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Abstract

Assessing soil quality is essential for crop management and soil temporal
changes. The present study aims to evaluate soil quality in the Ferralitic soils
context countrywide. This assessment was done using multivariate soil quali-
ty indice (SQI) models, such as additive quality index (AQI), weighted quality
indexes (WQIlwa and WQIem) and Nemoro quality index (NQI), applied to
two approaches of indicator selection: total data set (TDS) and minimum data
set (MDS). Physical and chemical soil indicators were extracted from the
ORSTOM'’s reports resulting from a sampling campaign in different provinc-
es of Gabon. The TDS approach shows soil quality status according to eleven
soil indicators extracted from the analysis of 1,059 samples from arable soil
layer (0 - 30 cm depth). The results indicated that 87% of all provinces pre-
sented a very low soil quality (Q5) whatever the model. Among soil indica-
tors, exchangeable K* and Mg?, bulk density and C/N ratio were retained in
MDS, using principal component analysis (PCA). In the MDS approach, 50 to
63% of provinces had low soil quality grades with AQI, WQI.4«« and NQI,
whereas the total was observed with WQIcom. Only 25% of provinces had me-
dium soil quality grades with AQI and NQI models, while 12.5% (NQI) and
25% (AQI) presented high quality grades. Robust statistical analyses con-
firmed the accuracy and validation (0.80 < r < 0.91; P < 0.016) of AQI,
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WQI4 and NQI into the TDS and MDS approaches. The same sensitivity
index value (1.53) was obtained with AQI and WQI,4. However, WQI,4q was
chosen as the best SQI model, according to its high linear regression value (R
= 0.82) between TDS and MDS. This study has important implications in de-
cision-making on monitoring, evaluation and sustainable management of
Gabonese soils in a pedoclimatic context unfavorable to plant growth.

Keywords

Gabon, Ferralitic Soil, Soil Indicators, Standard Score Function, Soil Quality
Indices, Sustainable Soil, Soil Management

1. Introduction

In the light of its functions, soil is one of the most important components of the
environment [1] [2] [3] [4]. Soil is part of critical ecosystem services ensuring
sustaining plant productivity and food security, filtering water and denaturing
organic pollutants. Moreover, it controls soil nutrient recycling and sequestering
organic carbon, provides a habitat for biodiversity, and mitigates greenhouse
gases in the atmosphere and climate change [1] [2] [3] [4] [5]. However, the
ability to play its role is threatened by environmental and anthropogenic factors
[6]-[14]. Thus, the assessment of soil quality indices is a decision support to
evaluate the magnitude of soil degradation and implement the appropriate in-
tervention in the context of drought and climate change.

Recently, numerous works focused on the study of soil health [15] [16] [17]
[18] or soil quality [19] [20] [21] [22] [23]. However, all these studies relate only
to temperate zones while the assessment of soil quality is very scarce in tropical
regions [24] [25] [26], particularly in sub-Saharan regions [27] [28] [29] [30].

Although both terms are similar, scientists are not in accordance with their
interchangeability [5] [31]. Indeed, soil quality refers to the capacity of soil to
deliver a wide range of ecosystem services, including biomass production [32]
whereas soil health is presented as a finite and dynamic living soil resource, and
is directly correlated to plant health [31] [33] and the committee for Soil Science
Society of America [34] soil quality is defined as “the capacity of soil to function,
to sustain plant and animal productivities, to maintain or enhance water and air
quality and to support human health and habitation”.

Definitively, the improvement of soil quality is also a response to achieving the
Sustainable Development Goals (Figure 1 and Table 1)
(https://sdgs.un.org/fr/goals).

With a total area of 267,700 km? Gabon is the most densely forested country
in Central Africa, harbouring a forest cover of about 88.5% of the area [35]. The
annual gross deforestation rate is estimated at 0.12% [36] [37] [38]. According to
[39], the country counts only 1% of arable land. Their fertility is controlled by
both soil parent material and texture [40] [41] [42] [43] [44]. On one hand, the
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AWC = available water capacity; SOC = soil organic C; CEC = cation exchange capacity; EC = electrical conductivity; MBC = mi-
crobial biomass; MRT = mean residence time.

Figure 1. Relation between soil quality and sustainable development goals [31].

Table 1. Advancing sustainable development goals through management of soil quality [31].

SDGs Objective Impact of soil quality

1 No poverty Increase farm income

2 End hunger Enhance quantity and quality food

3 Good health Produce nutritious food

5 Gender equality Improve crop productivity of women farmers

6 Clean water and sanitation Improve water quality

8 Economic growth An engine of economic development

10 Reduce inequalities Enhance and sustain farm productivity

12 Responsible consumption Reduce input of water, nutrients and energy by decreasing losses
13 Climate action Sequester C and mitigate climate change

15 Life on land Increase activity and species diversity of soil biota

SDGs : Sustainable development goals.
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Ferralitic context of soils is dominated by Acrisol, Ferralsol, Nitrisol soils and
particularly by Arenosol soils, which are the most represented soil type in Africa
(22%) [39] [43]. However, these soils are mainly nutrient-poor with coarse tex-
ture. Nevertheless, they can however be managed to improve their fertility and
ensure good plant and/or tree growth [45] [46] [47]. They may have an impor-
tant amount of iron and aluminium oxides, inducing extremely or strongly acidic
conditions in soils (pH < 5.5) [46]. Therefore, they are characterized by strong
leaching of soil nutrients [48] In addition, the apparent sandy texture, dominated
by kaolinite and characterized by low mineralogical activity and nutrient capacity
storage [39] [43] [49] increases leaching and nutrient deficiency [44] [50] [51].
Moreover, the humid tropical context, associated with parent material, could be
considered as the main threat to soil quality in Gabon. Indeed, the high humidi-
ty induces a rapid mineralization of SOM [39] [48]. Accordingly, these soils be-
come unfavorable for food crops. Thus, the introduction of sustainable agricultur-
al practices, such as the use of nitrogen-fixing species, application of organic ma-
nure or management of organic residues could improve soil health in Gabon. De-
spite the numerous agricultural projects launched in recent years, the knowledge
dedicated to Gabonese soils is still very limited. However, recent works have
highlighted their strong ability to store organic carbon [43] [44] and to foster bet-
ter soil health through sustainable management [52]. Therefore, the only nation-
wide study on the determination of agronomic potential was carried out 40 years
ago by OSTROM (Office de la Recherche Scientifique et Technique d’Outre-Mer).
Gabon is the second most forested country among the six countries located in
the second largest rainforest ecosystem in the Congo Basin. The country counts
23 million ha out of 268 million ha of dense equatorial evergreen forest in the
Congo Basin [53]. According to the FAO, the dominant land cover class in Ga-
bon is evergreen and semi-deciduous forest. This forest cover is a great carbon
sink [54] after the Congo Basin peatlands, located between the Democratic Re-
public of Congo and the Republic of Congo [55]. Recently, the United Nations
Framework Convention on Climate Change certified Gabon for Carbon credit
[56]. The input of this cover in carbon sink formation deeply depends however
on the quality of the soil. To the state of our knowledge, few studies using soil
quality indices, to evaluate soil quality within Congo Basin, have been conducted
in Cameroon [57] [58]. Furthermore, maintaining healthy soils in the region is
an absolute priority in view of challenges such as i) food security, ii) increase of
forest production, iii) high fuelwood energy consumption and iv) climate change

(https://www.un.org/development/desa/disabilities/envision2030.html; [52]).

In the context of Gabon, the present study aims to i) determine the MDS soil
indicators which control soil quality, ii) assess and map soil quality with the only
set of data available through multivariate models and iii) identify the best model
to track temporal changes in soil quality in countrywide to prepare future soil
quality monitoring. Ultimately, how to better use soil quality indices to improve

soil health and overall soil quality will be discussed.
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2. Material and Methods
2.1. Study Area

Gabon is located in Central Africa and is the second most forested (10%) coun-
try in the Congo Basin (Figure 2), after the Democratic Republic of Congo (60%
of the overall area). It is covered at 88.5% by a dense equatorial evergreen forest.
The remaining vegetal cover consists of savannas (6%), flooded broadleaved
(3%) and cropland (2%) [35] [54] [59].

The climate is humid tropical with annual mean temperatures ranging be-
tween 26°C (in January) and 23°C (between June and August) [60]. Precipitation
varies from the wet coastal northwest (3200 mm) to the drier interior southeast
(1300 mm) due to a longitudinal precipitation gradient [61].

The country has a contrasted basement geology. The eastern is largely domi-
nated by metasedimentary and metaigneous rocks, while the western is a mosaic
of carbonate and non-carbonate rock minerals [40]. In addition, in the central
and northeastern Gabon, the soils were developed on granite. Thus, they are
classified as Xanthic Ferralsols and Ferralic Cambisols. However, soils from the
arid southeast are rather iron-rich Plinthosols. And along the coast, soils are

Ferralic Arensols and Calcaric Fluvisols [43].

* Samples
G1-9 Regions
Main type of soil

Lithic rough mineral soil

Rejuvanted ferralitic
Indured yellow ferralitic soil
Reworked ferralitic soil
Little evolved mineral soil

Modal mineral soil

Hydromorphc ferralitic soil

Leached ferralitic soil

G1: Estuaire; G2: Haout-Ogooué; G3: Moyen-Ogooué; G4: Ngounié; G5: Nyanga; G6: Ogooué-Ivindo; G7:
Ogooué-Lolo; G7: Ogooué-Maritime; G9: Woleu-Ntem.

Figure 2. Geographic sample location of study area.
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2.2. Data Sources

This study is based on a database from OSTROM’s reports, which was carried
out between 1969 and 1981 in Gabon. The dataset dedicated to 1059 samples
from arable soil (0 - 30 cm depth) was extracted from reports. The sampling was
performed according to various land use/land cover (primary and secondary fo-
rests, shrub and herbaceous savannahs, fallow forest and cropland) in 8 out of 9
provinces in Gabon. The dataset was grouped on physical (size particle frac-
tions) and chemical soil parameters (soil organic carbon, total nitrogen, C/N ra-
tio, soil water pH, cation exchange capacity, exchangeable bases and available
phosphorus).

Soil pH was determined at a soil-water ratio of 1:2.5 (w:v) with a pH meter.
Soil organic carbon (SOC) was measured using the Walkey-Black method [62].
Total nitrogen (TN) was determined by using the Kjeldahl digestion method [63]
The spectrophotometer detection method was applied to determine available
phosphorus (av. P), before an extraction step with 0.5 M sodium carbonate bicar-
bonate [64] Exchangeable bases (Ca?*, Mg?*and K*) were extracted with 1 M am-
monium acetate solution at pH 7 and were respectively measured using EDTA
compleximetric titration and flame photometric methods [65] [66] The cation ex-
change capacity (CEC) was estimated by 1 N ammonium acetate (pH 7.0) method
[67] [68]. Soil particle size distribution was determined by the pipet method
[69]. Bulk density (BD) was determined using the pedotransfer function [44].

2.3. Developing of Soil Quality Index

In the current context of anthropogenic pressure on soils and their degradation,
soil quality is a good indicator of the measured soil status. Thus, the improve-
ment of soil quality promotes soil health by creating an ecosystem favorable to
agriculture and ensuring food security [5] [31] [70]. In consequence, both of
them are measurement tools of soil status. As a consequence, its assessment in-
dicates the influence, over a long period, of land use on agricultural sustainabili-
ty [31] [71] [72] [73].

The assessment of soil quality is based on the combination of physi-
co-chemical [22] [74] [75] or even biological parameters (such as enzymatic ac-
tivities and microbial biomass carbon) [19] [76] [77]. Indeed, the latter influence
soil productivity and are generally sensitive to environmental changes [19] [77]
[78] [79]. Then, these parameters are considered as indicators of soil quality
[77]-[83]. Due to its ease of implementation and quantitative flexibility [84] [85]
[86], soil quality index (SQI) is the most frequently used among existing ones,
such as soil card design and test kids [87], geostatistical methods [88] and expert
opinions [89] [90]. The development of SQI is based on three steps: i) selection
of indicators, ii) score assignation for selected indicators and iii) integration of
indicators in an index [91]. In the first step, two approaches as widely used in
the evaluation of SQI: Total Data Set (TDS) and Minimum Data Set (MDS). On
the one hand, TDS considers all indicators regarding the experimental analyses.
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On the other hand, MDS derives from TDS by a selection of indicators, using
principal component analysis (PCA) and correlation analysis to reduce data re-
dundancy [92] [93] [94]. Standard scoring functions [79] [95] [96] [97], nonli-
near or linear scoring function methods [19] [21] [22] are widely used to nor-
malize data to eliminate the bias, such as different units within soil indicators
[21] [94]. Finally, the integration of dimensionless indicators into a quality index
is possible through the use of various models including additive (AQI) and
weighted additive (WQI) index [74] [89] [98] [99]. However, the Nemoro Qual-
ity Index (NQI), based on the average and the minimum indicator score, with-
out considering their weight [85] is also used as the SQI model [78] [96] [100].
To monitor soil quality in the long term, experiment indicators and approaches

have thus to be first selected.

2.3.1. Indicator Selection

According to their influence in soil structure, nutrients cycles, carbon transfor-
mation and buffering capacity, soil physico-chemical properties (BD, pH, ex-
changeable bases, SOC, TN, CEC, av. P, C/N ratio, clay and sand) were investi-
gated to select the minimum data set (MDS) indicators that are sensitive to the
external environment [19] [77] [78] [79] [101]. Firstly, principal component
analysis (PCA) was conducted to determine and select components with an ei-
genvalue 2 1. Soil variable with loading value > 0.5 on multiple PCs was grouped
into PC in which it had high value [20] [79] [102]. Secondly, norm values for
each variable were calculated according to Equation (1) and those within 10% of

highest scores from each group were selected [103] [104] Norm values were cal-

Norm, = /iufkﬂk (1)

where Norm is comprehensive loading of soil variable 7 on the & PCs with an

culated as follows:

eigenvalue > 1, A is k-th PC eigenvalue, u; is the loading of soil variable 7 on the
kthPC.

Finally, correlation analysis was used to determine some variables with high
norm values within groups were redundant and MDS could be further reduced
[79] [105].

2.3.2. Variable Scoring Functions
A scoring function was used to normalize data due to their different units [74].
Soil variables were transformed and normalized to dimensionless values between
0 and 1 using the standard scoring functions due to its accuracy [2] [78] [101]
[106] [107]. According to their soil quality function, the variables scoring were
calculated using three standard score function equations (“more is better, MB”
(Equation (2)) and “less is better, LB” (Equation (3))) [21] [77] [100]. Three
methods, such as linear, non-linear and standard score, were used to calculate
the indicator scores.

For linear scoring, MB (Equation (2)) and LB (Equation (3)) were determined
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as follows:
X
S, =— 2)
- Xmax
X .
S — min 3
L= (3)

where S;,, and S, are respectively the linear score indicators for “more is bet-
ter, MB” and “less is better, LB” soil indicators, x is the soil variable value, X,
and x.,;;are the extremum value of each soil indicator [21] [106] [108].

For non-linear, the scoring function is the following:

a

b
1+ {X J
Xmean

where Sy;is the non-linear score indicator of soil variable ranging from 0 to 1, a

SNL = (4)

is the maximum score which equal to 1 in this study, xis the soil variable value,
Xmean 18 the mean value of each inside the database and 4 is the slope of equation,
—2.5 for MB and 2.5 for LB [19] [108] [109] [110] [111].

For the standing scoring, the following score functions Equation (5) and Equ-

ation (6) were respectively used for MB and LB:

0.1, x<L
X—L
f(x)=40.1+0.9 , L<x<U 5
1.0, x>U
1.0, x<L
Xx—L
f(x)=41.0-0.9 , L<x<U 6
(x) 0L (6)
1.0, x>U

where f (X) is the linear standard scoring function, x is the soil variable value,
L and Urespectively the lower and upper threshold values of the soil variable.

In this study, MB function was applied to soil variables which have positive
effects on soil quality, such as chemical soil properties (exchangeable bases, SOC,
TN, CEC, av. P, C/N ratio), whereas LB function refers to BD, because high val-
ue of this indicator was restrictive to soil quality [77] [78] [96]. According to
acidic soil pH mean values observed in whole country (<5), MB scoring function
was applied for pH [77] [78]. Considering its effects on macro/micro-porosity
partitioning in soil and structural stability, MB function was used to score clay,
whereas LB was chosen for sand due to its lixiviation effects on soil nutrients
[22] [112].

2.3.3. Soil Quality Index
Soil quality indexes were determined according to multivariate approaches. In
the one hand, indicator scores were integrated into SQI using additive method

(Equation (7)) and weighted additive (Equation (5)) was determined as follows [19]
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AQIl = 2.5 (7)

n

where AQI is the additive and weighted additive soil quality index, S;is the vari-
able score calculated according to Equations (2), (3), (4) and n is the number of
variable in TDS or MDS.

Then, weighted additive soil quality index (WQI.aq4) was calculated according
to Equation (8):

WQl,4 = iwi xS, (®)

where and W} is the weighting value of each variable, determined using com-
munality values (C), which ranged between 0 to 1 for each indicator. These lat-
ter indicated the contribution of each variable to overall variance [77] [79] [96].
Moreover, W;derived from PCA and was calculated as the ratio of communality
value of variable with the sum of communalities of all TDS or MDS variables
[77] [96]:

W, = ci/ici 9)

Then, SQI weighted communality soil quality index (WQI.om) was calculated

using standard scoring function as follows:
WQIcom = ZWI X Si (10)
i

where WQIon is weighted communality soil quality index, S;is the variable score
determined according to Equation (5) and Equation (6), W; is the weighting
value of each variable (Equation (9)).

In the other hand, given that the average and minimum scores for the indica-
tors, the Nemero quality index (Equation (11)) was calculating according the
following equation [78] [100]:

P2 +P2 n-1

NQ'Z ave 5 min x . (11)

where NQI is the Nemero quality index, P,.and Py, are respectively average and

minimum scores variables in a sampling site, and 2 is the number of variables.

2.3.4. Evaluation of Soil Quality Indexing Methods
The accuracy and validation of each model were determined using the sensitivity
index (SI), defined as follows:

L (12)

Slein
where SI is the sensitive index, SQIn.x and SQlmi are respectively the maximum
and minimum soil quality values of the index observed under each indexing
model [112] [113]. According to [114] the SQI model with a higher SI value is

more preferable, as this is sensitive to perturbations and management practices.
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2.3.5. Soil Quality Grades and Spatial Map Variability

Soil quality was divided into five grades according to Table 2. It is defined that
grade V (Q5) refers to soil with the most severe restrictions on plant growth,
grade IV (Q4) is more serious than grade III (Q3), which is suitable for plant
growth, but with some limitations. The grade II (Q2) is suitable for plant growth
and grade I (Q1) is the most suitable for the plant growth [9] [75] [85].

2.4. Soil Quality Mapping

Digital soil quality mapping was possible due to a large part of the sample which
was precisely located by geographic coordinates. Therefore, some samples were
located using rivers, roads, or relief near the site. This old location method in-
troduced imprecise location of some samples. It is also important to note that
thirty years ago, the local coordinates system used on old maps were abandoned
and replaced by the World Geodetic System WGS84, the most precise coordi-
nate system, actually used in the world. This change in coordinate system is
another source of precision lake in the sample location. Even if sample locations
are not very precisely located, our maps are useful to make the regional inter-
pretation method, we propose in this work.

Maps were elaborated in three steps. Firstly, the digitalization and georefe-
rencing of old regional and national soil maps were done [44]. This preliminary
work made it possible to locate the maps taking into account the new coordinate
system. We were able to find the geographic coordinates of poorly located sam-
ples. Secondly, a database, including location, geographic coordinates, soil major
classes and soil quality grades, for each sample was created. Finally, Qgis was
used to overlay the map and the database. It was therefore possible to perform

thematic analyses of the data.

2.5. Statistical Analysis

All statistical analyses (descriptive statistics, analysis of variance, PCA, Pearson’s
coefficient correlations and linear regression) were performed with R Project
4.2.0 software. Correlation analysis was conducted to identify relationships be-

tween soil indicators. Tests were assessed at the 0.05 significance level.

Table 2. Soil quality grades classification criteria for soil quality index models into TDS and MDS approaches.

Soil quality grades
Model
Approach VL (Q5) L (Q4) M (Q3) H (Q2) VH (Q1)
TDS <0.48 0.48 - 0.55 0.55 - 0.62 0.62 - 0.69 >0.69
Al MDS <0.30 0.30 - 0.40 0.40 - 0.50 0.50 - 0.60 >0.60
TDS <0.46 0.46 - 0.53 0.53 - 0.60 0.60 - 0.67 >0.67
wal MDS <0.33 0.33-0.46 0.46 - 0.59 0.59 - 0.72 >0.72
TDS <0.32 0.32 - 0.37 0.37 - 0.42 0.42 - 0.47 >0.47
N MDS <0.17 0.17 - 0.23 0.23-0.29 0.29 - 0.35 >0.35

Q, Quality; VL, Very low (Q5); L, Low (Q4); M, Medium(Q3); H, High (Q2); VH, Very high (Q1); AQI, Additive quality index;
WQI, Weighted quality index; NQI, Nemero quality index; TDS, Total data set; MDS, Minimum data set [22].
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3. Results

Thirteen soil physico-chemical parameters were extracted to ORSTOM’s reports
and were analysed. Only bulk density (BD) was determined by a pedotransfer
function. Descriptive statistics of properties of the studied arable soils of differ-

ent provinces (11 = 8) are shown in Table 3.

3.1. Soil Physical Properties

In this study, only two soil physical parameters, BD and size fraction particle,
were investigated at a national scale (Table 3(a)). Size particles indicated a va-
ried distribution in soil throughout the country. Topsoil clay proportions ranged
from low (24.94% for G3) to high level (49.17% for G2) and between moderate
(29.74 % for G2) to high amount (48% for G1) for sand fraction. The spatial dis-
tribution of clay fraction showed a significantly higher difference content in G2
compared to G1, G2, G3, G4 and G5 (P < 0.001). While at the same time, the silt
proportion was significantly lower than others (P < 0.01). In general, the silt
fraction distribution showed a slight variation in the contents, ranging from very
low (<10% for G7 and G9) to low levels (10% - 25%), except for G5 (27%) which
presented a moderate but significant highest content than others (2 < 0.001). Ul-
timately, soils in Gabon presented low silt (10%), moderate clay (35%) and high
sand (40%) levels which traduced a clay loam texture.

Bulk density had a slightly identical countrywide value. They ranged from
0.96 g-cm™ for G7 to 1.17 g-cm™ for G1, with a national value of 1.1 g-cm™>. The
BD value recorded in G7 was lowest and significantly different than others (P <
0.001), potentially due to the higher organic matter content that results in high

pore space.

3.2. Soil Chemical Properties

The spatial variation of soil chemical properties, such as pH, SOM subsequent
(SOC, TN, C/N ratio), exchangeable bases (Ca**, Mg** and K), cationic ex-
change capacity (CEC) and available phosphorus was presented in Table 3(b).
The data showed a small variation in the pH values, ranging from 4.3 (G1, G7
and G9) to 5.5 (G5), with a national mean of 4.3.

Soil organic matter subsequent (SOC, TN and C/N ratio) had national mean
values of 2.34%, 0.22% and 13.13, respectively. The topsoil SOC contents ranged
from 1.76 (G6) to 3.45% (G7). The SOC amounts in G3 and G7 provinces were
significantly different than others, except between G4 and G9. According to TN
contents variation, a significant difference was only observed between, G2, G6
and G9 (P < 0.05), with values ranging from 0.17 (G2) to 0.50% (G6). A strong
significant difference (P < 0.001) in C/N ratio values was observed between G1,
G2, G3 and G4, compared to others. The recorded values ranged from 11.53
(G1) to 14.18 (G2) for C/N.

Soil nutrients, such as exchangeable bases (Ca**, Mg** and K*) and available

phosphorus exhibited a different dynamic at national scale (Table 3(b)). Topsoil
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Table 3. (a): Soil descriptive statistical parameters of different provinces of Gabon;

(b)

Soil chemical descriptive statistical parameters of different provinces of Gabon.
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exchangeable Ca?* contents had a wide variation with ranges of 0.21 (G2) to 3.73
meq/100 g soil (G5), with a national mean value of 1.15 meq/100 g soil. The
contents recorded in G5 were significantly highest (2 < 0.001) than others, ex-
cepted for G7. A moderate variation was observed for the exchangeable Mg*
amounts. The significant highest content was again observed in G5 compared
than others (P < 0.01), except for G6 and G7. The Mg** mean values ranged be-
tween from 0.17 (G2) and 1.44 meq/100g soil (G5). For exchangeable K* dy-
namic, a slight variation, ranging from 0.11 meq/100g soil (G3) and 0.25
meq/100g soil (G6) with a significant difference, was observed between G6, G2,
G3, G4 and G5. In other hand, CEC varied widely between 3.18 (G7) and 13.17
(G5). The contents, recorded in G7 (P< 0.01) and G6 (P< 0.001), were significantly
lower compared to the other provinces. The national mean value of CEC was 10.97
meq/100g soil. The topsoil av. P amounts were up to 2 ppm, ranging from 0.17 to
1.82 ppm. G6 topsoil content was significantly higher than others (£ < 0.001).

3.3. Interrelationships between Soil Indicator Properties

The linear regression (R), Pearson’s correlation coefficient (r) and ANOVA (at
P-value < 0.05) were investigated to highlight the relationships between the dif-
ferent indicators. As there was no major variation in silt fraction for all the sam-
ples and no data for av. P for G7, these two parameters were not taken into ac-
count. Figure 3 presents the interrelationships of selected parameters used to as-
sess soil quality indices. BD had moderate and strong negative correlations with
SOC (r=-0.75, B = 0.56, P=0.034) and clay (r= —0.80, B = 0.64, P=0.017) re-
spectively, while a moderate and positive correlation was observed with sand (r=
0.72, B = 0.52, P = 0.045). The same trend was observed with exchangeable K*,
which showed a moderate to high correlation with C/N ratio (r=-0.72, & = 0.59,
P =0.027) and CEC (r=—-0.81, R = 0.65, P=0.015). The topsoil CEC showed a
moderate to high negative correlation with TN (r= —0.76, & = 0.58, P= 0.028).
In addition, TN and exchangeable K* were moderately correlated (r=-0.81, R =
0.65, P = 0.015). Moreover, exchangeable Ca** and Mg** presented a significant
close correlation between them (r= -0.85, & = 0.73, P< 0.01).

Although there was no significant correlation (at p < 0.05) between any para-
meters, on the one hand, pH had a weak to moderate positive correlation with
CEC (r=0.47, R» = 0.22, P=0.24), C/N ratio (r=0.49, R = 0.24, P=0.21), ex-
changeable Ca** (r=0.60, &> = 0.36, P=0.11) and Mg** (r=0.63, R* = 0.40, P=
0.094). On the other hand, a negative correlation was observed with exchangea-
ble K* (r=-0.61, & =0.37, P=0.11).

3.4. Indicators Selection for MDS

From the results of PCA, all the soil indicators of different regions were grouped
into different components (Table 4). Pearson’s correlation analysis was used to
highlight the relationship between them and to reduce the redundancy (Figure
3). As presented in Table 4, PCA results showed the first three PCs with eigen-

values > 1, ranging between 2 and 4 explaining at least 10% of data variation.
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These latter accounted for 83% of the total variation and were used for MDS.
Moreover, communality values for soil properties showed that the three PCs ex-
plained more than 60% of the variation in SOC and C/N ratio, more than 70% of
the variation in the sand and TN, more than 80% of the variation in CEC, clay
and pH, more than 90% of the variation in exchangeable bases (Ca**, Mg** and
K*) and BD. Thus, these highest communality values indicated a strong rela-
tionship between soil indicators and were considered to be important variables
for soil quality assessment [77] [115].

In PC1, which explained 36% of the total variation, exchangeable K*, TN, CEC
and pH were considered as highly weighted PCA indicators, according to their
absolute factor loading values > 0.50. BD was excluded in PC1 due to its higher
loading value (0.709) in PC2. As exchangeable K* had the highest norm value
(1.903), on the one hand, it was correlated with pH (r=-0.55, P> 0.05) and clay
pH (r= 0.53, P> 0.05) and, on the other hand, significantly correlated with TN
and CEC (r=-0.81, 0.76, P < 0.05), thus it was selected in MDS. In PC2, the C/N
ratio, SOC, BD and sand showed absolute factor loading values > 0.50. BD had the
highest norm value (1.837) and was significantly correlated with SOC and sand (r
=-0.75, 0.72, P < 0.05). Thereby, it was chosen in MDS. However, the C/N ratio
was not correlated with the other parameters. In consequence, it was kept in
MDS. In PC3, exchangeable Mg** had a higher absolute value than Ca** and both
were closely and significantly correlated. Therefore, it was retained in MDS. Fi-

nally, exchangeable bases K* and Mg*", BD and C/N ratio were selected in MDS.

w @ ®
0.8
0.72 | BD ’ ‘ ‘
*
0.6
" @
000 -
o @@ 0@ "

0.85 0.60 Ca 0.2
% :
:0.75 SOC 5
-0.66 | -0.80 -0.54 | -0.56 Clay .
* ® -0.6
-0.81 | -0.61 | -0.77 0.53 K .
* *
-0.8
-0.76 0.76 | TN
* *

Figure 3. Results of Pearson’s correlations between soil indicators. C/N: Carbon/Nitrogen
ratio; Ca*, exchangeable calcium; K*, exchangeable potassium; Mg?*, exchangeable
magnesium; CEC: Cationic exchangeable capacity; BD: Bulk density; Mg**, exchangeable
magnesium; SOC, Soil organic carbon; TN, Total nitrogen. *: P< 0.05; **: P< 0.01.
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Table 4. Results of principal component analysis (PCA) for soil quality indicators in the studied provinces.

Principal component TDS MDS
Parameters
PC1 PC2 PC3 Norm Com  Weight Norm Com  Weight
Eigenvalue 3.993 2.827 2.339
Variance (%) 36.298 25.702 21.264
Cumulative variance (%) 36.298 62.000 83.264
Soil indicators
Ca?* 0.132 —-0.456 0.847 1.528 0.943 0.103
Mg** 0.137 -0.009 0.985 1.531 0.989 0.108 1.043 0.999 0.258
K* —0.872 0.383 0.270 1.903 0.981 0.108 1.315 0.937 0.242
SOC -0.318 -0.72 -0.119 1.379 0.633 0.069
N -0.600 0.53 0.324 1.574 0.746 0.081
CEC 0.879 -0.074 -0.172 1.780 0.808 0.088
C/N 0.480 —=0.547 -0.32 1.416 0.633 0.069 1.283 0.944 0.244
pH 0.729 —-0.247 0.546 1.730 0.890 0.097
Clay -0.812 -0.378 -0.146 1.757 0.823 0.090
Sand 0.238 0.813 -0.010 1.447 0.718 0.078
BD 0.696 0.709 -0.092 1.837 0.997 0.109 1.063 0.987 0.255

TDS, Total data set; MDS, Minimum data set; PC, Principal component; Norm, Norm value; Com, Communality value; SOC, Soil
organic carbon; SON, Soil organic Nitrogen; C/N: Carbon/Nitrogen ratio; Ca?*, exchangeable calcium; Mg*, exchangeable mag-
nesium; K*, exchangeable potassium; CEC: Cationic exchangeable capacity; av. P, Available phosphorus; BD: Bulk density. Bold
face factor loading is considered high weighted. Bold and underlined face factor loading is selected as MDS.

3.5. Soil Quality Assessment

3.5.1. Soil Quality Based on the TDS Approach

Table 5 shows the results of soil quality indices obtained by the four models
(AQI, WQlLadg, WQIeom and NQI). The SQIs values ranged from 0.34 to 0.50 for
AQI, from 0.35 to 0.50 for WQI,4q4, from 0.37 to 0.43 for WQI.omand from 0.27
to 0.31 for NQI. According to SQ grades, WQI.m and NQI highlighted a very
low soil quality in the whole country, while the low quality was only observed in
G7 using AQI and WQLasmodels (Figure 4). The interrelationships between all
models were assessed using multivariate correlations (Figure 5). A close and
significant correlation (r= 0.99, R = 0.98, P < 0.01) was observed between AQI
and WQILu4, NQI and WQL., were highly correlated between them (r= 0.83, B
=0.68, P=0.012), but weakly correlated with the latter.

3.5.2. Soil Quality Based on the MDS Approach

According to soil indicators and the PCA, four selected the MDS indicators,
such as exchangeable bases Mg**and K", C/N ratio and BD, were scored to assess
AQI, WQI and NQI soil quality. The results showed that the SQIs values ranged
from 0.36 to 0.55 for AQI and WQI,4q4, from 0.36 to 0.45 for WQI.om and from
0.20 to .0.29 (Table 5). Regarding the four models, 50% of studied regions (G1,
G2, G3 and G4) presented a low soil quality (Q4), whereas 25% were both medium
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(Q3: G5 and G9) and high quality (Q2: G6 and G7) using AQI (Figure 4). Under
WQLamodel, 75% were very low and the others (G6 and G7) were of medium
quality. According to WQI.om, all the regions were in low quality ranges. Con-
cerning the NQI model, it revealed that 63%, 25% and 12% were respectively of
low (G1, G2, G4, G6 and G9), medium (G3, and G5) and high (G7) quality. Ac-
cording to the above, regardless of the used model, G7 province had a better soil
quality than the others.

The correlation between the models showed the same trend as the TDS ap-
proach. A perfect and significant correlation was recorded with AQI and WQI.aq
(r=1, R =1, P<0.01). Moreover, WQI.,m» and NQI models showed a close and
significant correlation (r=0.97, R = 0.93, P< 0.01) (Figure 5).

Table 5. Soil quality indices and grades of using different models into TDS and MDS approaches of provinces of Gabon.

TDS MDS

A;’;’rzafh AQI WQlLaa WQleom NQI AQI WQlua WQleom NQI
© sl sG Sl SG SQI SG  SQI SG SQI  SG  SQI SG  SQI  SG  SQI G
Gl 0.34 0.35 0.40 0.27 0.36 0.36 0.36 0.22
G2 0.39 0.38 0.42 0.29 0.37 0.37 0.37 0
G3 0.36 0.36 0.40 0.30 037 ¥ oz Y oow 027 Q3
G4 040 ¥ 03 ¥ o0z ¥ o 0 % 0.39 037, 02 @
G5 0.43 0.44 0.37 0.28 047 Q3 048 0.40 024 Q3
G6 0.41 0.41 0.37 0.25 050 o 050 Q3 03 021 Q4
G7 050 Q4 050 Q4 043 Q4 031 0.55 0.55 0.45 029 Q2
G9 042 Q5 041 Q5 042 Q5 028 041 Q3 041 Q4 036 020 Q4

TDS, Total data set; MDS, Minimum data set; AQI, Additive quality index; WQI.aa, Weighted Additive quality index; WQIcom,
Weighted communality quality index; NQI, Nemero quality index; SQI, Soil quality indice; SG, Soil grade; G1, Estuaire; G2,
Haut-Ogooué; G3, Moyen-Ogooué; G4: Ngounié; G5, Nyganga; G6, Ogooué-Ivindo; G7, Ogooué-Lolo; G9, Woleu-Ntem; Q5,
Very low quality; Q4, Low quality; Q3, Medium quality; Q2, High quality.

AQI-TDS WQI,4-TDS WQl,,-TDS NQI-TDS

AQI-MDS

Figure 4. Spatial variability of soilquality grades evaluated by TDS and MDS approaches into AQI, WQI.dd, WQIcom and NQI in-
dices. VL, Very low (Q1); L, Low (Q2); M, Medium(Q1); H, High (Q4); VH, Very high (Q5).
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Figure 6. The linear relationships between AQI, WQIadd, WQIcom and NQI values (n = 8).
Table 6. Sensitive index according to SQI models for TDS and MDS approaches.
Approach TDS MDS
Model AQI WQIadd WQIcom NQI AQI WQIadd WQIcom NQI
Min 0.34 0.35 0.37 0.25 0.36 0.36 0.36 0.20
Max 0.50 0.50 0.43 0.31 0.55 0.55 0.45 0.29
Mean 0.41 0.40 0.40 0.28 0.43 0.43 0.39 0.23
SI 1.45 1.46 1.17 1.24 1.53 1.53 1.27 1.40

TDS, Total data set; MDS, Minimum data set; AQI, Additive quality index; WQl.aa, Weighted Additive quality index; WQIcom,
Weighted communality quality index; NQI, Nemero quality index; SQI, Min, Minimum; Max, Maximum; SI, Sensitive index.
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3.5.3. Comparison of Soil Quality TDS and MDS Approaches

The linear regression coefficients (R*) between TDS and MDS varied from 0.17
to 0.82 and were arranged as follows: WQLaa> AQI > NQI > WQI.n (Figure 6).
Furthermore, the results of ANOVA showed the same trend regarding significant
correlation (Figure 5). There were strong and significant correlations between
the TDS and MDS approaches into WQIq4 (= 0.91, P< 0.01), AQI (r=0.86, P
< 0.01), NQI (r=0.80, P=0.016) models.

Moreover, the comparison of SQIs calculated, using different approaches and
models, showed a strong and significant correlation between AQI-TDS and
WQILa-MDS (r = 0.86, & = 0.74, P < 0.01), and between WQI,4a-TDS and
AQI-MDS (r=0.91, R = 0.82, P < 0.01). While NQI and WQI.,m models were
only correlated respectively into the TDS and MDS approaches (r = 0.79, R =
0.62, P=0.021) (Figure 5). These results suggest that AQI and WQIa4 are better
models than WQI,» and NQI. Ultimately, MDS gave a relative higher SI value
compared to the TDS (Table 6). These latter were ordered as follows: AQI-MDS
= WQI-MDS.a4 (1.53) > WQLa-TDS (1.46) > AQI-TDS (1.45) > NQI-MDS
(1.40) > WQLon-TDS (1.27) > NQI-TDS (1.24) > WQI-TDS (1.17). According to
the TDS and MDS correlation in the model, WQI.4q4 is found to be a better mod-

el than AQI, with a weak loss of information.

4. Discussion

Our data processing of physical and chemical soil properties shed light on para-
meters to be used in statistical approaches. Further comparison of the approaches
then allowed the discrimination of data to be used in future researches dedicated

to Ferralitic soil quality.

4.1. Soil Quality Grades According to the TDS Approach

Based on the TDS approach, all the regions presented a very low quality grade
(Q5) when applying WQI,» and NQI. However, although the Q5 grade was
predominant (87.5%) with AQI and WQI,as models, the low grade (Q4) was ob-
served only in G7 (Figure 4). The results obtained with the multiple correla-
tions, between AQI and WQILaq (r = 0.99; R = 0.98; P< 0.01), on the one hand,
and between NQI and WQI.on (r=0.83; R = 0.68; P=0.012) on the other hand,
showed a similar distribution in the spatial distribution of soil grades (Figure 5
and Figure 6). The finding was consistent with previous works [19] [22] [74]
[81] [100]. However, [22] found a high correlation between all models. Accord-
ing to TDS-SQI grades, all provinces presented soils with the most severe re-
strictions for plants [75] [85] [95]. The results were in agreement with soil phy-
sico-chemical parameter status (Table 3). In general, they were classified be-
tween very low to low [49] [116] [117].

4.2. Soil Quality Grades According to the MDS Approach

In our study, BD, Mg*', K* and C/N ratios were retained in MDS. The result was
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consistent with the literature, which showed that the assessment of soil quality
requires both physical and chemical properties [77] [82] [108]. BD is an important
physical parameter, which controls soil porosity and root growth. It has often
been used as a physical indicator of soil quality [74] [78] [81] [83] [95] Soil BD is
a sensitive indicator of soil compaction, and its value is closely related to soil
texture, structure, compactness and organic matter content [99]. BD recorded
values in this study (<1.5 g-cm™) were in accordance with values of literature
and characterized a structure allowing proper air and water movements and root
growth [118] [119] [120]. Exchangeable Mg** and K* are also widely used as in-
dicators in MDS [75] [77] [79] [95] [101] [112]. They can reflect soil fertility
quality because they are essential and vital nutrients for plant growth and crop
production [21] [79]. In Gabon, topsoil mean contents of K* (0.16 meq/100g
soil) and Mg** (0.55 meq/100g soil) were low and similar to those obtained in
the other studies [49] [116] [119]. C/N ratio was included in MDS by [81] [106].
It reflects the availability of N relative to C and thus microbial activity [81] [121].
C/N ratios recorded (<15) reflect the rapid mineralization of N for immediate
plant use [122] [123].

The findings showed that the severe restrictions for plant growth (Q4) were
predominant, but decreased from WQIcm (100%) to AQI (50%). On the other
hand, using NQI and AQI models, respectively 12.5% and 25% of soils were
suitable for plant growth (Q2) whereas, with WQI.a4, Q3 (37.5%) was the best
soil quality grade observed, suggesting moderate value along with some limita-
tions for plant growth [75] [85] [95] (Figure 4). As mentioned in the TDS ap-
proach, AQI and WQI.q were closely correlated (r= 1; B = 1; P < 0.01). The
same trend was observed with NQI and WQI,m, which were strongly correlated
(r=0.97; B = 0.93; P< 0.01). This result proves that AQI and WQI,q44, on the
one hand, and NQI and WQI,m, on the other hand, show with high accuracy the

similarity between the models.

4.3. Soil Quality Approach and Model Validation

In this study, the MDS approach gave the highest soil quality score. Indeed, Q5
(87.5% - 100%) was the predominant soil grade in TDS, whereas it was Q4 (50%
- 100%) in MDS (Figure 4). Previous works mentioned that TDS can produce
more comprehensive results and certainly some important soil quality informa-
tion could be lost during PCA analysis in the MDS approach [95] [106]. Howev-
er, it is commonly accepted that the MDS approach is a tool for data reduction
and is widely used in the assessment of soil quality [2] [74] [79] [100] [101]
[107]. Moreover, a better soil quality grade was obtained using the MDS ap-
proach, which was consistent with previous studies [22] [95]. This finding is in
agreement with the SI index, where the MDS values were relatively higher than
TDS (Table 6). In consequence, the MDS approach indicates better accuracy than
TDS [124].

Although, the perfect matching between AQI and WQI.a was observed
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(Figure 6) and had the same accuracy (SI = 1.53, Table 6), a strong relationship
was recorded between the TDS and MDS approaches into WQIq4 (r=0.91; R =
0.82; P< 0.01) than AQI (r= 0.86; R = 0.74; P< 0.01) and NQI (r = 0.80; B> =
0.65; P = 0.016). This result indicates that MDS represented more accurately
TDS when WQI.q« was applied. The finding was in consistence with previous
studies, which found higher accuracy with WQL4q4 than AQI and NQI [22] [74]
[112]. On the one hand, according to [22] and [85], this trend could be explained
by the use of indicators weights. Indeed, each soil indicator was independently
differentiated by its weight and the highly weighted soil properties are consi-
dered as key factors. Contrary to AQI and NQI models, which are respectively
based on extreme values and lowest score of soil indicators, without considering
their weights [78] [85]. On the other hand, [19] and [81] showed that WQI,.qq is
more accurate than AQI and NQI models. Accordingly, WQI.as was found to be

the best model for assessing soil quality in our study.

4.4. Soil Quality Status and Implication

Soil quality in Gabon varies from low to medium quality, according to the
WQIL4s-MDS index. This trend is in accordance with [39], who have shown that
the country has an agro-ecological zone ranging from poor to medium, despite
the presence of luxurious rainforest. Moreover, the soil quality is closely corre-
lated with inherent factors, such as soil parent material and climate [39] [43]
[44] [52]. With 1% of arable land [39] combined with anthropogenic pressure
due to the revival of the agricultural sector, the monitoring and management of
these soils remain vital so that they provide their ecosystem services. Recent
work reported how those inherently nutrient-poor soils under savannah, span-
ning over 6 million hectares in Central Africa from Gabon (majority in G2)
through Congo-Brazzaville to Congo-Kinshasa, may be improved through sus-
tainable management [52].

In the pedoclimatic context of Gabon, the assessment of soil quality is, on the
one hand, a good tool to assess management-induced changes in the soil and to
link existing resource concerns to environmentally sound land sustainable prac-
tices [125]. On the other hand, it provides information over a long period [5]
[31]. As reported in the literature, agricultural activities are the principal factors
of degradation of 60% of the soil ecosystem services [73] [126] [127]. Moreover,
soil quality is often related to soil degradation, which can be defined as the time
rate of change in soil quality [125]. Therefore, the assessment of soil quality will
allow monitoring of soil status and the introduction of sustainable agricultural
practices, such as the use of nitrogen-fixing species and cover plants, the soil re-
carbonization with application of organic fertilizers, the responsible consump-
tion of water and chemical fertilizers, and the promotion of agroforestry systems.
These sustainable practices will enhance soil health by promoting soil biodiver-
sity, improving SOC and nutrient pools and preventing their degradation [31]
[52] [128].
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5. Conclusions

The aim of this study was to assess soil quality through minimum soil indicators,
which are more sensitive to Gabonese’s Ferralitic soil context, and to identify the
best model to follow temporal changes in soil quality. Thus, eleven among thir-
teen soil indicators used, extracted from OSTROM’s reports, were selected and
investigated in PCA. According to the findings, K*, Mg**, BD, and C/N ratios
were retained as the MDS soil indicators. In consequence, the results indicate
that the MDS soil indicators, associated with the physical (BD), chemical (K* and
Mg*") and biological (C/N ratio: microbial activity) soil parameters, are more
sensitive to the pedoclimatic context and therefore affect the health of Gabonese
soils.

Based on the TDS approach, the results of the assessment of soil quality have
shown that the very low-quality grade (Q5) was obtained countrywide with both
methods WQL.om and NQI. While just over 12% low soil quality (Q4 grade) is
observed using AQI and WQL.as methods. In contrast, although Q4 grade was by
far the main soil grade status, no less than 50% whatever the model in the MDS
approach, 12.5% (G7) and 25% (G6 and G7) had a high soil quality (Q2), identi-
fied as suitable soils for plant growth respectively applying NQI and AQI mod-
els. Although both AQI and WQI.4q4 had a similar SI value, WQI.a was chosen as
a sensitive soil quality method to the pedoclimatic context. Thereby, the study
highlights a variation of soil quality in the countrywide. It indicates that the SQI
based on the MDS method could be a useful tool to comprehensively assess soil
quality in Gabon. On the one hand, soil quality assessment is a good tool to track
soil temporal changes in Congo Basin soils and to improve their use and sus-
tainable management. On the other hand, SQI can be viewed as a primary indi-
cator for soil sustainable management in the region.

The findings of this article provide an inventory of the quality of the current
Gabonese soils 40 years ago. Thus, more data are now needed to achieve current
quality of soils and thus to estimate the impact of climate and soil management
changes over the past 40 years. Consequently, this study indicates that multivariate
methodologies could be a useful tool to comprehensively assess soil quality in
the Congo Basin’s forest systems. In addition, the use of soil quality indices,
through soil indicators more sensitive to pedoclimatic context or land use, is a
good strategy for long-term monitoring of soil quality within the Congo Basin

and above all to improve their health.
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