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Abstract 
In this paper, we explore the linear combinations of right half-plane map-
pings and vertical strip mappings. We demonstrate that the combinations of 
these harmonic mappings are convex in the vertical direction provided they are 
locally univalent and sense-preserving. Furthermore, we extend this analysis to 
a more general case by setting specific conditions. Additionally, we take some 

common parameters such as , , eiz z zθ−  as the dilatation of these harmonic 
mappings, and prove the sufficient conditions that their combinations are lo-
cally univalent and convex in the vertical direction. Several examples are con-
structed by the Mathematica software to demonstrate our main results. 
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1. Introduction 

In-depth research into the properties of harmonic mappings is beneficial for ad-
dressing various problems encountered in the field of engineering. Generally, the 
linear combinations of harmonic mappings often fail to preserve the original 
characteristics. For instance, the linear combinations of two convex harmonic 
mappings may not necessarily be convex, in some cases, may not even be univa-
lent. One can refer to the survey paper by Campbell in [1]. Therefore, a tho-
rough investigation into the univalency and convexity properties of the combi-
nations of some harmonic mappings becomes crucial. 

A continuous complex-valued function f u iv= +  is said to be harmonic in 

How to cite this paper: Cai, Y.L., She, 
Z.R., Zeng, F.J. and Huang, L. (2023) Com-
binations of Right Half-Plane Mappings 
and Vertical Strip Mappings Convex in the 
Vertical Direction. Open Journal of Statis-
tics, 13, 941-954. 
https://doi.org/10.4236/ojs.2023.136047 
 
Received: November 29, 2023 
Accepted: December 25, 2023 
Published: December 28, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2023.136047
https://www.scirp.org/
https://doi.org/10.4236/ojs.2023.136047
http://creativecommons.org/licenses/by/4.0/


Y. L. Cai et al. 
 

 

DOI: 10.4236/ojs.2023.136047 942 Open Journal of Statistics 
 

the open unit disk { }, 1z z= ∈ <  if u and v are real-value harmonic func-
tion in  . Such harmonic mappings can be written as f gh= +  where h, g 
are both analytic in  . The equation f g hω ′ ′=  is called the dilatation of a 
harmonic mapping f . Lewy [2] has proved that the harmonic mapping f  is 
locally univalent and sense-preserving in   if ( ) 1f zω <  for all z∈ . 

Let S  denote the class of all locally univalent and sense-preserving har-
monic mappings, and 0S  be the subclass of   which normalized by the con-
ditions ( ) ( ) ( )0 0 0 1 0z zf f f′= = − = . 

A domain Ω∈  is said to be convex in the direction ϕ  ( 0 2ϕ≤ ≤ π ) if for 
all α ∈ , the set { }e ,it tϕαΩ + ∈   is either connected or empty. Specifi-
cally, a domain is convex in the vertical direction if for every line parallel to the 
imaginary axis has a connected intersection with Ω. A function ( )f z  is called 
convex in the vertical direction if it maps   onto a domain Ω convex in the 
imaginary axis. 

A common way to construct a new function is to take the linear combination 
of two functions with a real coefficient λ . Let 1 1 1f h g= +  and 2 2 2f h g= +  
be two harmonic mappings, then ( )3 1 21f f fλ λ= + −  ( 0 1λ≤ ≤ ) is called the 
linear combination of 1f  and 2f . 

The following Lemma 1.1 called shear construction which was proposed by 
Clunie and Shile-Small in [3], can help us to verify the vertical convexity of 
harmonic mappings. 

Lemma 1.1. A locally univalent and sense-preserving harmonic mapping 
f h g= +  on   is univalent and maps   onto a domain convex in the di-

rection of ϕ  ( 0 2ϕ≤ ≤ π ) if and only if the analytic function 2e iF h gϕ= −  is 
univalent and maps   onto a domain convex in the direction of ϕ . 

In particular, when the harmonic mapping maps the unit disk to convex along 
the horizontal direction, then the parameter 0γ = , then it can be seen that both 
the analytic function F h g= −  and the harmonic mapping f h g= +  are 
convex in the horizontal direction. Similarly, for the case that is convex in ver-
tical direction 2kγ = π + π , then it can be obtained that the analytic function 
F h g= +  and the harmonic mapping f h g= +  are both convex in the ver-
tical direction. This lemma will help us construct harmonic mappings that are 
convex along some special directions, and extend them to arbitrary directions. 

In order to judge the univalency of some harmonic mappings, we need to use 
the relevant Lemma 1.2 proposed by Rahman, Q. I. in [4], which is usually called 
Cohn’s Rule. Converting the judgment of the univalency of the harmonic map-
pings into the problem of analyzing the distribution of the zeros of a polynomial 
function. 

Lemma 1.2. (Cohn’s Rule) Given a polynomial  

( ) 2
0 1 2

n
np z a a z a z a z= + + + +  of degree n, and let ( )p z∗  satisfy the fol-

lowing equation 

 ( ) 2
1 2 0

1 .n n
n n na a ap z z p zaz A

z
z∗

− −
 = = + + + + 
 

  (1) 
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Assuming that ( )p z  has r and s zeros located inside and on the unit disk 
1z = , respectively. If the coefficients in the polynomial satisfy 0 na a< , then 

we can construct a function ( )1p z  as follows 

 ( ) ( ) ( )0
1 .na p z a p z

p z
z
−

=  (2) 

Which is of degree 1r −  and has 1s −  number of zeros inside and on the 
unit disk  . 

The following result due to Hengarther [5] is useful in checking whether an 
analytic function is convex in the vertical direction. 

Lemma 1.3. Suppose f  is an analytic function and non-constant in  . Then 

 ( )( )2Re 1 0, .F z z′ − ≥ ∈  (3) 

if and only if 
1) It is univalent in  ; 
2) It is convex in the vertical direction; 
3) There exist sequences { }nz′  and { }nz′′  converging to 1z =  and 1z = − , 

respectively, such that 

 
( ){ } ( ){ }

( ){ } ( ){ }
1

1

lim Re sup Re ,

lim Re inf Re .

nn z

nn z

f z f z

f z f z

→∞ <

→∞ <

′ =

′′ =
 (4) 

Linear combination of two functions is an important way to construct new 
harmonic mapping. However, some geometry properties may not exist after 
their combination [1]. In 2013, Wang, Z. G. [6] et al. derived several sufficient 
conditions of the linear combinations of harmonic univalent mappings to be 
univalent and convex in the horizontal direction. In 2016, Kumar, R. [7] et al. 
proposed a new family of univalent harmonic mappings which map the unit disk 
onto domains convex in the vertical direction, and he also identifies the condi-
tions under which linear combinations of mappings from this family remain 
univalency and convex in the vertical direction. In 2018, Long, B. Y. [8] et al. 
considered the linear combination of two vertical strip mappings with various 
dilatation, and proved it is convex in the vertical direction. Zireh, A. [9] et al. 
proved the sufficient conditions for the linear combinations of two slanted 
half-plane harmonic mappings to be univalent and convex in an arbitrary direc-
tion of γ− . In recent years, Beig, S. [10] et al. have demonstrated that the linear 
combination of two different kinds of harmonic mappings is univalent and con-
vex in a special direction γ , they have further generalized this result to more 
common cases by setting certain conditions. 

In this paper, inspired by the research conducted in [6] [7] [8] [9] [10], we 
investigate the linear combinations ( )3 1 21f f fλ λ= + −  ( )0 1λ≤ ≤ , where 

1 1 1f h g= +  represents right half-plane mappings and 2 2 2f h g= +  represents 
vertical strip mappings. These harmonic mappings are sheared by the analytic 
functions respectively given by 
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11 1

2 22

,
1

1 1 elog .
2 sin 1 e

i

i

zF h g
z

zF h g
i z

θ

θθ −

+ =
−

+
+ =

+

=

=
 (5) 

In particular, we demonstrate that 3f  is univalent and convex in the vertical 
direction under certain conditions. Furthermore, by setting some coefficients 
such as , , eiz z zθ−  be the dilatation of 1f  and 2f , we establish the sufficient 
conditions for their combination to be locally univalent and convex in the ver-
tical direction. 

2. Main Results 

Theorem 2.1. For 1, 2j = , let j jh g S+ ∈   and satisfy Equation (5). Then 
( ) ( )3 1 21 , 0 1f f fλ λ λ= + − ≤ ≤  is convex in the vertical direction for a real con-

stant λ  if it is locally univalent and sense-preserving. 
Proof. Since 

 

( )
( ) ( )

3 1 2

1 2 1 2

1

1

.

1

f f f

h h g g

GH

λ λ

λ λ λ λ

= + −

= + − + + −

= +

 (6) 

We set 

 ( ) ( )( )
( ) ( )

2

2
1 2 1 2

2 2
1 1 2 2

e

1 e 1

e 1 e 1 .

i

i

i i

F H G
h h g g

h g h g

µ

µ

µ µ

λ λ λ λ

λ λ λ λ

= −

= + − − + −

= − + − − −

 (7) 

By setting 2µ = π  and differentiate the Equation (8), we get 

 ( ) ( )( )
( ) ( )( )
1 2 1 2

1 1 2 2

1 1

1 .

F H G
h h g g

h g h g

λ λ λ λ

λ λ

′ ′ ′= +

′ ′ ′ ′= + − + + −

′ ′ ′ ′= + + − +

 (8) 

Substituting F ′  into ( )( )2Re 1F z′ − , we can get 

 

( )( ) ( )( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( )

2 2 2
1 1 2 2

2

1 2

Re 1 Re 1 1 Re 1

1 1Re 1 Re
1 1 e 1 e

Re 1 Re .

i i

F z z h g z h g

z z
z z zµ µ

λ λ

λ λ

λ ϕ λ ϕ

−

′ ′ ′ ′ ′− = − + + − − +

 + −   = + −   − + +   
= + −

 (9) 

It is obviously that ( )1Re 0ϕ >  for all z∈ , and we can easy to verify that 
( )2 0 1ϕ = , ( )( )2Re 0zϕ =  for 1z = . Therefore, by using the minimum prin-

ciple for harmonic mappings with all z ∈ , we get  

( )( ) ( ) ( ) ( )2
1 2Re 1 Re 1 Re 0F z λ ϕ λ ϕ′ − = + − > . 

By applying Lemma 1.3, we can determine that analytic function  
2e iF H Gµ= −  is convex in the direction of 2µ = π . According to Lemma 1.1, 

the harmonic mapping 3f GH= +  also convex in the vertical direction. 
Theorem 2.2. For 1,2j = , let j j jf h g S= + ∈   and satisfy Equation (5). 
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Let ( ), 1, 2j j jg h jω ′ ′= =  be the dilatation of these two harmonic mappings 

( )1,2jf j = . Then the linear combination ( ) ( )3 1 21 , 0 1f f fλ λ λ= + − ≤ ≤  is 
convex in the vertical direction for a real constant λ  if one of the following 
conditions is met. 

1) 1 2ω ω= . 

2) ( )arccos zθ φ=  and ( ) ( )( ) ( ) ( ) ( )
( )

2 2
1 2

2

1 1 1 1 1
1

z z
z

z
λ ω λ ω

φ
λ ω

− − + − + +
=

+
. 

Proof. In views of (6), we set ( )3 1 21f f f H Gλ λ= + − = +  where  

( )1 21H h hλ λ= + − , ( )1 21G g gλ λ= + − . Let 3ω  be the dilatation of 3f , we 
get 

 ( )
( )

( )
( )

1 2 1 1 2 2
3

1 2 1 2

1 1
.

1 1
g g h hG

H h h h h
λ λ λω λ ω

ω
λ λ λ λ

′ ′ ′ ′+ − + −′
= = =

′ ′ ′ ′ ′+ − + −
 (10) 

Since ( ), 1, 2j j jg hω′ ′= , the above equations give 

 
( )( )

( )( )

1 2
1

2 2
2

1 ,
1 1

1 .
1 1 2 cos

h
z

h
z z

ω

ω θ

′ =
+ −

′ =
+ + +

 (11) 

Substituting 1h  and 2h  into 3ω , we get 

 

( )( )
( )

( )( )

( )( )
( )

( )( )
( )( ) ( ) ( )( )
( )( ) ( )( )( )

1 22 2
21

3

2 2
21

22
1 2 2 1

22
2 1

1 11
1 1 2 cos1 1

1 11
1 1 2 cos1 1

1 1 2 cos 1 1 1

1 1 2 cos 1 1 1

z zz

z zz

z z z

z z z

λω λ ω
ω θω

ω
λ λ

ω θω

λω ω θ λ ω ω

λ ω θ λ ω

+ −
+ + ++ −

=
+ −

+ + ++ −

+ + + + − + −
=

+ + + + − + −

 (12) 

Let 1 2ω ω= , we can simplify the Equation (12) to obtain 3 1 2ω ω ω= = . This 
means that 3 1ω <  and 3f  is locally univalent and sense-preserving. Accord-
ing to Theorem 2.1, we can conclude that 3f  is convex in the vertical direction. 
The proof of first condition is complete. 

Next, we examine the second condition with ( )arccos zθ φ= , where ( )zφ  is 
defined by Equation (2) in Theorem 2.2. Substituting ( )zφ  into the equation 

( )arccos zθ φ= , we have 

 
( )( )( ) ( )( )

( )

2 2
1 2

2

1 1 1 1 1
cos .

2 1

z z

z

λ ω λ ω
θ

λ ω

− + − − + +
=

+
 (13) 

After simplify, we can get 

 
( )( ) ( )

( )

2
12

2

1 1 1
1 2 cos .

1
z

z z
λ ω

θ
λ ω

− − +
+ + =

+
 (14) 

Combining formulas (14) and (12), we can obtain 
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( )( ) ( ) ( )( )
( )( ) ( )( )( )

22
1 2 2 1

3 22
2 1

1 2

1 1 2 cos 1 1 1

1 1 2 cos 1 1 1

.
2

z z z

z z z

λω ω θ λ ω ω
ω

λ ω θ λ ω

ω ω

+ + + + − + −
=

+ + + + − + −

+
=

 (15) 

Therefore, ( )3 1 2 2 1ω ω ω= + < , which indicate that 3f  is locally univalent 
and sense-preserving. By applying Theorem 2.1, we know that 3f  is convex in 
the vertical direction. This concludes the proof of the second condition. 

Theorem 2.3. For 1,2j = , let j j jf h g S= + ∈   and satisfy Equation (5). 
Let 1 zω =  and 2 zω = −  be the dilatation of 1f  and 2f  respectively. Then, 
for a real constant λ , ( 0 1λ≤ ≤ ), the linear combination ( )3 1 21f f fλ λ= + −  
is convex in the vertical direction. 

Proof. Let 3ω  be the dilatation of 3f  which satisfy the Equation (10). By 
setting 1 zω = , 2 zω = − , and substituting them into Equation (11), we obtain 

 
( )( ) ( )( )

( )( ) ( )( )

1 2 2
1

2 2 2
2

1 1 ,
1 1 1 1

1 1 .
1 1 2 cos 1 1 2 cos

h
z z z

h
z z z z z

ω

ω θ θ

′ = =
+ − + −

′ = =
+ + + − + +

 (16) 

Then, by substituting these into 3ω  from Equation (10), we can derive 

 

( )( ) ( )( )( )( )
( )( ) ( )( )( )

( ) ( ) ( )
( ) ( ) ( )

( )
( )

22

3 22

3 2

2 3

3 2
3 2 1 0

3 2
0 1 2 3

*

1 1 2 cos 1 1 1

1 1 2 cos 1 1 1

1 2 cos 1 2 cos 1 2
1 1 2 cos 1 2 2 cos 1 2

z z z z z z z

z z z z z

z z
z

z z z

a z a z a z a
z

a z a z a z a
r z

z
r z

λ θ λ
ω

λ θ λ

λ θ λ θ λ
λ θ λ λ θ λ

− + + + − − + −
=

− + + + − + −

− + − + + − + −
= −

+ − + + − + − + −

+ + +
= −

+ + +

= −

 (17) 

where 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 2

* 2 3

1 2 cos 1 2 cos 1 2 ,

1 1 2 cos 1 2 2 cos 1 2 .

r z z z

r z z z z

λ θ λ θ λ

λ θ λ λ θ λ

= − + − + + − + −

= + − + + − + − + −
 (18) 

And ( ) ( )* 3 1r z z r z= , which satisfy Lemma 1.2. Therefore, let 0z  be a zero 
of ( )r z  and 0 0z ≠ , implying 1 z  is a zero of ( )*r z . With this, we can re-
write (17) as follow 

 ( ) ( )( )( )
( )( )( )3 .
1 1 1

z A z B z C
z

zB CAz z
ω

+ + +
=

+ + +
 (19) 

It is evident that 0 31 2 1a aλ= − < =  for ( )0,1λ ∈ . Thus, we can apply 
Cohn’s Rule to ( )r z , and conclude that all zeros of ( )1r z  lie inside or on 

1z = . Consequently, we have 

 ( ) ( ) *
3 0 2

1 2 1 0

a r z a r z
r z a z a z a

z
−

= = + +  (20) 
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where 

 

( )
( )( )

( )

2

1

0

4 1 ,

1 2 cos 1 2 1 2 2 cos ,

4 1 cos .

a

a

a

λ λ

λ θ λ λ λ θ

λ λ θ

= −

= − + + − + − + −

= −

 (21) 

By simple calculate, we get 

 ( ) ( )0 24 1 cos 4 1 .a aλ λ θ λ λ= − < = −  (22) 

which satisfies the condition of Lemma 1.2. Therefore, we can apply Cohn’s Rule 
again to reduce the quadratic polynomial to once and judge the size of the func-
tion root. 

By setting ( ) ( )* 2
1 1 1r z z r z= , substituting it into the Equation (2), we have 

 ( ) ( ) *
2 1 0 1

2 1 0 ,
a r z a r z

r z a z a
z
−

= = +  (23) 

where 

 
( )( )

( )( )

22 2
1

22 2
0

16 16cos 1 ,

16 16cos 1 .

a

a

λ θ λ

λ θ λ

= − −

= − − −
 (24) 

It is obviously that the coefficients given above satisfy 1 0a a= . Therefore, 
the unique root of ( )2r z  from Equation (23) lies on the unit circle. According 
to Lemma 1.2, we know that the dilatation of harmonic mapping 3f  satisfies 

3 1ω < . Moreover, by Theorem 2.1, we obtain that the linear combination of 
harmonic mapping ( )3 1 21f f fλ λ= + −  is locally univalent and convex in the 
vertical direction. Thus, the proof of Theorem 2.3 is completed. 

Theorem 2.4. For 1,2j = , let j j jf h g S= + ∈   and satisfy Equation (5). 
Considering some special dilatations of two harmonic mappings 1f  and 2f , by 
setting 1 zω = −  and 2 zω =  respectively. Then, for a real constant λ , the li-
near combination ( )3 1 21f f fλ λ= + −  is convex in the vertical direction if the 
following inequation holds true 

 ( ) ( )2 28 4cos 8 2cos 4 4 .λ θ λ θ λ λ− − + + ≤ −
 (24) 

Proof. Let 3ω  be the dilatation of 3f  which satisfies the Equation (10). By 
setting 1 zω = − , 2 zω = , and substituting them into Equation (11), we obtain 

 
( )( ) ( )

( )( ) ( )( )

1 2 3
1

2 2 2
2

1 1 ,
1 1 1

1 1 .
1 1 2 cos 1 1 2 cos

h
z z

h
z z z z z

ω

ω θ θ

′ = =
+ − −

′ = =
+ + + + + +

 (25) 

Then, by substituting these into 3ω  from Equation (10), we can derive 

( )( )( ) ( ) ( )
( )( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )

32

3 32

3 2

2 3

1 1 2 cos 1 1

1 1 2 cos 1 1

3 4 cos 3 2 cos 1 2
1 3 4 cos 3 2 cos 1 2

z z z z z z

z z z z

z z t t
z

z z z

λ θ λ
ω

λ θ λ

λ θ λ θ λ
λ λ θ λ λ θ λ

− + + + + − −
=

+ + + + − −

− + − − + − + − + −
= −

− + − − + − + − + −
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( )
( )

3 2
3 2 1 0

3 2
0 1 2 3

* ,

a z a z a z a
z

a z a z a z a
r z

z
r z

+ + +
= −

+ + +

= −

 (26) 

where 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 2

* 2 3

3 4 cos 3 2 cos 1 2 ,

1 3 4 cos 3 2 cos 1 2 .

r z z z

r z z z z

λ λ θ λ λ θ λ

λ λ θ λ λ θ λ

= − + − − + − + − + −

= − + − − + − + − + −
 (27) 

Similarly, the above Equation (26) satisfies ( ) ( )* 3 1r z z r z=  and the condi-
tions of Lemma 1.2 mentioned earlier. Therefore, let 0z  be the zero of ( )r z , 
and 1 z  be the zero of ( )*r z , and we express 3ω  in form of education (19) 
again. By simple calculations, we have 

 0 31 2 1 ,a aλ= − + ≤ =  (28) 

which satisfies the condition of Lemma 1.2. Thus, we apply the Cohn’s Rule and 
get 

 ( ) ( ) *
3 0 2

1 2 1 0 ,
a r z a r z

r z a z a z a
z
−

= = + +  (29) 

where 

 

( )( )
( )( )

( )( )

2

1

0

1 1 2 1 2 ,

3 4 2 cos 1 2 3 2 2 cos ,

1 2 3 4 2 cos 3 2 .

a

a

a

λ λ

λ λ θ λ λ λ θ

λ λ λ θ λ

= + − − +

= − + + + − − +

= − − + + + −

 (30) 

Simplify the above equation, we have 

 
( )( ) ( )

( ) ( )

2 2
2

2
0

1 1 2 1 2 1 1 2 4 4 ,

8 4cos 8 2cos .

a

a

λ λ λ λ λ

λ θ λ θ

= + − − + = − − = −

= − − + +
 (31) 

Since the condition 0 2a a≤  is met, we can use Cohn’s Rule again and get 

 ( ) ( ) *
2 1 0 1

2 1 0 .
a r z a r z

r z a z a
z
−

= = +  (32) 

where 

 
( )( )
( )( )

2 2 2
1

2 2 2
0

48 64cos 16cos 1 2 ,

16 16cos 1 2 .

a

a

λ θ θ λ λ

λ θ λ λ

= − − − − +

= − + −
 (33) 

For ( ) ( )0,1 , 0,2λ θ∈ ∈ π , we have 

 

( )( )
( )( )( )

( )( )( )

( )( )

2 2 2
0

2 2

2 2

2 2 2

1

16 16cos 1 2

16 1 2 1 cos 1 cos

16 1 2 1 cos 3 cos

48 64cos 16cos 1 2

.

a

a

λ θ λ λ

λ λ λ θ θ

λ λ λ θ θ

λ θ θ λ λ

= − + −

= − + + −

≤ − + + +

= − − − − +

=

 (34) 
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Thus, the unique zero of the above equation will lie inside or on the unit disk 
1z =  if the inequality (24) is met. According to Lemma 1.2 and Theorem 2.1, 

we know that harmonic mapping ( )3f z  is locally univalent and convex in the 
vertical direction. Thus, the proof of Theorem 2.4 is complete. 

In recent years, Long B Y [8] et al. introduced a variable dilatation eiθ  for 
harmonic mappings. Therefore, following their setup, in the theorem below, we 
similarly make a transformation to the dilatation of harmonic mappings. 

Theorem 2.5. For 1,2j = , let j j jf h g S= + ∈   and satisfy Equation (5). 
Let 1 zω =  and ( )2 e , 0, 2i zθω θ= ∈ π  be the dilatations of two harmonic map-
pings 1f  and 2f  respectively. Then, for a real constant λ , the linear combi-
nation ( )3 1 21f f fλ λ= + −  is convex in the vertical direction if 

 
*

2 2

*
1 1

,

.

a a

a a

>

>
 (35) 

where 

 
( )( )

( ) ( )( )
2

*
2

1 1 e 1 e ,

1 2 2e cos 1 e 1 e 2 cos .

i i

i i i

a

a

θ θ

θ θ θ

λ λ λ λ

λ λ θ λ λ λ λ θ

−

− −

= + − + − − +

= − + + + − + − − + +
 (36) 

and 

 

( ) ( ) ( )( )((
( )( ) ) ( )( )(

( )( )))
( ) ( )((

( )( )) ( ) ( )( )(
( ) ( ) ))

4 22 2
1

2

2 2* 2 2 2 3 2
1

2 2

e 1 e 1 1 e 1 e 1

2 1 e 1 cos 1 e 1 1 2cos

e 1 2 1 cos ,

e e 6 2e 1 2e 1 7 2

e 5 7 2 2 1 e e 4 3 2 1 cos

2 1 e 1 cos 2 .

i i i i

i i

i

i i i i

i i i

i

a

a

θ θ θ θ

θ θ

θ

θ θ θ θ

θ θ θ

θ

λ λ λ

λ θ λ λ θ

λ θ

λ λ λ λ λ

λ λ λ λ λ θ

λ θ

−

−

= − + − + + + − + − +


+ − + − + − − − + − +

+ − + − +

= − − + + − + − +

+ − + − + + − + − + −

+ − + − +

 (37) 

Proof. Let 3ω  be the dilatation of 3f  which satisfies the Equation (10). By 
setting 1 zω = , 2 ei zθω = , substituting them into Equation (11), we have 

 

( )( ) ( ) ( ) ( )
( )( ) ( )( ) ( )

( )
( )

22

3 22

3 2
3 2 1 0

3 2
0 1 2 3

1
*

1

1 e 1 2 cos 1 e 1 1

1 e 1 2 cos 1 1 1

e

e ,

i i

i

i

i

z z z z z z z

z z z z z

a z a z a z a
z

a z a z a z a
r z

z
r z

θ θ

θ

θ

θ

λ θ λ
ω

λ θ λ

+ + + + − − +
=

+ + + + − − +

+ + +
=

+ + +

=

 (38) 

where 

( )

( ) ( ) ( ) ( )( )

3 2
1

* 3 2
1

2 cos1 2 cos 1 2 1 ,
e e e

1 e 1 2 2 e cos 1 1 e 2cos 1.

i i i

i i i

r z z z z

r z z z z

θ θ θ

θ θ θ

λ λ θ λλ λ θ λ λ

λ λ λ λ θ λ θ

     = + − + + + + − + + + + −     
     

= − + + − + + − − + + −
 (39) 
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It can be easily calculated that the following inequality 

 0 31 1.
eia aθ

λ λ= + − < =  (40) 

consistently holds for ( )0,1λ ∈ . Therefore, we can use the Cohn’s Rule and get 

 ( ) ( ) ( )*
3 1 0 1 2

2 2 1 0 ,
a r z a r z

r z a z a z a
z
−

= = + +  (41) 

where 

 
( )( )

( ) ( )( )
2

*
2

1 1 e 1 e ,

1 2 2e cos 1 e 1 e 2 cos .

i i

i i i

a

a

θ θ

θ θ θ

λ λ λ λ

λ λ θ λ λ λ λ θ

−

− −

= + − + − − +

= − + + + − + − − + +
 (42) 

Assuming the inequality *
2 2a a>  holds, we can use the Cohn’s Rule again 

and get 

 ( ) ( ) ( )*
3 2 0 2

3

a r z a r z
r z

z
−

=  (43) 

After simplification, we have 

 ( )3 1 0 ,r z a z a= +  (44) 

where 

 

( ) ( ) ( )( )((
( )( ) ) ( )( )(

( )( )))
( ) ( )((

( )( )) ( ) ( )( )(
( ) ( ) ))

4 22 2
1

2

2 2* 2 2 2 3 2
1

2 2

e 1 e 1 1 e 1 e 1

2 1 e 1 cos 1 e 1 1 2cos

e 1 2 1 cos ,

e e 6 2e 1 2e 1 7 2

e 5 7 2 2 1 e e 4 3 2 1 cos

2 1 e 1 cos 2 .

i i i i

i i

i

i i i i

i i i

i

a

a

θ θ θ θ

θ θ

θ

θ θ θ θ

θ θ θ

θ

λ λ λ

λ θ λ λ θ

λ θ

λ λ λ λ λ

λ λ λ λ λ θ

λ θ

−

−

= − + − + + + − + − +

+ − + − + − − − + − +

+ − + − +

= − − + + − + − +

+ − + − + + − + − + −

+ − + − +

 (45) 

Since *
1 1a a> , the zeros of ( )2r z  and ( )2r z  both lie inside or on the unit 

disk. Therefore, 3 1ω < . By Theorem 2.1, we know that the harmonic mapping 

3f  is locally univalent and convex in the vertical direction. Thus, all the proofs 
in this article have been completed. 

3. Examples 

In this section, we give several examples to illustrate our main results. 
Example 1. Let ( ), 1, 2j j j Hf h g S j= + ∈ =  and satisfy (5), we consider the 

linear combination ( )3 1 21f f fλ λ= + −  with 1 2 zω ω= = − , 2θ = π  and 
0.5λ = . Taking 1 zω = − , by shearing we obtain 

 
( )

( )

( )
( )

2

1 2

2

1 2

2
1

2 1

zz
h z

z

zg z
z

−
=

−

= −
−

 (46) 
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Also, taking 1 zω = − , 2θ = π , we have 

 

( )
( )

( )
( )

2

2 2

2

2 2

arctan 1 1log ,
2 4 1

arctan 1 1log .
2 4 1

z zh
z

z zg
z

+
= +

−

+
= −

−

 (47) 

Since 1 2 zω ω= = −  satisfy the condition of Theorem 2.1, the linear combina-
tion of harmonic mappings 3 1 20.5 0.5f f f= +  is convex in the vertical direction. 
The images of   under 1 2,f f  and 3f  are shown in Figure 1, respectively. 

 

 

Figure 1. Images of   under 1 2,f f  and ( )3 1 21f f fλ λ= + −  with 0.5λ = . 
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Figure 2. Images of   under 1 2,f f  and ( )3 1 21f f fλ λ= + −  with 0.5λ = . 

 
Example 2. Let 1 2,f f  be the harmonic mappings considered in Theorem 2.3 

with 1 zω = , 2 zω = − , 2θ = π  and 0.5λ = . Taking 1 zω = , by shearing we 
obtain 

( )

( )

1

1

1 1 1log ,
2 1 4 1

1 1log .
2 1 4 1

zh
z z

z zg
z z

+
= +

− −

+
= −

− −  
Also, taking 1 zω = − , we have 
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( )
( )

( )
( )

2

2 2

2

2 2

arctan 1 1log ,
2 4 1

arctan 1 1log .
2 4 1

z zh
z

z zg
z

+
= +

−

+
= −

−  
Let 1 1 1 2 2 2,f h g f h g= + = +  and 3 1 20.5 0.5f f f= + , the harmonic mapping 

3f  is convex in the vertical direction. The images of   under 1 2,f f  and 3f  
are shown in Figure 2, respectively. 

4. Conclusions 

In the main results, we demonstrate that the combinations of right half-plane 
mappings and vertical strip mappings are convex in the vertical direction if and 
only if they are locally univalent. Furthermore, we extend the above theorem to 
more general cases by imposing two conditions 1 2ω ω=  and ( )arccos zθ φ= . 
By considering parameters ,z z−  and ei zθ  as the dilatations of these harmon-
ic mappings, respectively. We prove the sufficient conditions that their combi-
nations are locally univalent and convex in the vertical direction. 

From the above proofs in this paper, it is evident that the linear combinations 
of right half-plane mappings and vertical strip mappings are convex in the ver-
tical direction only when specific conditions are met. In future studies, we can 
set the combination coefficient λ  to be a complex number, consider the un-
ivalency and convexity properties of their combinations. This can extend the 
content presented by Liu Z. H. and Khurana, D. et al. in [11] [12]. Also, we can 
use the slanted half-plane harmonic mappings which proposed in [9], and prove 
the sufficient conditions that the combinations of slanted half-plane harmonic 
mappings and vertical-strip mappings are locally univalent and convex in some 
certain direction. This holds significant implications for the progress of research 
on harmonic mappings and minimal surfaces. 
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