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Abstract 
The large aperture mirror surface test is the basis of optical processing and 
alignment, and is also the key to the development of remote sensing device. 
The simulation results show that the RMS values of 1.07 m primary mirror 
with multi-point support and sling support are 1.86 nm and 3.28 nm respec-
tively. Using 36 point unloading device, sponge 36 point free support and 
sling support to test the mirror surface, the results are basically consistent, 
RMS is better than 0.02λ (λ = 632.8 nm). 
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1. Introduction 

With the rapid development of the field of ground observation, deep space ex-
ploration and scientific experiment, the resolution requirements of space remote 
sensing cameras are also higher and higher. Because the angular resolution of 
optical system is inversely proportional to the aperture of the through-beam, in-
creasing the aperture of space remote sensor is the most direct and effective 
means to improve the resolution. As the largest mirror in optical system, how to 
keep the surface stability is the primary engineering problem in the development 
of remote sensing camera. The primary mirror surface will deviate from the real 
surface due to the influence of gravity deformation and support deformation 
during the ground detection. How to remove the influence of gravity and sup-
port is the key to surface test [1] [2]. 

2. Principle Analysis 

There are two common methods in the measurement of large aperture mirror 
surface, one is multi-point unloading support and the other is sling support. The 
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principle analysis of two test methods is given below. 

2.1. Multi Point Unloading Support 

Because the mirror cannot be an absolute rigid body, according to the elastic 
deformation principle, with the increase of the mirror aperture, the structural 
stiffness of the mirror itself will gradually decrease, and the number of support-
ing points must be increased to ensure the accuracy of the mirror surface. The 
elastic deformation analysis of the surface under the equal spacing support is 
shown in Figure 1. G is the acceleration of gravity, and D is the spacing of sup-
port points.  

It can be seen that the surface of the mirror is proportional to the Fourth 
Square of the distance D of the support point, and is inversely proportional to 
Young's modulus and moment of inertia. Therefore, in order to reduce the dis-
tortion of mirror, only one way to reduce the support distance is to increase the 
number of support points when the mirror structure and material are deter-
mined. 

When the optical axis is vertically supported and unloaded, the force of the 
mirror shall be balanced, so as to prevent the movement in the space of the mir-
ror, namely, it meets the following requirements: 
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The mirror must meet the moment balance, so as to prevent the rotation in 
the mirror space, namely, it meets the following requirements: 
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When the optical axis is vertical (pointing to the roof), 36 back supporting 
points are designed on the back of the mirror, and the supporting diameter is 
taken Φ 25 mm (Figure 2). 

When the optical axis is vertical, the mirror is affected by its own weight, and 
the surface is shown in Figure 3, RMS is 1.86 nm. 
 

 
Figure 1. Deformation analysis. 
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Figure 2. Distribution of support at 36 points on the back of mirror. 
 

 
Figure 3. Mirror surface when the optical axis is vertical. 

2.2. Sling Support (Figure 4) 

When the optical axis of the primary mirror is horizontal, there are two kinds of  
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Figure 4. Schematic diagram of the stress state of sling support and mesh generation. 
 
forces supported by sling. One is the support force Fr of the sling to the mirror 
along the radial direction. The set Fv of its components is balanced with gravity 
and distributed along the consine around the primary mirror. The left and right 
symmetrical components Fh balance each other. The second is that the bending 
moment Mr1 and Mr2 of the mirror under the support of the edge of the sling 
reach the balance. The bending moment is more sensitive to the surface of the 
mirror. 

The mesh model of the primary mirror is established by the same method as 
that of linear analysis. The sling is divided by shell element, and the contact pair 
is established in the contact area between the outer ring of primary mirror and 
sling. The parameters of sling are: elastic modulus 140 Gpa, Poisson ratio 0.3, 
density 8100 kg/m3, width 80 mm, thickness 1 mm. The friction coefficient be-
tween the sling and the primary mirror is 0.5. Through simulation analysis, the 
gravity deformation of the primary mirror surface rms = 3.28 nm, and the cloud 
diagram of gravity deformation of primary mirror is shown in Figure 5. 

2.3. Aberrations Expression of Detection System 

The optical component of the detection system is mainly introduced into pri-
mary aberrations, and no new aberrations will be generated. The Zernike scalar 
expression of the primary aberrations of the system is as follows [3] [4]: 

9
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( , )jW ρ φ  is the aberration of the field of view, ( , )iZ ρ φ  is Zernike poly-
nomial and j

iC  is the polynomial field fitting coefficient. Table 1 gives the ex-
pressions of the astigmatism, coma and spherical aberration of polynominal ex-
pressions, θ is the polar angle, ρ  is the radius.  

3. Measurement 
3.1. Unloading Device 36 Point Support 

The self collimation optical path as shown in Figure 6 is established. After pass-
ing through the compensator and interferometer, the parallel light from the  
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Figure 5. Nonlinear analysis surface of sling. 

 

 
Figure 6. 36 point unloading support and test results. 
 
Table 1. Zernike polynomial expressions. 

Polynomial expression Meaning Brief exp. 

2 cos 2ρ θ  Astigmatism 0˚ or 90˚ 5Z  

2 sin 2ρ θ  Astigmatism ±45˚ 6Z  

2(3 2) cosρ ρ θ−  X Coma and Tilt 7Z  

2(3 2) sinρ ρ θ−  Y Coma and Tilt 8Z  

4 26 6 1ρ ρ− +  Spherical and Focus 9Z  

 
interferometer reaches the primary mirror and collimated. According to 1.1, 36 
supporting tooling are designed, and the moment of each support point is calcu-
lated. After measuring a position, taking the current position as the zero posi-
tion, the primary mirror rotates 120˚ and 240˚ around the optical axis respec-
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tively. The results of the three positions are shown in Figure 6. It can be seen 
that when the primary mirror is at zero, 120˚ and 240˚, the test results are con-
sistent.  

3.2. Sponge 36 Point Support 

As is shown in Figure 7, paste sponge with diameter of 50 mm and thickness of 
60 mm on aluminum plate with diameter of 1300 mm, thickness of 20 mm and 
flatness of 0.02 mm. Put the primary mirror with 1.07 m diameter on the sponge. 
Adjust the compensator and the plane mirror to establish the autocollimation 
optical path. It can be seen that the surface test results of the primary mirror are 
consistent with the results of the 36 point unloading device under the free sup-
port of sponge. 

3.3. Sling Support 

As shown in Figure 8, the primary mirror is tested by sling, and Fv shall pass the 
center of gravity of the mirror. After measuring the current position surface, the 
primary mirror rotates 120˚ and 240˚ around the optical axis respectively. It can 
be seen that the test results are consistent with the optical axis vertical unloading 
support results. 
 

 
Figure 7. Sponge free support and test results. 
 

 
Figure 8. Sling support and test results. 
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4. Conclusion 

Based on the analysis of the horizontal and vertical stress states of the optical 
axis of the large caliber primary mirror, the simulation results of the surface of 
the primary mirror under different supporting conditions are given. The prima-
ry mirror surface is tested by using multi-point support and sling support, and 
the test results are basically the same. The results of multi-point unloading sup-
port can be used as the basis for optical processing of mirrors, and the results of 
sling support can be used as the basis for structural design and optical align-
ment. 
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