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Abstract 
Rice yellow mottle is considered the most destructive disease threatening rice 
production in Africa. Early detection of this infection in rice is essential to 
limit its expansion and proliferation. However, there is no research devoted 
to the spectral detection of rice yellow mottle virus (RYMV) infection, espe-
cially in the asymptomatic or early stages. This work proposes the use of 
hyperspectral fluorescence and reflectance data at leaf level for the detection 
of this disease in asymptomatic stages. A greenhouse experiment was there-
fore conducted to collect hyperspectral fluorescence and reflectance data at 
different stages of infection. These data allowed to calculate nine vegetation 
indices: one from fluorescence spectra and eight from reflectance spectra. A 
t-test made it possible to identify, from the second day after infection, four 
relevant reflectance vegetation indices to discriminate healthy leaves from 
those infected: these are Photochemical Reflectance Index (PRI), Trans-
formed Chlorophyll Absorption in Reflectance Index (TCARI), Structure In-
tensive Pigment Index (SIPI) and Simple Ratio Pigment Index (SRPI). The 
fluorescence index was less sensitive in detecting infection. The four signifi-
cant vegetation indices for the detection of RYMV were then used to build 
and evaluate models for discriminating plants according to their health status 
by the supervised classification of support vector machine (SVM) at different 
stages of infection. The maximum overall accuracy is 92.5% six days after in-
oculation (6 DAI). The sixth day after inoculation would be the adequate day 
to detect RYMV. This plants discrimination was validated by the mean ref-
lectance spectra and by the histograms showing the differences between the 
average reflectance vegetation indices values of the two types of plants. Our 
results demonstrate the feasibility of differentiating RYMV-infected samples. 
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They suggest that support vector machine learning models could be devel-
oped to diagnose RYMV-infected plants based on vegetation indices derived 
from spectral profiles at early stages of disease development. 
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1. Introduction 

A staple food for the world’s population, rice (oryza sativa) contributes to the 
food security of many countries, especially the developing countries. Along with 
wheat and maize, rice is one of the three most widely cultivated cereals in the 
world. According to the Centre de coopération Internationale en Recherche 
Agronomique pour le Développement (CIRAD), in 2021, rice global production 
reached 525 million tons. Almost 90% of this production is cultivated and con-
sumed in Asia [1]. 

In Côte d’Ivoire, rice cultivation represents 6% to 8% of food production and 
57.06% of areas cultivated with cereals [2]. Local production does not cover na-
tional needs. The country therefore imports a large amount of rice each year to 
meet the food needs of its population. The low rice production in Côte d’Ivoire 
is partly due to abiotic and biotic factors, the most important of which is the 
Rice Yellow Mottle Virus (RYMV), which is confined only to Africa. The patho-
gen, RYMV can be transmitted mechanically by beetles, mainly from the Chry-
somelidae family and other insects such as Conocephalus spp [3] [4] [5] [6]. 
Other routes of transmission exist through frictions between healthy plants and 
diseased plants under the action of wind or people [7]. The disease is manifested 
by the appearance of yellow streaks on the leaf surface, followed by total disco-
loration and then leaf necrosis. Plants experience reduced growth with poor pa-
nicle exsertion and often become sterile; leading to high yield losses [8] [9]. 
Harvest losses due to this rice virus vary from 20% to 100% depending on the 
rice variety, the virus strain, the vegetative stage of the plant and the environ-
ment [10] [11] [12]. Visual inspection is the commonly used method to monitor 
and detect rice yellow mottle in the field. But this method is tedious and subjec-
tive. Other diagnostic techniques such as immunoenzymatic detection, polyme-
rase chain reaction and recombinase polymerase amplification (RPA) are also 
used [13]. But they are time-consuming, destructive and require high level of 
technology. Spectral, multispectral and hyperspectral remote sensing techniques, 
which are non-destructive and rapid, have proven to be very useful for crop dis-
eases detection. 

Thus, Fernandez et al. [14] successfully detected early symptoms of potato late 
blight at leaf and canopy levels on hyperspectral reflectance data using support 
vector machines (SVM). The results indicate that the potato disease can be iden-
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tified at least three days before the onset of symptoms. SVM has also been used 
by Moshou et al. [15] to show that the fusion of fluorescence and reflectance da-
ta collected on wheat leaves makes it possible to optimize the simultaneous 
detection of biotic stress due to the fungus Septotria tritici and abiotic stress 
related to water deficiency. Hermann et al. [16] established models to identify 
non-visual foliage symptoms induced by Fusarium virguliforme in soybean us-
ing Partial Least Squares Discriminant Analysis (PLSDA) of canopy reflectance 
data. A methodology to detect leaves affected by rice pyriculariosis at different 
stages of plant development was developed by Tian et al. [17]. They showed that 
the combination of two to four spectral features selected by the Machine Learn-
ing based Sequential Floating Forward Selection (ML-SFFS) algorithm was suffi-
cient to identify infected leaves with a classification accuracy greater than 80% 
for early stages of the infection. 

However, there is no research devoted to the spectral detection of rice yellow 
mottle virus. This disease, located exclusively in Africa, is the most destructive 
because it causes a sharp drop in rice production [18] and threatens food securi-
ty on the continent. In this present work, we combined visible/near infrared 
(Vis/NIR) hyperspectral information of chlorophyll fluorescence and reflectance 
to detect, at an asymptomatic stage, yellow mottle on rice leaves. 

The plant material and the experimental setup for acquisition of fluorescence 
and reflectance hyperspectral data are presented. Then, the identification of re-
levant vegetation indices using the t-test is performed. Finally, performance 
evaluation of these vegetation indices relevant to RYMV detection using SVM 
classification is explained. 

2. Materials and Methods 
2.1. Plant Material and Experimental Plan 

The plant material used in this study is the Bouaké 189 rice variety. The seeds of 
this variety were provided by the Centre National de Recherche Agronomique 
(CNRA) in Côte d’Ivoire. The experiment was conducted in a greenhouse at the 
scientific and innovation center of the Félix Houphouët-Boigny University, lo-
cated at altitude 05˚21'36.1"N and longitude 03˚54'08.6"W. The experimental 
plantation consisted of three repetitions with two treatments (healthy plants and 
infected plants). 

Five rice grains of the Bouaké 189 variety were sown at a depth of 2 cm in 5 kg 
of soil initially placed in plastic cultivation pots with a capacity of 5 L, and 24 cm 
in diameter at the opening. It should be noted that the soil used contained all the 
nutrients necessary for the proper development of the rice plants. Seven days af-
ter sowing, two plants per pot were retained. During the experimental period, 
the average temperature in the greenhouse was 27.8˚C and the humidity was 
82.5%. 

2.2. Inoculum Preparation and Inoculation 

Samples of rice leaves showing the characteristic symptoms of rice yellow mottle 
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were ground at the rate of 10 g of leaves per 100 ml of distilled water in a mortar 
previously cleaned with alcohol. Carborundum (600 mesh, 5 mg/ml) was added 
to the raw extract to promote viral infiltration [19]. Twenty-one days after sow-
ing, half of the rice plants were mechanically inoculated by hand friction. This 
inoculation consisted of gently rubbing from bottom to top, the rice plants 
leaves using fingers dipped in the inoculum. The leaves of healthy plants were 
rubbed in the same way but with a mixture of distilled water and carborundum. 
To avoid possible contamination of healthy plants, these were separated from 
infected plants. All plants were regularly watered for the duration of the experi-
ment to avoid water stress. 

2.3. Experimental Setup 

Spectral data were collected in vivo and in situ using the USB 4000 spectrometer 
from Ocean Optics company. This spectrometer allows the acquisition of spec-
tral data in the visible and near infrared regions (350 nm to 1100 nm) with a 0.22 
nm sampling pitch. Fluorescence and reflectance spectra of rice leaves were ac-
quired from the leaves using a bifurcated optical fiber. The spectral response of 
the leaves was obtained from the average of three measurements. In fluorescence 
mode, the samples were excited by a blue LED (LS-450) emitting at 450 nm [20] 
[21]. In reflectance mode, the samples were excited by a halogen lamp. Note that 
reflectance measurements require the prior use of a white lambertian surface 
(reference surface). The acquisition, storage and processing of the collected 
spectral data were carried out using a laptop computer. Figure 1 illustrates the 
experimental setup of the two measurement modes.  

2.4. Vegetation Indices  

Vegetation indices were used to correlate fluorescence and reflectance values to 
the physicochemical characteristics of plants. Most of these vegetation indices  
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(b) 

Figure 1. Experimental setup: (a) in fluorescence mode; (b) in reflectance mode.  
 

are obtained by arithmetic combinations of spectral bands. Considering the 
spectral band of our apparatus, we selected nine (9) vegetation indices as poten-
tial candidates to detect rice yellow mottle: one (1) fluorescence index and eight 
(8) reflectance indices. These were then computed using Matlab R2017a soft-
ware. Table 1 presents for each selected vegetation index, the calculation for-
mula based on the reflectance or fluorescence values in the visible and near 
infrared. 

2.5. Hyperspectral Data Analysis 

All hyperspectral data were processed using Matlab R2017a software. The spec-
tra collected from the leaves of healthy and infected plants were first cropped in 
the spectral ranges: 640 nm to 800 nm for the chlorophyll fluorescence spectra 
and 400 nm to 1000 nm for the reflectance spectra. These different spectra were 
subjected to Savitzky Golay filtering [31] using the second-order polynomial and 
a window size of 33 data points to reduce instrumental noise. In addition to fil-
tering, fluorescence spectra were normalized while reflectance spectra under-
went a multiplicative scattering correction [32]. For each measurement day, the 
average of the pretreated spectra of the two types of samples (healthy plants and 
infected plants) was determined. Then, the mean spectra were plotted on the 
same graph to observe the spectral variations as a function of the duration of the 
infection. 

The data were acquired on 120 leaves for a period between two and twelve 
Days After virus Inoculation (2 DAI and 12 DAI). Over this measurement pe-
riod, the selected vegetation indices were calculated. We then looked for signifi-
cant differences between healthy and infected plants as a function of the dura-
tion of infection, using the t-test on the indices. 
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Table 1. Vegetation indices used to detect rice yellow mottle. 

Vegetation indices Equations References 

Fluorescence Ratio Index (FRI) 685

735

FRI
F
F

=  Méthy et al. (1991) [22] 

Fluorescence Reflectance Index 1 (FRI1) 690
1

600

FRI
R
R

=  Dobrowski et al. (2005) [23] 
Sun et al. (2008) [24] 

Fluorescence Reflectance Index 2 (FRI2) 740
2

800

FRI
R
R

=  Dobrowski et al. (2005) [23] 
Sun et al. (2008) [24] 

Photochemical Reflectance Index (PRI) 531 570

531 570

PRI
R R
R R

−
=

+
 Gamon et al. (1992) [25] 

Normalized Difference vegetation index 
(NDVI) 

800 670

800 670

NDVI
R R
R R

−
=

+
 Rouse et al. (1974) [26] 

Structure Intensive Pigment Index (SIPI) 800 445

800 680

SIPI
R R
R R

−
=

−
 Penuelas et al. (1995) [27] 

Simple Ratio Pigment Index (SRPI) 430

680

SRPI
R
R

=  Penuelas et al. (1994) [28] 

Red Edge Inflation Point (REIP) 
( )670 780 700

740 700

0.5
REIP 700 40

R R R
R R

+ −
= + ×

−
 Guyot et al. (1988) [29] 

Transformed Chlorophyll Absorption in 
Reflectance Index (TCARI) 

( ) ( )

( )
670

700
700 670 700 550

670

800 670

800 0.16

3 0.2
TCARI

1 0.16
R

RR R R R
R

R R
R + +

  
× − − × − ×  
   =

−
+ ×

 Haboudane et al. (2002) [30] 

 
Vegetation indices relevant to the detection of rice yellow mottle were used to 

perform support vector machine discriminant analysis (SVM-DA) to build dis-
crimination models of healthy and infected plants. The SVM-DA technique is a 
robust machine learning algorithm developed by Cortes and Vapnik (1995) [33] 
to classify data into two groups. The Gaussian function, a core function used for 
non-linear problems, was employed in the study to reduce the computational 
complexity of the calibration procedure and improve the prediction results. The 
parameters of this function (kernel width and cost factor) are optimally selected 
based on minimizing the misclassification error. Our database was randomly di-
vided into two subsets: a training subset and a test subset comprising respective-
ly 2/3 and 1/3 of the 120 vegetation indices. The distribution of data is shown in 
Table 2. 

According to Ballabio et al. [34] and Shrestha et al. [35], the performance of 
the SVM model can be evaluated by the sensitivity (SN), the specificity (SP) and 
the Accuracy. These parameters are defined by Equations (1) to (3). 

SN TP
TP FN

=
+

                        (1) 

SP TN
TN FP

=
+

                        (2) 
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correctly classified samplesAccuracy
Total samples

  
 

=                (3) 

where TP is the number of true positive, TN is the number of true negative, FP is 
the number of false positive, FN is the number of false negative. Sensitivity is the 
ability of the model to correctly identify a group of samples, whereas specificity 
is the ability to reject samples from other groups. 

The data analysis process is summarized by the flowchart in Figure 2. 

3. Results and Discussion 

At the end of the experiment (12 DAI), the yellow mottle are now visible on in-
fected rice leaves. Figure 3 shows photographs of healthy and the infected 
leaves. 

 
Table 2. Distribution of samples used for classification. 

Database Subset Healthy leaves Infected leaves Total 

Fluorescence and 
Reflectance indices 

Train 80 80 160 
Test 40 40 80 

 

 
Figure 2. Rice yellow mottle detection process. 
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3.1. Average Fluorescence Spectra  

The mean fluorescence spectral signatures of the healthy leaves and the rice yel-
low mottle virus infected leaves are presented as a function of the number of days 
after inoculation in Figure 4. The mean fluorescence spectra of both samples’  

 

 
(a)                    (b) 

Figure 3. Photographs of healthy and infected leaves 
at 12 DAI: (a) healthy leaf; (b) infected leaf. 

 

 
Figure 4. Mean leaf fluorescence spectra of healthy plants and rice yellow mottle infected plants 
as a function of the number of days after inoculation (a)-(f). 
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types correspond to an average value of 120 spectra. The shape of the fluores-
cence spectra of healthy and infected leaves are similar. Fluorescence emission 
peaks in the red and near infrared are evident on the spectra. However, slight dif-
ferences between the two spectra are observed around the fluorescence emission 
peaks of chlorophyll a in the red at 685 nm and in the near infrared at 735 nm, 
demonstrating that the RYMV influences the plant spectral characteristics. 

3.2. Mean Reflectance Spectra  

The mean reflectance spectra of healthy and infected leaves as a function of the 
number of days after inoculation are presented in Figure 5. They correspond to 
the average value of 120 leaves spectra of both samples’ types. The appearance of 
the mean reflectance spectra of healthy and infected leaves is similar. However, 
there are differences between the reflectance values of both samples’ types at 
green, red and near-infrared wavelengths. Indeed, infected plants show a higher 
reflectance than healthy plants for these wavelengths. The effects of RYMV on 
the leaf reflectance spectrum are detected in the visible and near-infrared regions 
(550 nm to 1000 nm). 

The mentioned wavelengths are associated with chlorophyll content, photo-
synthetic efficiency and internal leaf structure.  

 

 
Figure 5. Mean reflectance spectra of healthy and infected with rice yellow mottle leaves plants as 
a function of the number of days after inoculation (a)-(f). 
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Observation of the graphs in Figure 4 and Figure 5 allows to deduce that the 
mean reflectance spectra discriminate healthy plants from the plants infected by 
yellow rice mottle, unlike the mean fluorescence spectra. 

3.3. Temporal Sensitivity of Selected Vegetation Indices 

Significant differences in mean values of healthy and infected plant vegetation 
indices are presented in Table 3.  

 
Table 3. Significant differences between mean values of healthy and infected plant vege-
tation indices. 

Indices Treatments 2 DAI 4 DAI 6 DAI 8 DAI 10 DAI 

FRI 

Healthy 1.458 1.508 1.545 1.566 1.461 

Infected 1.469 1.512 1.504 1.627 1.537 

p value ns ns *** *** *** 

FRI1 

Healthy 0.757 0.763 0.762 0.760 0.775 

Infected 0.748 0.755 0.712 0.788 0.760 

p value ns ns *** *** ** 

FRI2 

Healthy 0.937 0.950 0.941 0.943 0.943 

Infected 0.937 0.952 0.953 0.963 0.948 

p value ns ns *** *** *** 

PRI 

Healthy 0.029 0.028 0.037 0.031 0.030 

Infected 0.017 0.030 0.059 0.025 0.027 

p value *** *** *** *** *** 

NDVI 

Healthy 0.832 0.800 0.812 0.816 0.796 

Infected 0.830 0.799 0.802 0.803 0.786 

p value ns ns ns *** ** 

OSAVI 

Healthy 0.960 0.925 0.939 0.943 0.920 

Infected 0.958 0.923 0.927 0.928 0.909 

p value ns ns ns *** ** 

TCARI 

Healthy 21.486 29.159 30.999 31.838 33.131 

Infected 23.103 31.52 42.727 34.247 37.219 

p value *** *** ** *** *** 

SIPI 

Healthy 0.994 0.979 0.972 0.984 0.983 

Infected 1.011 0.984 0.929 0.989 0.971 

p value *** *** *** *** *** 

SRPI 

Healthy 1.105 1.278 1.305 1.223 1.150 

Infected 0.909 1.183 3.143 1.142 1.327 

p value *** *** * *** *** 

REIP 

Healthy 714.758 713.857 714.825 714.164 713.176 

Infected 714.414 713.568 714.451 712.878 711.914 

p value ns ns ns *** *** 

* = Significant at 0.05; ** = Significant at 0.01; *** = Significant at 0.001; ns = Non Signi-
ficatif. 

https://doi.org/10.4236/opj.2023.134005


A. Kamate et al. 
 

 

DOI: 10.4236/opj.2023.134005 73 Optics and Photonics Journal 
 

The t-test analysis of vegetation indices reveals that there is a significant dif-
ference between healthy and infected plants. Indeed, from the second day after 
inoculation (2 DAI), four reflectance vegetation indices (PRI, TCARI, SIPI, 
SRPI) indicate a significant difference in their mean values for both types of 
plants. The difference between the values of the vegetation indices FRI, FRI1 and 
FRI2 of the healthy and infected plants is significant from the sixth day after in-
oculation. From 8 DAI, there is a significant difference between the average val-
ues of all the vegetation indices of healthy and infected plants. All these results 
show that the calculated vegetation indices allow to discriminate healthy plants 
from infected ones at the asymptomatic stage. PRI, SIPI, SRPI and TCARI 
proved to be the best vegetation indices for this discrimination. These indices 
were calculated from the reflectance data. This corroborates the observation 
made from the mean reflectance spectra. 

For each of the relevant vegetation indices (PRI, SIPI, SRPI and TCARI) for 
the rice yellow mottle detection, the difference between their mean values of 
healthy leaves and infected leaves is calculated. The results are given for each day 
of measurements as histograms in Figure 6.  

Figure 6 clearly shows that the greatest difference between the mean values of 
the vegetation indices of the infected plants and healthy plants is obtained at 6 
DAI for all the four relevant indices. So, at this date there would have a higher 
discrimination between the two groups of plants. The infected plants felt more 
the effects of the infection although these are not yet visible on the leaves. This 
result is consistent with the mean reflectance spectra in Figure 5(c) which are 
well separated on the sixth day after inoculation. 

 

 
Figure 6. Differences mean values of vegetation indices of healthy and infected plants. 
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3.4. Detection of RYMV Infection Using the SVM Classification  
Technique 

After determining the best vegetation indices for the detection of rice yellow 
mottle, SVM discriminant analysis models were built to test whether these in-
dices can be used to classify plants according to their status (healthy or infected 
leaves) depending on the time after inoculation. Detailed performances of the 
SVM models are presented as a function of the number of days after inoculation 
in Table 4. 

The overall accuracy of the SVM tests is 71.25% two days after inoculation 
(Table 4). This low classification rate corresponds to the slight difference be-
tween the reflectance spectra in Figure 5(a). The overall classification accuracy 
increased to reach the maximum value of 92.50% six days after inoculation. This 
last result confirms those given by Figure 5(c) and Figure 6. Therefore, the sixth 
day after inoculation (6 DAI) would be the ideal day to perform measurements 
to detect the rice plant infection by RYMV. 

Due to the lack of research dedicated to the spectral detection of rice yellow 
mottle, we compared our results to those obtained by research teams using spec-
troscopic disease detection methods for other crops. In the context of our study, 
the highest classification accuracy (92.50%) was achieved at 6 DAI when the 
disease was well established. This accuracy was of the same order of magnitude 
as that (93.00%) obtained at 4 DAI by Römer et al. [36] who applied an SVM 
classifier to fluorescence data induced by ultraviolet radiation. These data were 
acquired between 370 and 800 nm on healthy and Puccinia triticia infected win-
ter wheat leaves. However, the maximum classification accuracy that we ob-
tained is higher than that (91.11%) obtained by Fernández et al. [14] at the leaf 
scale for 4 DAI and 5 DAI. This team of researchers applied the PLS-DA method 
to reflectance spectra (400 nm - 900 nm) to discriminate healthy potato plants 
from plants infected with late blight.  

 
Table 4. SVM-DA test prediction results according DAI. 

Number of days after inoculation Dataset Sensitivity (%) Specificity (%) Accuracy (%) 

2 DAI 
Train 100 100 100 

Test 67.35 77.42 71.25 

4 DAI 
Train 100 100 100 

Test 95.45 67.24 75 

6 DAI 
Train 100 100 100 

Test 100 86.96 92.50 

8 DAI 
Train 100 100 100 

Test 76.92 100 85.00 

10 DAI 
Train 100 100 100 

Test 100 83.34 90 

12 DAI 
Train 100 100 100 

Test 75.51 90.32 81.25 
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4. Conclusions 

In this study, we analyzed the spectral detection of RYMV infection at foliar lev-
el. Rice plants of the Bouaké 189 variety were grown in a greenhouse. Fluores-
cence and reflectance spectra of the leaves were acquired using a portable USB 
4000 spectrometer for a period of 2 to 12 DAI. Applying the t-test to the vegeta-
tion indices showed that there is a significant difference between healthy and in-
fected plants. In addition, the reflectance indices PRI, TCARI, SIPI and SRPI 
have proven to be the best for this discrimination because they allow detection of 
the disease from the second day after infection. The fluorescence index is less 
sensitive to the infection detection. 

Support vector machine discriminant analysis was then applied to these four 
relevant vegetation indices to differentiate plants according to their health status. 
The overall classification accuracy on the second day after inoculation (2 DAI) 
was 71.25% and reached a maximum value of 92.50% six days after inoculation. 
This better discrimination was validated by the mean reflectance spectra and the 
differences between the average values of the vegetation indices. This shows that 
the sixth day after inoculation (6 DAI) would be the appropriate day to carry out 
the measurements for the rice yellow mottle detection. The low detection per-
formance of rice yellow mottle from fluorescence data could be related to the ex-
citation source. Excitation of samples by the ultraviolet radiation could allow 
better detection of this rice viral disease. 

Supervised SVM classification of reflectance vegetation indices holds promise 
for early-stage disease diagnosis. As Côte d’Ivoire is the world’s leading cocoa 
producer, early detection of swollen shot, a viral disease of cocoa, could help 
fight against this scourge and improve the cocoa farmers income. 
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