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Abstract 
Optical surface scattering analyses based on diffractive optics (DO) are typi-
cally applied to one surface; however, there is a need for simulating surface 
scattering losses for devices having many surface interactions such as light 
pipes. Light pipes are often simulated with geometric optics (GO) using ray 
tracing, where surface scattering is driven by the surface slope distribution. In 
the DO case, surface scattering analyses depend on the spatial frequency dis-
tribution and amplitude as well as wavelength, with the sinusoidal grating as a 
fundamental basis. A better understanding of the link, or transition, between 
DO and GO scattering domains would be helpful for efficiently incorporating 
scattering loss analyses into ray trace simulations. A formula for the root- 
mean-square (rms) scattered angle width of a sinusoidal reflection grating 
that depends only on the surface rms slope is derived from the nonparaxial 
scalar diffraction theory, thereby linking it to GO. The scatter angle’s mean 
and rms width are evaluated over a range of grating amplitudes and periods 
using scalar theory and full vector simulations from the COMSOL® wave op-
tic module for a sinusoidal reflection grating. The conditions under which the 
diffraction-based solution closely approximates the GO solution, as predicted 
by the rms slope, are identified. Close agreement is shown between the DO 
and GO solutions for the same surface rms slope scattering loss due to angu-
lar filtering near the critical angle of a total internal reflection (TIR) glass-to-air 
interface. 
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1. Introduction 

Optical surface scattering analyses are often conducted using a diffraction-based 
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approach for single surface light scattering, as opposed to using geometrical op-
tics approximations (GOA). For applications with numerous surface reflections, 
such as light pipes based on total internal reflection at the interface, a simpler 
surface scattering model is desired that can be combined with ray tracing simu-
lations for the overall device. For example, we have fabricated glass light pipes 
with millimeter-scale cross-sections that are several centimeters in length [1]. 
The light is guided via total internal reflection as it propagates along the light 
pipe and undergoes numerous sidewall reflections that vary in number depend-
ing on the incident ray angles. We have implemented a geometrical optics (GO) 
simulation to compare the expected surface scattering loss to our experimental 
measurement results [2]. Beyond the GO simulation, the next step is to evaluate 
the potential for diffraction-based scattering effects that could introduce wave-
length-dependent losses in the light pipe. 

Under the GO approximation, surface scattering is driven by the distribution 
of the surface slope. In the DO case for smooth surfaces, 0cos 0.02σ θ λ<  [3] 
where σ is the rms surface roughness and 0θ  is the specular reflection angle, 
the surface scattering depends on the Fourier transform of the PSD. For rough 
surfaces, the Beckmann-Kirchhoff scatter theory reduces to the geometrical op-
tics approach [3]. For large values of σ, for example 0.3σ λ≥  [4], the DO solu-
tions for the scattered angle distribution are proportional to the rms slope, so the 
DO and GO solutions are driven by the same surface property. A larger range of 
applicability for the GO solution was proposed by Tang [5], who defined a crite-
rion for the rms roughness, 0cos 0.17σ θ λ≥ , whereby the scattered light dis-
tribution from the GO solution compares closely with a full wave solution. Even 
smaller values for σ/λ compare well to the wave solution when a different crite-
rion is used. For normal incidence, the standard deviation of the scattered light 
intensity from a metal surface has been shown to be proportional to the rms 
slope using a DO analysis [6]. Experimental surface measurement results, in-
cluding incidence angles up to 40 degrees, confirmed the dependence on slope 
[7]. More detailed insights are desired to better understand how the surface 
properties that drive the DO and GO models are related for smooth and mod-
erately rough surfaces to determine when the simpler GOA may be used to esti-
mate surface scattering losses, particularly when many surfaces are encountered. 

A goal of this paper is to define a quantitative demarcation line through the 
two dimensional (2D) sinusoidal reflective grating parameter space to divide 
between DO and GO relevant scatter analysis domains. Traditionally, the de-
marcation is based only on grating period relative to wavelength. Little attention 
is typically given to the dependence on angle of incidence with respect to when 
diffractive effects are negligible and surface scattering can be adequately ap-
proximated with a GOA. An analysis on the rms scatter angular width is pro-
vided that quantitatively connects the inputs and outputs of scalar diffraction 
theory and the GOA. The NP scalar diffraction theory and sinusoidal reflection 
grating geometry are discussed first, and then a formula for the scatter angular 

https://doi.org/10.4236/opj.2022.121001


C. K. Madsen 
 

 

DOI: 10.4236/opj.2022.121001 3 Optics and Photonics Journal 
 

width is derived from the NP scalar theory. The necessary approximations and 
simulation results to evaluate the applicability over a range of amplitudes and 
grating periods from low- to mid-spatial periods are the focus of the remaining 
sections. 

2. NP Scalar Solution for a Sinusoidal Reflection Grating 

For optical scattering over a range of smooth to rough surfaces, full vector wave 
solutions are time consuming, and solutions are needed for a large ensemble of 
random surfaces to obtain accurate means and standard deviations. To avoid the 
need for full vector electromagnetic simulations, a nonparaxial (NP) scalar dif-
fraction theory has been developed that underpins a general transfer function 
approach for modeling diffractive surface scattering, known as the Generalized 
Harvey-Shack (GHS) model [3]. The GHS model is based on the diffraction 
from sinusoidal surface variations over a range of spatial frequencies, depending 
on a Fourier series for deterministic surfaces or power spectral density (PSD) for 
randomly varying surfaces. While the GHS model overcomes limitations of prior 
analytic approaches and includes statistical surface representations, it has been 
implemented predominantly for single surface analysis and light scattering 
measurement systems.  

Harvey and Pfisterer [8] describe a nonparaxial scalar diffraction theory and 
power conservation conditions for the case of a sinusoidal reflection grating. The 
grating equation for the mth-order reflection is given as follows using their sign 
convention: 

ˆm i
m
d

β β+ =                            (1) 

where iθ  is the incidence angle, mθ  is the mth-order diffraction angle, 
sini iβ θ= , sinm mβ θ= , and 0, 1, 2,m = ± ±  . The normalized peak-to-valley 

grating height and period are given by ĥ h λ=  and d̂ d λ= , respectively. For 
a perfectly reflecting surface, the efficiency for each order is calculated using the 
mth-order Bessel functions of the first kind: 

2

2m m
aJη  =  

 
                           (2) 

where the Bessel function argument depends on the order m as follows: 

( ) ( )0
ˆ cos cos

2 m
a h θ θ = π +                      (3) 

For a given set of grating parameters and wavelength, the efficiency mη  into 
each order is quickly calculated in MATLAB®. An estimate of the number of or-
ders that will contain significant power for a given surface height is helpful in 
comparing to standard surface quality metrics. The value of a/2 is easily eva-
luated for a given power in the mth-order, summing the plus and minus order  

contributions gives 2 22 2
2m m
aJη  =  

 
. The Bessel function argument corresponding  
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to a total power of 1% in the |m| > 1 orders under a “locally paraxial” constraint, 
defined by 0mθ θ≅  where the diffracted orders are “locally paraxial” with re-
spect to the specular reflection axis, is a/2 = 0.142. For an incident angle of 45 
degrees, ˆ2 2a h= π . For our numerical examples, the value of h (nm) for a 
free space wavelength 0 500 nmλ =  is calculated assuming incidence in glass 
with refractive index n = 1.46. Under these assumptions, a 10 nm height is rela-
tively smooth and the 0th-order dominates. For order of magnitude h = 100 nm, 
the 3rd-order is starting to pick up power, but the second and lower orders carry 
most all the power. At larger incidence angles, and longer wavelengths, larger 
surface heights will result and vice versa as the incidence angle approaches 0 de-
grees and for shorter wavelengths.  

For a perfectly reflecting surface, the infinite sum over orders for 2

2m
aJ  

 
 

 is  

unity, and power is conserved. For TE polarization, the reflectance for a 
non-perfectly reflecting surface is calculated as the geometric mean of the 
Fresnel reflectivity, i.e. ( ) ( )0TE mQ R Rθ θ= , while a different function for 

( ),TM i mQ θ θ  is defined in the literature for the mth-order TM polarization ref-
lectance [9]. 

3. Sinusoidal Surface Description 

As seen in the previous section, sinusoids are the basis functions for modeling a 
random surface using DO, as they provide discrete spatial frequencies and thus 
diffraction angles. For GO, however, piecewise linear functions are a good basis 
in 1D since the surface normal is constant. The simplest function composed of 
linear pieces that mimics a sinusoid is a triangular function. While the slope is 
constant over each linear section, a fundamental and several higher order spatial 
frequencies are associated with the triangular function. A triangular mesh is an 
example of a useful piecewise planar approximation of a surface in 2D. In prac-
tical surface modeling, many spatial frequencies with varying amplitudes are 
employed to closely approximate a surface. The increase in discrete diffracted 
angles will lead to a more continuous scatter angular distribution as measured 
for real surfaces. For simplicity, a single spatial frequency is assumed in the fol-
lowing analysis to compare the DO and GO scattering behavior.  

An important metric for estimating sidewall scattering loss using the GOA is 
the rms surface slope [10]. The rms slope is a surface property, thus independent 
of optical wavelength, and can be calculated for random and deterministic sur-
faces. For a sinusoid with period d and peak-to-valley height h, the rms slope is 
given by [11] 

ˆ
ˆ2 2s
h
d

hm
d

π π
= =                          (4) 

The maximum slope is 2  times the rms slope. Light pipe sidewall scatter-
ing losses increase as the rms slope increases under the GOA [2]. For calibration, 
relatively smooth surfaces have rms slopes of 0.01 or less [12]. The analyses in 
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the next section aim to evaluate when the rms slope is a sufficient metric to cap-
ture surface scattering effects. 

One period of a sinusoidal grating surface is shown in Figure 1(a) with ms = 
0.05, d = 5 μm, and h = 113 nm. The surface angle with respect to the horizontal,  
 

 
Figure 1. (a) One period of a sinusoidal grating interface, (b) the local surface angle with 
respect to the x-axis, (c) surface angle probability distribution function. (d) GOA reflec-
tivity for glass-to-air incidence near the critical angle for both sinusoidal and uniform 
slope distributions and ms = 0.01, 0.05 and 0.10. The TE Fresnel specular reflectivity is 
shown in black. 
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shown in Figure 1(b), has a maximum ( ) ( )max atan 2s smθ =  which is 4.04 
degrees for this example. The distribution of surface angles is shown as a histo-
gram with an overlay of the theoretical probability distribution function in Fig-
ure 1(c), showing a significant weighting at the extreme surface angles.  

Geometrical optics simulations for the reflectivity near the critical angle for a 
glass-to-air sinusoidal interface are shown in Figure 1(d), highlighting the im-
pact of angular spread on the scattering loss (R < 1) versus incidence angle for a 
TIR interface. The reflectivity is calculated for a sinusoidal slope distribution at 
three rms slopes, ms = 0.01, 0.05 and 0.10. The Fresnel reflectivity for the TE po-
larization, R0 (black line), is applied in addition to Snell’s law using the slope 
distributions. We also calculate the results for a uniform distribution of surface 
slopes (dashed lines) for the same values of rms slope for insight on the impact 
of the distribution. Since the rms slope for the uniform distribution is 

( )max d d 3um y x=  versus ( )max d d 2sm y x=  for the sinusoidal distri-
bution, equating the rms slopes ( u sm m= ) causes the maximum slopes to be dif-
ferent. The variation caused by different slope distributions is most evident in 
the reflectivity for the larger rms slopes; however, the deviations caused by the 
different distributions appear to cancel if averaged over the incidence angle 
range. 

4. A Parametric Bridge from Diffractive to Geometrical  
Optics  

From the NP scalar theory for a sinusoidal reflection grating, it is not evident 
how a diffractive optics solution that is wavelength dependent may converge to a 
wavelength-independent GOA solution, depending only on the surface slope 
distribution and not on the specific amplitude and period. Neglecting the small 
impact of material dispersion, the GOA solution assumes the angular spread is 
identical for all wavelengths, as governed by Snell’s law. Intuitively, as the period 
(d) increases, the diffraction orders are more closely spaced and the grating 
height (h) can be quite large while having a relatively small rms angular width. 
This describes the rough surface limit. The smooth surface dependence on sur-
face slope is not evident. 

We begin by exploring the diffracted angular range on reflection, to determine 
if or when it is independent of wavelength. First, we define an rms width Mδ  
over the diffraction order m values, weighted by the order efficiencies as follows: 

2
2 1

0 1

2

2

M
mm

M
mm

M

m η
δ

η η
=

=

=
+
∑
∑

                          (5) 

where M is the highest propagating order. When Mδ  is calculated and plotted 
over a range of a/2 values, the result is linear in a/2 as follows: 

( )0
ˆ1 1   2cos

22 2M haδ θ = ≅ π                       (6) 

As noted in Equation (3), a depends on the order in general. The last equality 
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employs a “locally paraxial” constraint where the definition of a becomes inde-
pendent of order m. Going beyond the numerical simulation, a proof is outlined 
using the following Bessel function recursion equation and sum of product rela-
tionships [13]: 

( ) ( ) ( )1 1
2

m m m
m J x J x J x
x − += +                     (7a) 

( )2 1
m

m
m

J x
=+∞

=−∞

=∑                           (7b) 

( ) ( ) 0 for 1, 2,m m n
m

J x J x n
+∞

+
=−∞

= = ± ±∑                 (7c) 

Squaring the recursion relation and summing over the orders provides the 
rms width relationship: 

( ) ( ) ( ) ( )
2

2 2 2
1 1 1 12

4 2m m m m m
m m

m J x J x J x J x J
x

+∞ +∞

− + − +
=−∞ =−∞

 = + + ∑ ∑        (8) 

Taking 4/x2 outside of the sum on the left, with the right-side summing to 2, 
and rearranging terms yields 

( )
2

2 2

2m
m

xm J x
+∞

=−∞

=∑                          (9) 

Under the “locally paraxial” approximation, d̂  is large and 0 0cosmγ γ θ≅ = . 
For a constant value of x = a/2, i.e. independent of m, the rms order width is 

2 2

2 2 2m m
m

a am Jσ
+∞

=−∞

 = = 
 

∑                    (10) 

As 0 90θ → , the sum over the negative m-values is truncated due to non- 
propagating orders and the above summation limits would need to be modified 
accordingly. We proceed for angles under which the propagating orders are 
symmetric and the above equation is satisfied. The angular width can be deter-
mined from mσ . First, the width in directional cosine space, βσ , is related to 
the diffracted order width by 

0 02 2
2ˆ

m
s

h m
ddβ

σ
σ γ γπ  = ≅ = 

 
                 (11) 

Then, the diffraction pattern angular half-width, θσ , can be defined from the 
grating equation using βσ  as follows: 

( ) ( )0 0sin sinβ θθ σ θ σ+ = +                    (12) 

( ) ( )0 0 0sin sin cosθ θθ σ θ θ σ+ ≅ +                 (13) 

The Taylor series expansion for ( )0sin θθ σ+  to first order around ( )0sin θ  
is given in Equation (13). Comparing to Equation (12), we find 

0β θσ γ σ≅                           (14) 

As θσ  increases, higher order terms would need to be retained. Note that 

βσ  and θσ  are independent of wavelength. The diffracted angle half-width 
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equals twice the rms slope ms for a sinusoidal surface corrugation, 

σ 2 smθ ≅                             (15) 

compared to ( )atan 2 2s sm mθσ = ≅  in the GOA. For 0.10sm = , the next  

higher order term in the Taylor series expansion is proportional to 
2

0.02
2
θσ ≅   

so the approximation is reasonable for rms slopes around 0.1 or less. 

5. NP-DO Simulations: Deviations in Angular Mean and  
Width 

Using the Bessel function efficiencies and a/2 dependence on both the specular 
and diffracted angles, we calculated the rms order width Mδ  and compare it to 
Equation (10) for mσ  (dashed black line) in Figure 2. Graphs are shown for 
constant ˆ 0.175h =  and various slopes. The 0cosθ  dependence is evident un-
til the cutoff of the m = −1 order, leaving only the specular and +1 order and 
shifting the mean. The average order avgm , ideally zero, is shown in dotted lines 
to increase up to the first-order cutoff and then decrease for each slope. Using 
the sign convention from [8], the incidence angle cutoff for the m = −1 order, 

1coθ , is given by 

1
1sin 1 ˆco d

θ = −                          (16) 

For angles larger than this cutoff, only the +1 (and higher orders if ĥ  is  
 

 
Figure 2. The diffraction order rms width mσ  (solid lines) and average avgm  

(dotted lines) versus input angle (degrees) for a glass-metal interface for slopes 
of 0.1 (green), 0.05 (red) and 0.01 (blue). The theoretical prediction is shown 
in the black dashed line for the rms width. 
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larger) and 0th orders are diffracted. When only one side of the diffraction or-
ders is propagating, as expected, the results deviate from our above analysis. 

The angular width is calculated from Equations (11) and (14) as follows and 
plotted in Figure 3(a) for multiple slopes: 
 

 
Figure 3. Angular rms width (degrees) over a range of incidence angles (degrees) 
and slopes (0.01, 0.05 and 0.1) for ˆ 0.175h = : a) calculation from rms order width 
and b) direct calculation of angular rms width (solid) and mean angle deviation 
(dotted). 
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cˆ os
M

id
δ

δθ
θ

=                          (17) 

While the general behavior is consistent with 2 smθσ ≅  shown in dashed lines, 
there are significant deviations as the incidence angle approaches the m = −1 
cutoff and beyond. The 1 cos iθ  dependence is problematic in this region. To 
avoid this singularity, the angular rms width and mean were calculated directly 
using the scalar theory diffracted order efficiencies and plotted in Figure 3(b). A 
constant angular width results over a range of incidence angles using the NP 
scalar theory. 

Calculations for other ĥ  values show the same behavior except the m = −1 
cutoff is shifted due to a different d̂  value for a given slope, as shown in Figure 
4(a). The angular width is predicted by the surface rms slope, indicating that the 
geometrical optics behavior is achieved. As d̂  increases, the range of incidence 
angles over which the GOA is valid increases. We have simulated cases where 
only a few orders propagate, which highlight the m = −1 cutoff condition as a 
transition region between the GOA and diffractive optics behavior. The resulting 
scatter distribution becomes asymmetric which is more dramatic for a small 
number of propagating orders, i.e. small ĥ . Decreases in d̂  move the m = −1 
cutoff further away from 90 degrees, toward normal incidence. 

To quantify the shift in the mean scatter angle avgθ  from the specular angle, 
let 0avg avgθ θ θ∆ = − , assuming positive values for 0θ . Figure 4(b) shows the 
calculated relative deviation of the mean scatter angle avg θθ σ∆  over a range 
of slopes, for ˆ 0.7h =  and ˆ 0.175h =  at each slope.  

Limiting the incidence angle, which scales with the rms slope, will effectively 
limit the mean scatter angle deviation across a range of ĥ  and d̂  values. For 
further calculations, let the 5% mean angle deviations normalized to the rms 
width, 0.05avg θθ σ∆ ≤ , limit the acceptable mean angle deviation. Then, the 
resulting incidence angle limit is given by ,maxiθ . For ,maxi iθ θ≤ , the rms width 
approximates the GOA without a significant change in the mean scatter angle. 

A plot of the maximum incidence angle ,maxiθ  versus period d̂  is shown in 
Figure 5 corresponding to the range of angles under which the GOA is valid. 
Three values of ĥ  are simulated using the nonparaxial scalar theory, ˆ 0.175h = , 
0.3 and 0.45. Four slopes, 0.01sm = , 0.03, 0.05, and 0.10, are simulated for each 
ĥ . Each marker indicates a calculated point using the NP scalar theory.  

The GOA is examined using two different criteria on deviations from the NP 
scalar theory. For the first criterion, the solid curves show the maximum input 
angle for a 5% deviation in the mean scatter angle relative to the rms scatter 
width, which is the stricter criterion. In this case, the slope drives the maximum 
incidence angle, with very little dependence on the ĥ  value. 

For the second criterion, the markers without lines represent the maximum 
input angle for a 5% deviation in the scatter angle width from the rms slope es-
timate. For comparison, the dashed and dotted lines represent the cutoff of the  
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Figure 4. (a) Angular rms width using scalar diffraction theory versus incidence angle for 
ms = 0.10 (red) and 0.02 (blue), with ˆ 0.7h =  (solid) and ˆ 0.175h =  (dashed). The devi-
ation of the mean scatter angle avgθ∆  is shown in the dotted ( ˆ 0.175h = ) and dash-dot 

( ˆ 0.7h = ) curves. (b) Deviation of mean scatter angle avgθ∆  over a range of ms values 

from 0.01 to 0.2, with ˆ 0.7h =  (red) and ˆ 0.175h =  (blue). All angles are in degrees and 
ˆhh h= . 
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Figure 5. The solid curves show the maximum input angle for a 5% devi-
ation in the mean scatter angle relative to the rms scatter width. The 
markers, without lines, represent the maximum input angle for a 5% 
deviation in the scatter angle width from the rms slope estimate. The 
dashed and dotted lines represent the cutoff of the 1st and 2nd diffraction 
orders. The corresponding slope ms is shown for the solid curve points. 

 
first and second diffraction orders, i.e. ( ),max minasi ˆn 1i m dθ = −  for m = 1 and 2. 
For this deviation in spectral width criterion, the incidence angle for the 
first-order cutoff is the major driver for the GOA to be applicable, as most of the 
simulated points fall on the dashed line. For the largest slope case, 0.1sm = , 
and ˆ 0.175h > , the simulated points fall on the second-order cutoff as expected 
from the simulations in Figure 4(a). 

For small slopes, indicating smooth surfaces, the first diffraction order cutoff 
serves as a good limit for setting the input angle range to satisfy the GOA. Both 
criteria converge to this result; however, smooth surface scattering is typically 
discussed in the DO domain without comment on the relevance for a GOA solu-
tion. Further discussion is given in the next section.  

For a large range of periods occupying the mid-spatial frequency range, the 
spectral width predicted by the GOA applies over a relatively large range of in-
cidence angles that can be estimated from the first diffraction-order cutoff. The 
applicability as the surface roughness increases is not well-predicted by the NP 
scalar theory as it becomes less of a good predictor for the diffraction order effi-
ciencies as ĥ  increases. Thus, we confirm the GOA domain using COMSOL in 
Section 7. 

6. Discussion on the Smooth Surface Limit 

In the limit of small slopes, implying geometric smoothness, we compare the 
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above “rms” analysis to the smooth surface regime of diffractive optics solutions. 
In the smooth surface approximation, both the Rayleigh-Rice and the Genera-
lized Harvey-Shack scatter theory show the angular scattered intensity is propor-
tional to the power spectral density [9] of the surface height deviation around 
the surface mean height.  

For a sinusoidal surface, the scattered intensity occurs at the predicted +/− 
1st-order angles with a single-sided angular spread of λ/d under the near-normal 
incidence angle approximation. The magnitude for each m = 1 order is (a/4)2 
and thereby proportional to (h/λ)2; however, the limit on the amplitude for this 
approximation is very restrictive, 0.07h λ≤  for 5% error or less [9]. Based on 
this information, it doesn’t appear that the GOA would apply. 

If the smooth surface limit is observed in terms of the rms width θσ  under 
“locally paraxial” conditions, we have shown that it depends only on ms and is 
wavelength independent over a wide range of conditions, including a much 
larger range of amplitudes than 0.07h λ≤  (see Figure 5(b)). The rms slope 
provides the basic input surface parameter and rms angular width links the re-
sults between the DO and GO analysis. Thus, some smooth surfaces can be 
modeled effectively using a GOA while others require a DO analysis, under con-
ditions noted in the previous section to be driven by the first diffraction order 
cutoff. 

7. Wave Optic Simulations and Reflection at a TIR Interface 

To support the NP scalar diffraction calculation results, we used COMSOL® 
wave optics 2D to simulate the TE response for a few grating parameters using a 
glass-silver interface for the reflecting surface. One grating period was simulated 
using periodic boundary conditions and ports that calculated the diffraction or-
der powers. Vector simulations of diffraction order efficiency over a full range of 
incidence angles were used to calculate an rms scatter angle width and mean 
scatter angle deviation from the specular angle. The results are shown for 
ˆ 7.77d =  with ˆ 0.175h =  and 0.05sm =  in Figure 6(a) and with ˆ 0.35h =  

and 0.10sm =  in Figure 6(b). The key features predicted from the NP scalar 
diffraction theory are confirmed, including the m = −1 cutoff impact on the rms 
width and the deviation of the mean scatter angle. The incidence angles for 
which the mean deviation avgθ∆  and rms width ,NPθσ  vary by 5% of the GOA 
width ,gθσ  are noted. The vector simulation results deviate from the NP scalar 
diffraction behavior as the incidence angle approaches 90 degrees. Modifications 
for the NP scalar theory to address this discrepancy are covered in a separate 
paper [14]. With the modifications, the NP scalar theory was shown to closely 
estimate the wave simulation diffracted power in each order over the full range 
of incidence angles for relative periods ˆ 2d ≥ , heights ˆ 0.5h ≤ , and slope 

0.20sm ≤ . 
Using the COMSOL® wave optics module in 2D, we simulated TE diffraction 

in reflection at a glass-air interface with a sinusoidal surface corrugation, assuming  
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Figure 6. Calculation of angular rms width ( θσ ) and deviation of the scatter angle mean 

( Δ avgθ ) from the specular angle based on COMSOL® wave simulation for (a) ˆ 0.175h =  

and 0.05sm =  and (b) ˆ 0.35h =  and 0.10sm = . The deviation criterion is set at 5% of 

the GOA angular rms width ,gθσ . Both have ˆ 7.77d = . 

 
n = 1.46 for the glass refractive index. The simulation results are shown in Fig-
ure 7 for two different slopes, 0.06sm =  and 0.024sm = , and relatively large 
heights of ˆ 0.642h =  and 0.584, respectively. The estimated loss around the  

https://doi.org/10.4236/opj.2022.121001


C. K. Madsen 
 

 

DOI: 10.4236/opj.2022.121001 15 Optics and Photonics Journal 
 

 
Figure 7. Vector wave simulations (COMSOL®) compared to GOA for a glass (n = 1.46) 
to air interface with (a) ˆ 0.642h = , ˆ 23.4d =  and 0.06sm =  and (b) ˆ 0.584h = , 
ˆ 53.1d =  and 0.024sm = . The critical angle (thc) is shown in the dashed line. 

 
critical angle is predicted using a GOA for the sinusoidal surface. The Fresnel 
reflectivity around the specular angle was incorporated in the GOA simulations. 
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The critical angle is shown as well as the Fresnel reflectivity R0 for m = 0. The 
oscillatory behavior of the DO solution around the GO solution is to be expected 
since its scatter angle distribution is discrete rather than continuous. Their over-
lap, or agreement in an average sense with respect to incidence angle, indicates 
that the rms width is a reasonable metric for comparing the scattering loss in-
fluence from different surface distributions. The agreement in DO and GO solu-
tions will be closer when many spatial frequencies are used to approximate a 
surface instead of this basic comparison using a single spatial frequency func-
tion. 

8. Conclusions 

Based on the non-paraxial scalar theory, both d̂  and ĥ  are needed to eva-
luate the diffraction efficiencies and order angular dependence. So, one geome-
try (d and h) yields different scatter angle distributions at different wavelengths. 
In this paper, we derived a formula for the rms scattered angular width from the 
basic diffraction formula, showing how it resulted from the application of a “lo-
cally paraxial” approximation that directly yields the geometrical optics solution, 
i.e. the diffractive optics solution becomes independent of wavelength and the 
scattered angle width is predicted by the surface slope rms width.  

Both the scattered angular width and deviation of the mean scatter angle were 
shown to be important metrics in comparing DO and GO solutions, as they 
would impact scattering loss estimates for TIR interfaces, such as for light pipes. 
Limits were derived on the incidence angle range as a function of the relative 
grating period, demarcating the GO range of applicability. The requirements for 
GO to apply for smooth surface domains depend on the normalized period, 
predominantly, as it affects the first diffraction order cutoff. The shift in the 
mean scatter angle is also important, particularly for moderately rough surfaces, 
as it was shown to depend on the rms slope. The ability to predict the rms scatter 
width over a range of grating parameters, including small amplitudes, provides a 
direct connection between the GOA and diffraction results. For grating parame-
ters where the GOA condition is satisfied, ray tracing simulations are expected 
to be sufficient for scattering loss analyses. 
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