurement instrument as ordinal 
categorical means that the researcher cannot calculate means and standard devi-
ations (at least when using R; e.g., “psych”; Revelle, 2022). Similarly, ordinal re-
liability coefficients should be used (both for alpha and omega; Gadermann et 
al., 2012). Finally, the nomological network of the measure should be calculated  
 

 
Figure 3. A unified course of action, ensuring that the measurement level of the variables 
is consistently treated across the entire study, not only accounted for during the estima-
tion process. 
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based on the polychoric, polyserial, or tetrachoric correlation matrix, for exam-
ple in validation studies (e.g., Kyriazos & Stalikas, 2019b), that CFA is common-
ly used, together with correlation analysis. This may be a more unified course of 
action, ensuring that level of measurement of the variables in the study is con-
sistently treated either as continuous or as ordinal categorical across the entire 
study, and not accounted for only during the estimation process (Figure 3). The 
effect of this unified approach might be more accurate and stable study results. 
However, the comparability of the results across studies might become more 
complicated due to arising discrepancies from results coming studies adopting 
the “ordinal” course of action in comparison to those adopting e.g., classical re-
liability coefficients.  

7. Recap and Conclusion 

Basic desirable estimator properties are consistency, non-biases, and efficiency. 
Scale invariance, and scale freeness, are also desirable. Scholars propose selecting 
an estimator based on 1) the measurement level of the variables; 2) non-normality; 
and 3) model type (Muthén & Muthén, 2006; Schumacker & Lomax, 2016).  

Conservative Approach. High-speed equipment would permit testing dif-
ferent estimators for the same data and comparing how they affect parameter es-
timates and standard errors, checking whether they are inflated or biased 
(Schumacker & Lomax, 2016), or simply confirming that results are not artifacts 
(Thompson, 2004), most likely due to the absence of normality when using a 
non-robust approach (Byrne, 2012). This approach allows confidence that simi-
lar solutions exist with different estimators (Thompson, 2004). E.g., when in an 
EFA we used ML, if the ML results are replicable with the principal axis this is an 
additional sign of robustness, otherwise, non-replicability could be indicative of 
model or data problems (e.g., Briggs & MacCallum, 2003; Fabrigar & Wegener, 
2012). 

Sample size. Fouladi (2000) reported that the SB χ2 corrections work well 
with samples ≥ 250. The χ2, being notoriously sensitive to sample size, as the 
sample grows larger (as a rule > 200), χ2 is prone to become significant. On the 
contrary, as the sample size shrinks (as a rule < 100), the χ2 is prone to 
non-significance (Thompson, 2004, among many others). The chi-square is ad-
ditionally biased by deviations from the multivariate normality assumption of 
the observed variables (e.g., Schumacker & Lomax, 2016). Of particular note 
here is the extremely large sample required with ordinal categorical data to get 
robust estimates. That is—Byrne (2012) reminds—Jöreskog and Sörbom (1996) 
proposed, as a minimum sample of (q + 1) (q + 2)/2, where q is the observed va-
riables of the model (refer to Schumacker & Lomax, 2016 for a similar ap-
proach). Alternatively, Raykov and Marcoulides (2006) recommended a sample 
10 times the estimated model parameters (Byrne, 2012). Simulation research 
confirmed that the WLSMV generates precise test statistics, parameter estimates, 
and standard errors with normal and non-normal latent response distributions 
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across varying samples (100 - 1000) with CFA models (see Flora & Curran, 2004; 
Byrne, 2012; Brown, 2015), or CFA MTMM models (Kyriazos, 2018). However, 
there is no consensus on what constitutes a large sample (Raykov & Marcou-
lides, 2006), in complex procedures like scale development (e.g., Kyriazos & Sta-
likas, 2019a), especially before model-based power analysis (e.g., MacCallum, 
Browne, & Sugawara, 1996) become available in SEM software (e.g., R; R Devel-
opment Core Team, 2022).  

The estimator selection without considering the above assumptions could af-
fect whether parameter estimates are significant or not, that is, the value of the 
standard errors may be inflated or biased. Chi-square and model fit statistics can 
be equally biased. However, parameter estimates like factor loadings may be ac-
curate. Robust alternatives for non-normality distributed data include MLM 
(only with complete data) or MLR (permitting incomplete data). Especially for 
ordinal categorical data, the bias is maximum with 2 response options, and it 
decreases as the number of categories increases (Byrne, 2012; Rigdon, 1998).  

When a researcher selects an estimator, by treating a variable set either as 
continuous or ordinal categorical, the variables should be treated equivalently in 
all other study analyses to preserve a consistent treatment of the measurement 
level. To treat the measurement level of variables consistently across the study 
would mean that choosing a continuous or categorical estimator can impact the 
whole study’s analytic strategy. A unified course of action would require that the 
measurement level of the variables be consistently treated across the entire study, 
and not only accounted for during the estimation process. That is if selecting an  
 

 
Figure 4. Basic parameters to consider for achieving consistency, non-biasness, and efficiency, 
when choosing an estimator during a CFA/SEM of an EFA. 
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ordinal categorical estimator would require addressing the ordinality of the va-
riables over the analyses of the entire study (e.g., calculating ordinal reliability 
coefficients, omitting means (SDs), and calculating tetrachoric/polychoric cor-
relations between the study measures). Considerations for making a thoughtful 
choice when selecting an estimator for CFA/SEM or EFA are presented graphi-
cally (Figure 4).  
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Appendix A 

R Syntax for specifying:  
1) Estimator when performing an EFA, CFA, and SEM Models. 
2) Calculating Alpha, Omega, and Factor loadings from polychoric and Pear-

son correlation matrices (ordinal reliability). 
################################################################# 
# 1. Clear User Interface and Free Memory 
################################################################# 
# Clear plots 
if(!is.null(dev.list())) dev.off() 
# Clean workspace 
rm(list=ls()) 
# Clear console 
cat("\014") 
################################################################# 
# 2. EFA “psych” (Revelle, 2022) 
################################################################# 
library(psych) 
#using the Harman 24 mental tests 
minres <- fa(Harman74.cor$cov,4,fm="minres" ,rotate="oblimin") # mini-

mum residual  
pa <- fa(Harman74.cor$cov,4,fm="pa" ,rotate="oblimin") # principal factor 

solution, 
wls <- fa(Harman74.cor$cov,4,fm="wls" ,rotate="oblimin") # weighted least 

squares 
gls <- fa(Harman74.cor$cov,4,fm="gls" ,rotate="oblimin") # generalized 

weighted least squares 
ml <- fa(Harman74.cor$cov,4,fm="ml" ,rotate="oblimin") # maximum like-

lihood  
################################################################# 
# 3. CFA lavaan (Rossel, 2012) 
################################################################# 
library(lavaan) 
# Holzinger and Swineford Dataset (9 Variables)  
# This data is included in the lavaan package, so we can load it with the data() 

function. 
data(HolzingerSwineford1939) 
# CFA 
mod <- ‘visual =~ x1 + x2 + x3 
      textual =~ x4 + x5 + x6 
       speed =~ x7 + x8 + x9’ 
GLS_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = "GLS") # 

generalized least squares. For complete data only. 
WLS_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = "WLS") # 

https://doi.org/10.4236/psych.2023.145043


T. Kyriazos, M. Poga 
 

 

DOI: 10.4236/psych.2023.145043 826 Psychology 
 

weighted least squares (ADF estimation) 
DWLS_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = 

"DWLS")# diagonally weighted least squares 
ULS_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = "ULS")# 

unweighted least squares 
DLS_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = "DLS")# 

distributionally-weighted least squares 
PML_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = "PML")# 

pairwise maximum likelihood 
MLM_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = 

"MLM")# Satorra-Bentler scaled test statistic 
MLR_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = "MLR")# 

Yuan-Bentler test statistic. 
MLMVS_CFA <- cfa(mod, data = HolzingerSwineford1939,estimator = 

"MLMVS")# Satterthwaite approach 
summary(GLS_CFA, fit.measures=TRUE) 
summary(WLS_CFA, fit.measures=TRUE) 
summary(DWLS_CFA, fit.measures=TRUE) 
summary(ULS_CFA, fit.measures=TRUE) 
summary(DLS_CFA, fit.measures=TRUE) 
summary(PML_CFA, fit.measures=TRUE) 
summary(MLM_CFA, fit.measures=TRUE) 
summary(MLR_CFA, fit.measures=TRUE) 
summary(MLMVS_CFA, fit.measures=TRUE) 
################################################################# 
# 4. SEM  
################################################################# 
# Political Democracy dataset 
mod2 <- ‘ 
  # measurement model 
    ind60 =~ x1 + x2 + x3 
    dem60 =~ y1 + y2 + y3 + y4 
    dem65 =~ y5 + y6 + y7 + y8 
  # regressions 
    dem60 ~ ind60 
    dem65 ~ ind60 + dem60 
  # residual correlations 
    y1 ~~ y5 
    y2 ~~ y4 + y6 
    y3 ~~ y7 
    y4 ~~ y8 
    y6 ~~ y8 
‘ 
GLS_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = "GLS") # ge-
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neralized least squares 
WLS_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = "WLS") # 

weighted least squares (ADF estimation) 
DWLS_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = "DWLS") # 

diagonally weighted least squares 
ULS_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = "ULS") # 

unweighted least squares 
PML_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = "PML") # 

pairwise maximum likelihood 
MLM_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = "MLM") # 

Satorra-Bentler scaled test statistic 
MLR_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = "MLR") # 

Yuan-Bentler test statistic. 
MLMVS_Sem <- sem (mod2, data = PoliticalDemocracy,estimator = 

"MLMVS") # Satterthwaite approach 
summary(GLS_Sem, standardized = TRUE) 
summary(WLS_Sem, standardized = TRUE) 
summary(DWLS_Sem, standardized = TRUE) 
summary(ULS_Sem, standardized = TRUE) 
summary(PML_Sem, standardized = TRUE) 
summary(MLM_Sem, standardized = TRUE) 
summary(MLR_Sem, standardized = TRUE) 
summary(MLMVS_Sem, standardized = TRUE) 
################################################################# 
# 5. Calculating alpha, Omega, and Factor loadings from 
# polychoric and Pearson correlation matrices 
################################################################# 
library(psych) 
data(bfi) # 25 personality self report items taken from the International Per-

sonality Item Pool 
d <- subset(bfi,select = c(1:5)) # A1:Α5, Agreeableness 
d$A1<-7-d$A1 # recode 
polychoric(d) # polychoric correlation matrix  
pcm<-polychoric(d) 
# Raw and standardized alpha from polychoric and Pearson correlation ma-

trices 
alpha(pcm$rho)  
alpha(d)  
# Factor loadings from polychoric and Pearson correlation matrices 
fa(d)  
fa(pcm$rho)  
#Omega from polychoric and Pearson correlation matrices 
omega(d)  
omega(pcm$rho)  
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Appendix B 

Basic Discrepancy Functions (Gana & Broc, 2019: pp. 30-31; Raykov & Marcou-
lides, 2006: pp. 53-54). 

1) Maximum likelihood (ML) discrepancy function (FML):  
 

FML= log|S| − log|Σ| + 
tr(SΣ − 1) − k 

Where:  
- log = natural logarithm function (base e) 
- || = matrix determinant 
- k = variable number in the correlation (or covariance) matrix 
- tr = trace matrix algebra function summing diagonal elements 
- S = observed matrix 
- Σ = reproduced matrix 
- Σ − 1 = inverse of reproduced matrix Σ 

 
2) Generalized Least Squares (GLS) discrepancy function (FGLS): 

 

FGLS = 1/2 × tr[S − 1(S − Σ)]2 

Where:  
- tr = trace matrix algebra function summing diagonal 
elements 
- S = observed matrix 
- Σ = reproduced matrix 
- S − 1 = inverse of observed matrix S 

 
3) Unweighted Least Squares (ULS) is based on minimizing the following dis-

crepancy function, across the set of all possible values for γ:  
 

FULS = 0.5 tr[(S − Σ(γ))2] 

Where:  
- tr = trace matrix algebra function summing diagonal 
elements 
- S = observed matrix 
- Σ = reproduced matrix 
- γ = the vector of all model parameters (that is variances, 
and covariances between independent variables, regression 
coefficients and factor loadings) 

 
4) The Asymptotically Distribution Free (ADF) (also known as WLS) mini-

mizes the discrepancy function across the set of all possible values for γ:  
 

FADF = (s - σ(γ)’)’W−1(s − σ(γ)) 

Where:  
- s = the strung-out vector of nonredundant elements of 
S (observed matrix) 
- σ (γ) = the similar vector of their counterparts in the 
reproduced matrix Σ(γ),  
- γ = the vector of all model parameters (that is  
variances, and covariances between independent  
variables, regression coefficients and factor loadings) 
- W = a weight matrix representing a consistent estimate 
of the large sample covariance matrix of the elements of S 
(regarded as random variables). 
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