
Open Journal of Statistics, 2023, 13, 872-892 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2023.136044  Dec. 20, 2023 872 Open Journal of Statistics 
 

 
 
 

Asymptotic Consistency of the James-Stein 
Shrinkage Estimator 

Alex Samuel Mungo, Victor Mooto Nawa 

School of Natural Sciences, University of Zambia, Lusaka, Zambia 

 
 
 

Abstract 
The study explores the asymptotic consistency of the James-Stein shrinkage 
estimator obtained by shrinking a maximum likelihood estimator. We use 
Hansen’s approach to show that the James-Stein shrinkage estimator con-
verges asymptotically to some multivariate normal distribution with shrin-

kage effect values. We establish that the rate of convergence is of order 1
k n

 

and rate k n , hence the James-Stein shrinkage estimator is k n -consis- 
tent. Then visualise its consistency by studying the asymptotic behaviour 
using simulating plots in R for the mean squared error of the maximum like-
lihood estimator and the shrinkage estimator. The latter graphically shows 
lower mean squared error as compared to that of the maximum likelihood es-
timator. 
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1. Introduction 

A shrinkage estimator is an estimator that, either explicitly or implicitly, incor-
porates the effects of shrinkage. In loose terms this means that a naive or raw es-
timate is improved by combining it with other information. The term relates to 
the notion that the improved estimate is made closer to the “true value” by the 
supplied information than the raw estimate. Shrinkage estimation is a technique 
used in inferential statistics to reduce the mean squared error (MSE) of a given 
estimator. The idea of shrinking an estimator came in 1956 when Stein [1] estab-
lished that we can reduce the MSE of an estimator if we give up a little on bias. 
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This means that given an estimator we can shrink it to obtain another estimator 
with lower MSE and the efficiency of the new estimator is desirable in the way it 
estimates the “true” parameter value. This works well when the number of pa-
rameters is more than two ( 3p ≥ ) called the “James-Stein classical condition”. 
When we shrink a maximum likelihood estimator (MLE) under the “James-Stein 
condition”, we obtain a new shrinkage estimator which is closer to the assumed 
true value compared to the MLE. The magnitude of the improvement depends 
on the distance between the “true” parameter value and the parametric restric-
tion which yields a shrinkage target denoted by o

n
θ . With all these modifications 

and restrictions to achieve this estimator, we ask ourselves if this desirable 
shrinkage estimator is asymptotically consistent and efficient. 

Literature on shrinkage estimators is a lot but we just mention a few of the 
most relevant contributions to our study. James and Stein [2] used shrinking 
techniques to come up with an estimator called the James-Stein shrinkage esti-
mator (JSSE) which has lower squared risk loss compared to the MLE. Baranchik 
[3] showed that the positive part James-Stein shrinkage estimator has a lower 
risk than an ordinary JSSE. Berger [4] gives a discussion on selecting a minimax 
estimator of a multivariate normal mean by considering different types of 
James-Stein type estimators. Stein [5] used shrinking techniques to estimate the 
mean for a multivariate normal distribution. Carter and Ullah [6] constructed 
the sampling distribution and F-ratios for a James-Stein shrinkage estimator ob-
tained by shrinking an ordinary least square (OLS) in regression models. George 
[7] proposed a new minimax multiple shrinkage estimator that allows multiple 
specifications for selection of a set of targets to shrink a given estimator. Geyer 
[8] looked at the asymptotics of constrained M-estimators which also fall in 
the class of shrinkage estimators. Then Hansen [9] constructed a generalised 
James-Stein shrinkage estimator obtained by shrinking an MLE, and Hansen 
[10] derived its asymptotic distribution and showed that we can shrink towards 
a sub-parameter space. 

2. Preliminaries 

The theory of shrinkage techniques plays an important role in developing effi-
cient statistical estimators which play a key role in statistical decision theory. 
Therefore, a clear understanding of the asymptotic behaviour of the James-Stein 
shrinkage estimator *ˆ

nβ  provides knowledge on the stability and efficiency of 
the estimator when the sample size value n grows without bound. 

This paper will investigate the asymptotic consistency and efficiency of the 
James-Stein shrinkage estimator (JSSE) obtained by shrinking a maximum like-
lihood estimator (MLE) when we have observed variables ( )~ ,pN θX Σ . Though 
the shrinkage estimator we are interested in is biased its study is important be-
cause there is a realisation that efficiency (lower risk) dominates all other prop-
erties in estimation. Efron [11] discusses how bias dominates unbiasedness in 
estimation. 
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We proceed by considering the asymptotic distributions of all the three esti-
mators important to this study by considering results in Hansen 2016. Using the 
asymptotic distribution derived by Hansen [10], we employ Taylor’s theorem 
and some limit theorems to show that *ˆ

o p o→β θ  the “true” parameter value as 
n →∞ . Then we evaluate the asymptotic distributional bias (ADB) for the esti-
mators ˆ

nβ , o
n
θ  and *ˆ

oβ  and show that the variance of the latter achieves the 
Cramér-Rao bound (CRB) as n →∞ . The analysis is done along the sequences 

nθ  as n →∞ . Simulation plots are produced in a statistical package R to com-
pare the JSSE and MLE in terms of mean squared error (MSE), consistency and 
convergence. 

The paper is organised as follows. Section 2.1 presents the parametric set up. 
Section 2.2 gives the form of the JSSE considered in the study while Section 2.3 
discusses the asymptotic distributions of the estimators. In Section 3 we present 
the main results by first presenting a lemma on the convergence in probability of 
the shrinking factor as Section 3.1. We then show the consistency of the shrin-
kage estimator in Theorem 1. In Section 3.2 we evaluate the ADBs of the esti-
mators in play. Then we show that the James-Stein shrinkage estimator is 
asymptotically efficient in Section 3.3 and also establish the rate of convergence 
in Section 3.4. In Section 3.5 we present MSE plots comparing the JSSE and MLE 
and in Section 4 we give a discussion and analysis of the whole study. Then con-
clude our study by stating the main results. 

The following definitions are used to establish the asymptotic consistency and 
efficiency of the James-Stein shrinkage estimator *ˆ

nβ . 
Definition 1 
An estimator ( )1, ,n nh X X= T  is said to be consistent for nθ  if it con-

verges in probability to nθ . That is, if for all 0ε >  

( )lim 1n nn
Pr ε

→∞
− < =θT  

or 

( )lim 0n nn
Pr ε

→∞
− > =T θ

 

where n is the sample size value. 
Definition 2 
Let 1, , nX X  be independent and identically distributed (iid) according to a 

probability density ( )f Xθ  satisfying suitable regularity conditions. Suppose 
that ( )1, ,n nh X X= T  is asymptotically normal say that  

( ) ( )0,n n p p nn N− →θT Σ  for a positive definite matrix nΣ  where nT  is es-
timating nθ . Then a sequence of estimators { } ( ){ }1, ,n nh X X= T  satisfying 

( ) ( ) 1lim n nn
nVar −

→∞
  = T J θ

 

for the fisher information ( )n θJ  is said to be asymptotically efficient. 
We now consider a statistical model. We describe the set up of the parameter 

of interest and the shrinking strategy used in the study. 
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2.1. Parametric Structure 

Consider an unbiased estimator n̂θ  for ∈Ωθ  such that ( )ˆ ~ ,n p nNθ θ Σ  is a 
p-multivariate normal, where elements of Ω are p-dimensional parameter vec-
tors. Let o

n
θ  (shrinkage target) be a restricted maximum likelihood estimator 

(RMLE) for o∈Ωθ  a sub-parameter space partitioned from the whole para-
meter space Ω by a parametric restriction ( ){ }: 0oΩ = ∈Ω =θ θa  where 
( ) : p m→ θa . The sub-parameter space oΩ  provides a simple model of in-

terest to shrink to. If m p=  then { }0oΩ =  (θ  is the kernel of p ) a sin-
gleton zero vector and if m p< , we create a sub-model of particular interest.  

Let ( ) ∂ ′=
∂

θ
θ

A a  where A  is a shrinkage matrix of dimension p m× . We in-

troduce another matrix G  which harmonises the dimension of the RMLE from m 

to p. Hence we have a mapping ( ) : m p→ θg  such that ( ) ∂ ′=
∂

θ
θ

G g . The  

matrix G  is an m p×  matrix when we consider a sub-parameter space oΩ  
and p=G I  is a p-dimensional identity matrix when we have the whole para-
meter space Ω. We note that the matrix G  is used to increase the dimension of 
the RMLE since it will be m-dimensional. Therefore we have a plug-in restricted 
maximum likelihood estimator ( )o o

n n= θ βg . The matrix G  is a matrix har-
monising the dimension due to shrinkage and the actual dimension of the para-
meters of interest p. The plug-in unrestricted MLE n̂θ  in the shrinkage sense is 
denoted by ˆ

nβ . With all parameters set, we present the generalised James-Stein 
shrinkage estimator *ˆ

nβ  in the next section. 

2.2. Positive Part James-Stein Shrinkage Estimator 

Let n̂θ  be the MLE for ∈Ωθ  and o
n
θ  be a restricted maximum likelihood 

estimator for o∈Ωθ  a sub-parameter space of the whole parameter space Ω 
such that the elements of the parameter space are in p  as described before. 
Let ( ) ˆo o

n ng =θ β  be the plug-in estimator of the RMLE of p-dimension. Then 
the James-Stein shrinkage estimator *ˆ

nβ  obtained by shrinking the MLE to-
wards the target o

n
θ  is given by 

 
( ) ( )

( )*

1

2ˆ ˆ ˆ
ˆ ˆ

o
n n n n

o o
n n n n

p

n
Τ

−

+

 
− = − − 

 − − 



 

β β β β
β β β βΣ

 (1) 

where ( )a
+

 is positive trimming function and 3p ≥ . The shrinkage estimator 
in (1) can be expressed as a weighted average by letting 

 ( ) ( )1ˆ ˆo o
n n n n nD n

Τ
−= − − β β β βΣ  (2) 

a distance statistic which is the same as the loss function ( )ˆ , o
n nn 

 β β  where Σ  
is a covariance matrix and 

 ˆ 1
n

w
D
τ

+

 
= − 
 

 (3) 
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for 2pτ = − . Then (1) becomes 

 ( )*ˆ ˆˆ ˆ1 o
n n nw w= + − β β β  (4) 

which is a weighted average of ˆ
nβ  and o

n
β . The James-Stein shrinkage esti-

mator presented above has lower risk compared to the MLE as shown by Hansen 
[10] and James and Stein [2]. To check whether the shrinkage estimator is 
asymptotically consistent we need its asymptotic distribution. We therefore 
present the asymptotic distributions for the MLE, RMLE and JSSE in the next 
section. 

2.3. Asymptotic Distribution 

We assume that the maximum likelihood estimator satisfies the assumptions for 
regularity conditions given in Hansen [10] and Newey [12]. With these assump-
tions in mind, the asymptotic distributions of o

n
β  and *ˆ

nβ  are analysed along  

the sequences 
1
2

n o n
−

= +θ θ h  where oθ  is the assumed true parameter value 

and p∈h  is a constant providing a neighbourhood for the true parameter 
value oθ . From the normality of the MLE we have 

 ( ) ( )ˆ ~ ,n n d pn Z N− →θ θ 0 Σ  (5) 

as n →∞ . Using (5), Hansen [10] obtained the asymptotic distribution of the 
restricted maximum likelihood estimator as 

 ( ) ( ) ( )
1o

n n pn Z Z
−Τ Τ− → − +θ θ A A A A hΣ Σ  (6) 

which has some shrinkage value effect ( ) 1−Τ Τ=k A A A AΣ Σ . As a consequence 

of the convergence in (5) and (6) we have 

 ( ) ( ) ( )
1ˆ o

n n dn Z
−Τ Τ Τ− → +β β G A A A A hΣ Σ  (7) 

which is an asymptotic distribution the MLE converges to when it is estimating 
the RMLE where ( )n ng=β θ . The distance statistic nD  in Equation (2) con-
verges to some distribution given by a non central chi-squared distribution as 
described by Hansen [10] 

 ( ) ( ) ( ) ( )2ˆ , ~o
n n n d pD n Z Z ξ χΤ Τ= → + + =

 β β h B h h Bh  (8) 

where matrix ( ) ( )1 11− −Τ Τ − Τ Τ Τ=B A A A A G G A A A AΣ Σ Σ Σ Σ . Using (2) Hansen 
[10] showed that 

 ( ) 2ˆ 1d
pw w Z
ξ +

 −
→ = − 

 
 (9) 

which is a positive asymptotic distribution of an inverse of a chi-squared distri-
bution with constant 2pτ = −  for 3p ≥ . Therefore using (9) as n →∞ , 
Hansen [10] showed that 

( ) ( ) ( )( ) ( ) ( )( )1*ˆ 1n n dn w Z Z w Z Z Z
−Τ Τ Τ Τ Τ− → + − − +β β G G G A A A A hΣ Σ (10) 
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which is normally distributed with some shrinkage value effect. With the asymptot-
ic distribution of the shrinkage estimator in place we now present the main results. 

3. Main Results 

In this section we present our main results. We show that the James-Stein 
shrinkage estimator *ˆ

nβ  is asymptotically consistent. Secondly, we evaluate the 
asymptotic distribution bias of the three estimators in play. We then show that 
the shrinkage estimator is asymptotically efficient by showing that its variance 
achieves the Cramér-Rao bound. Further, we explore the convergence rate of the 
James-Stein shrinkage estimator and present the simulation plots for the MSE 
done in R. 

3.1. Consistency of the James-Stein Shrinkage Estimator 

We present Lemma 1 which shows the convergence in probability of the weight 
(shrinkage factor) ŵ . The result is used when establishing the consistency of 
the James-Stein shrinkage estimator *ˆ

nβ . 
Lemma 1 
From Equation (8) we have 

 ( )ˆ 1dw w Z τ
ξ +

 
→ = − 

 
 (11) 

where ( ) ( ) ( )2~ pZ Zξ χΤ Τ= + +h B h h Bh  is a non central Chi-squared distri-
bution with non centrality parameter Τh Bh , 2pτ = −  and 3p ≥ . Along the 
sequences nθ , if →∞h  then 

 ( ) 1pw Z →  (12) 

and if h  is fixed then 

 ( ) 0pw Z →  otherwise ( ) pw Z → r  (13) 

where r  is a constant such that 0 1< <r  and ( )a
+

 in (11) is a positive 
trimming function which keeps what is in the brackets greater than or equal to 
zero. 

Proof. 
We begin by considering the first case when h  diverges to infinity. Suppose 

that →∞h  then 

 ( )Z + →∞h  as n →∞ . (14) 

Therefore from (14) we have 

 ( ) ( )Z Z ξΤ+ + = →∞h B h  as →∞h  and n →∞ . (15) 

Now considering that 

( )ˆ 1dw w Z τ
ξ +

 
→ = − 

   
as n →∞ . Using (15) we have 
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 ( ) 1pw Z →  as n →∞ . (16) 

Hence we have established (12). 
Secondly suppose that h  is fixed, then we have the sequence 

1
2

n o n
−

= + hθ θ  
which becomes n o=θ θ  as n →∞  implying that n̂ o→θ θ  as n →∞ . Sup-
pose 

 ( )2
p p Dξ χ Τ= →h Bh  as n →∞  (17) 

where D is a constant, h  is fixed and B  is not affected by an increase in n, 
then 

( ) 1pw Z
D
τ

+

 → − 
   

where 3p ≥ . If 1
D
τ
=  as n →∞ , then 

( ) 0.pw Z →  

If 1
D
τ
>  then 1

D
τ − 

 
 will be negative and by definition of the positive 

streaming function we end up with zero. This will vary as p changes but still 

considering ( )2~ pξ χ Τh Bh  the probability of ξ  depends on the degrees of 

freedom p and will vary according to the chi-squared distribution, implying that 

the ratio 1M
D
τ
= ≥  as n →∞ . Therefore we have 

( ) 1pw Z
D
τ

+

 → − 
 

 as n →∞ , 

( ) ( )1pw Z M
+

→ −  as n →∞  

for a constant 1M > . Proceeding in the same way we have 

( ) ( )pw Z F
+

→  as n →∞ , for 1 0M F− = < , 

( ) 0pw Z →  as n →∞  

by definition of ( )x
+

. Thus 

 ( ) 0pw Z →  as n →∞ . (18) 

Otherwise, if the ratio 
D
τ  is such that 0 1

D
τ

< <  as n →∞ , we have 

( ) pw Z → r  
where ( )0,1∈r . 

Lemma 1 above establishes convergence of the weight ŵ  which determines 
shrinkage. In this case we realise that the same weight determines the conver-
gence in distribution and probability of the shrinkage estimator. From the regu-
larity conditions we know that the MLE n̂θ  is asymptotically consistent and 
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this consistency extends to the RMLE o
nθ . With this fact in mind, we now 

present the main result which shows the consistency of the shrinkage estimator 
*ˆ
nβ . 
Theorem 1 
Let ∈Ωθ , where Ω is a parameter space with elements in p . Suppose we 

have a James-Stein shrinkage estimator *ˆ
nβ  which is obtained by shrinking the 

maximum likelihood estimator n̂θ  of ∈Ωθ  where the shrinkage target o
n
θ  

is the restricted maximum likelihood estimator of o∈Ωθ  a partitioned sub- 
parameter space from Ω by the restriction described in Section 2.1. Then the 
JSSE is given by 

( ) ( )
( )*

1

2ˆ ˆ ˆ
ˆ ˆ

o
n n n n

o o
n n n n

p

n
Τ

−

+

 
− = − − 

 − − 



 

β β β β
β β β βΣ

 

where ( )ˆ ˆ
n n=β θg , ( )o o

n n= β θg , 3p ≥  and ( )x
+

 is a positive trimming 
function. If n̂θ  is consistent for nθ  as n →∞  then the James-Stein shrinkage 
estimator *ˆ

nβ  is also consistent for nθ  as n →∞ , where the sequence nθ  is 
as defined in Section 2.3. 

Proof. 
Let n n=β θ . To show that *ˆ

nβ  is consistent for nθ  as n →∞  we consider 
the value of h  which determines the neighbourhood of the sequence nθ , when 
it diverges to infinity and when it is just fixed. Suppose that h  diverges to in-
finity, to evaluate 

( ) ( ) ( )( ) ( ) ( )( )1*ˆ 1n n dn w Z Z w Z Z Z
−Τ Τ Τ Τ− → + − − +β β G G A A A A hΣ Σ  (19) 

as n →∞ , we first consider ( )w Z  from (3). By Lemma 1 

 ( ) 1pw Z →  as n →∞ . (20) 

Hence from (20) and substituting ( )w Z  by 1 in (19) we have 

( ) ( )*ˆ ~ ,n n d pn Z NΤ Τ− → G G 0β β Σ
 

which gives 

 ( ) ( )*ˆ ,n n d pn N β− →β β 0 Σ  (21) 

as n →∞  where β
Τ= G GΣ Σ . Thus we have 

*ˆ
n p n→β β  

if 

( )*ˆlim 0n nn
P ε

→∞
− > =β β

 

for any 0ε > . Hence *ˆ
nβ  is consistent for n n=β θ . 

Secondly, suppose h  is fixed within an imaginable value, then the sequence 
1
2

n o n
−

= + hθ θ  
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becomes n o=θ θ  as n →∞ . From this equality we have ˆ ˆ
n o=θ θ  and two 

conditions arise. The first one is that the sequence nθ  will be within the re-
stricted parameter space oΩ  with o o∈Ωθ . From the restriction  

( ){ }: 0∈Ω =θ θa  of oΩ  this means that the shrinkage target is exactly at the 
true value and our consideration will be just on one parameter space. Therefore, 
we have ˆ o

n n= θ θ , but from (6) 

( ) ( ) ( )
1o

n n dn Z Zζ
−Τ Τ− → = − + A A A A hθ θ Σ Σ

 
which will be the same as the asymptotic distribution of n̂θ  since we only consider 
the sub-parameter space oΩ , and the shrinkage value ( ) ( )

1
Z

−Τ Τ +A A A A hΣ Σ  
affects it. Thus 

 ( ) ( ) ( )
1

n̂ n dn Z Zζ
−Τ Τ− → = − +θ θ A A A A hΣ Σ  as n →∞  (22) 

because we are estimating o∈Ωθ  and from Section 2.1 there will be no differ-
ence between the MLE and RMLE. Due to this equality of the two maximum li-
kelihood estimators, from (4) 

( )*ˆ ˆˆ ˆ1 o
n n nw w= + − β β β  

and substituting (22) in (19) we have 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

1*

1

ˆ

1

n n dn w Z Z Z

w Z Z Z

−Τ Τ Τ

−Τ Τ Τ

− → − +

+ − − +

G A A A A h

G A A A A h

β β Σ Σ

Σ Σ
 

as n →∞ , which becomes 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( )

1*

1

1

ˆ
n n dn w Z Z Z

w Z Z Z

Z Z

−Τ Τ Τ

−Τ Τ Τ

−Τ Τ Τ

 − → − +  
 − − +  

+ − +

G A A A A h

G A A A A h

G A A A A h

β β Σ Σ

Σ Σ

Σ Σ
 

as n →∞ , and then simplifies to 

 ( ) ( ) ( )( )1*ˆ
n n dn Z Z

−Τ Τ Τ− → − +β β G A A A A hΣ Σ  (23) 

as n →∞ , which is the same as the asymptotic distribution of ( )o o
n n= β θg . 

Therefore using the consistency of the RMLE and (23), the consistency of the 
James-Stein shrinkage estimator *ˆ

nβ  follows from the consistency of o
n
θ . 

Lastly, we consider the case when we have two well defined parameter spaces, 

oΩ  and oΩ−Ω . Then we have ˆ o
n n≠ θ θ . Analysing (19) further, we consider 

the shrinkage effect value ( ) 1−Τ ΤA A A AΣ Σ  which is not affected by the sample 
size value n but it is a value affected by an increase or decrease in the number of 
parameters p. Since 

( )~ ,pZ N 0 Σ  
then 
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 ( )~ ,pZ N+h h Σ  (24) 

by linearity property of the normal distribution. Also implying that 

 ( ) ( )~ ,pZ Nη Τ+ η η ηh h Σ  (25) 

for some matrix η  of dimension p p× . From (13) of Lemma 1 we have 

 ( ) 0pw Z →  if 1
nD
τ

≥  (26) 

as n →∞ . Therefore (19) becomes 

( ) ( ) ( )( ) ( )( )*ˆ 1n n dn w Z Z w Z Z ZΤ Τ− → + − − +G G hβ β η
 

for some shrinkage value effect matrix ( ) 1−Τ Τ=η A A A AΣ Σ . Evaluating this 
asymptotic distribution as n →∞  we have 

( ) ( )( ) ( )( ) ( )( )1 dw Z Z w Z Z Z Z ZΤ Τ Τ+ − − + → − +G G h G hη η
 

as n →∞  since ( ) 0pw Z → . Thus 

( ) ( ) ( )( )1*ˆ
n n dn Z Z

−Τ Τ Τ− → − +β β G A A A A hΣ Σ  as n →∞ . 

Hence the consistency of *ˆ
nβ  follows from the consistency of ( )o o

n n= β θg  
which is consistent since o

n
θ  is consistent. Similarly if ( ) ( )0,1w Z → ∈r , the 

consistency of the James-Stein shrinkage estimator *ˆ
nβ  follows from the con-

sistency of the restricted maximum likelihood estimator and also the fact that 

n̂θ  is consistent for nθ . Thus the shrinkage estimator *ˆ
nβ  is asymptotically 

consistent for nθ . 
In Theorem 1, we first consider the case when the sequence nθ  has a neigh-

bourhood which is not restricted by letting h  diverge to infinity. When this is 
the case, the entire parameter space becomes of interest and for →∞h  we ob-
tain pξ → ∞  and ˆ 1pw →  as n →∞ . Hence there is no difference on how 
the parameters in oΩ  and Ω are asymptotically distributed. As a result the 
asymptotic distribution of the James-Stein shrinkage estimator is the same as 
that of the initial maximum likelihood estimator under this condition. Therefore 
the consistency of the James-Stein shrinkage estimator follows from the consis-
tency of the maximum likelihood estimator. 

In the second case we take h  as a fixed imaginable value. In this case the two 
parameter spaces are well defined and distinctive in terms of where the parame-

ters of interest are located. When n →∞  then n o=θ θ  since 
1
2 0n

−
→h . Thus  

when we are within the restricted sub-parameter space oΩ  the maximum like-
lihood estimator and the restricted likelihood estimator are asymptotically dis-
tributed the same. The consequence of having the two maximum likelihood es-
timators (MLE and RMLE) distributed the same results in the James-Stein 
shrinkage estimator having the same asymptotic distribution as the MLE and 
RMLE. Furthermore, we have ( )ˆ 0o

n n pn − →β β  as n →∞ . Stone [13] ob-
tained similar results though under invariant estimators. In this case the two 
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maximum likelihood estimators do not have to be necessarily invariant. There-
fore the James-Stein shrinkage estimator *ˆ

nβ  is asymptotically consistent for 

nθ . 
In the next section we investigate the asymptotic distribution bias of *ˆ

nβ . The 
results in this section are used in showing the asymptotic efficiency of the shrin-
kage estimator *ˆ

nβ . 

3.2. Asymptotic Distributional Bias 

We study the asymptotic distributional bias (ADB) for the three estimators by 
analysing the asymptotic bias values. The ADB of an estimator nT  is given by 

 ( ) ( )limn n nn
n

→∞
 = − θADB T E T  (27) 

where the estimator nT  is estimating nθ . We present the asymptotic distribu-
tional bias for n̂θ , o

n
θ  and ˆ

nβ  in the theorem below. 
Theorem 2 
Suppose that regularity assumptions for the MLE and RMLE hold. Then un-

der { }nP  a sequence of parameter dimension with the sample size value n and 
3p ≥ , the ADBs of the estimators n̂θ , o

n
θ  and *ˆ

nβ  are respectively 
1. ( )ˆ 0n =θADB  

2. ( ) ( ) 1o
n

−Τ Τ= −θADB A A A A hΣ Σ  

3. ( ) ( ) 1*ˆ
n ϑ

−Τ Τ Τ= −βADB G A A A A hΣ Σ  

where 2p
θϑ

ξ
 −

=  
 

E . 

Proof. 
1. 

 

( ) ( )( )

( )

ˆ ˆlim

lim 0

0
ˆ 0

n n nn

n

n

nθ→∞

→∞

= −

=

=

∴ =

θ θ θ

θ

ADB E

ADB

 (28) 

since ( ) ( )ˆ ~ ,n n d pn Z N− →θ θ 0 Σ  as n →∞ . 
2. 

 

( ) ( )( )
( )( )

( )
( ) ( )

1

1

1

lim

lim

o o
n n nn

n

o
n

nθ→∞

−Τ Τ

→∞

−Τ Τ

−Τ Τ

= −

= −

= −

∴ = −







θ θADB q E

A A A A h

A A A A h

ADB q A A A A h

Σ Σ

Σ Σ

Σ Σ

 (29) 

from Equation (6). 

3. ( ) ( )( )* *ˆ ˆlim .n n nn
nθ→∞

= −β β βADB E  From Equation (19) of Theorem 1 we 
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have 

( ) ( ) ( )( ) ( ) ( )( )1*ˆ 1n n dn w Z Z w Z Z Z
−Τ Τ Τ Τ− → + − − +β β G G A A A A hΣ Σ  

where 

( ) 21 .pw Z
ξ +

 −
= − 
   

Therefore, 

( ) 21

21

1

pw Z

p

θ

θ

ξ

ξ
ϑ

  −
  = −   

  
 −

= −  
 

= −

E

E

 

where 2p
θϑ

ξ
 −

=  
 

E , 3p ≥  and ( ) 0Zθ =E  as n →∞  since  

( )~ ,pZ N 0 Σ . 

Then 

 

( ) ( ) ( ) ( )( )
( )

( )
( ) ( )

1*

1

1

1*

ˆ 1 0 1 1lim

lim

ˆ

n
n

n

n

ϑ ϑ

ϑ

ϑ

ϑ

−Τ Τ Τ

→∞

−Τ Τ Τ

→∞

−Τ Τ Τ

−Τ Τ Τ

  = − + − + −    
 = −  

= −

∴ = −

β

β

ADB G A A A A h

G A A A A h

G A A A A h

ADB G A A A A h

Σ Σ

Σ Σ

Σ Σ

Σ Σ

 (30) 

where 2p
θϑ

ξ
 −

=  
 

E  for 3p ≥ . 

Remark 1 
When the fixed constant =h 0 , the asymptotic distributional bias values of 

the three estimators are zero. Therefore ≠h 0 . 
From Equation (28) of Theorem 2, the maximum likelihood estimator is 

asymptotically unbiased. Equations (29) and (30) show that the restricted max-
imum likelihood estimator and the James-Stein shrinkage estimator are both 
asymptotically biased. This means that both shrinking and partitioning of a pa-
rameter space brings bias to estimators. 

Using the bias of the shrinkage estimator obtained above, we now analyse 
whether the James-Stein estimator *ˆ

nβ  is asymptotically efficient. 

3.3. Asymptotic Efficient 

To check whether the shrinkage estimator *ˆ
nβ  is asymptotically efficient, we 

use the Cramér-Rao bound for biased estimators. In the theorem below we show 
that the variance of the JSSE achieves this bound as n →∞ . We use concepts of 
the study by Hogdes and Lehman [14]. 
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Theorem 3 
Let *ˆ

nβ  be a James-Stein shrinkage estimator obtained by shrinking a maxi-
mum likelihood estimator n̂θ  where the two estimators are as defined in Sec-
tion 2.2. Given the asymptotic bias ( )*ˆ

nbθ β  of the JSSE *ˆ
nβ , the Cramér-Rao 

bound for *ˆ
jnβ  is given by 

 
( )
( )

2
*ˆ1

j n

jj

θ β ′+ =
θ

b
CRB

J
 for 1,2, ,j p=   (31) 

where ( )θJ  is the fisher information and 
jθ
′b  is the derivative of the jth ele-

ment of the bias vector. Then 

( )*
1

ˆ
jj nβ

=
CRB
Σ

 as n →∞ , 

and thus the James-Stein shrinkage estimator *ˆ
nβ  is asymptotically efficient 

for all 1,2, ,j p=  . 
Proof. We analyse asymptotic efficiency by evaluating the Cramér-Rao bound 

as n →∞ . Consider the bias of the estimator *ˆ
nβ  from part 3 of Theorem 2 

 ( ) ( ) 1*ˆ
nθ β ϑ

−Τ Τ Τ= −b G A A A A hΣ Σ  (32) 

where 2pϑ
ξ

 −
=  

 
E  for 3p ≥ . The expectation 2p

ξ
 −
 
 

E  of the fraction 

2p
ξ
−  which follows a distribution determined by the distribution  

( )2~ p h hξ χ ′B  has a value (constant) free of the parameter θ . Therefore we 
regard it as a constant. Let α ϑ= −  then (32) becomes 

 ( ) ( ) 1*ˆ
nθ β α

−Τ Τ Τ=b G A A A A hΣ Σ  (33) 

and ( )*ˆ
nθ β′b  will be 

 
( )

( )( )
* *

1

ˆ ˆ( )n nbθ θβ

α
−Τ Τ Τ

∂′ =
∂

∂
=

∂

θ

θ

b b

G A A A A hΣ Σ
 (34) 

a matrix of dimension p. Using the definition of the CRB and then combining 
(32) and (34) we obtain 

 
( )
( )

( )( )
( )

2
1

2
* 1ˆ1

j n j

jj jj

θ
αβ

−Τ Τ Τ ∂
+  ′+ ∂    =

θ

θ θ

G A A A A hb

J J

Σ Σ

 (35) 

for 1,2, ,j p=   where 
j

∂
∂θ

 is the partial derivative of the jth element,  

( ) ( )
12

1
log

n

i
i

f X
−

=

 ∂
= = − ′∂ ∂ 

∑ θθ
θ θ

Σ Σ , ( ) ( )o
∂ ′= =
∂

θ θ
θ

A A a  and 
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( ) ( )
2

1
log .

n

i
i

f X
=

 ∂
= = − ′∂ ∂ 

∑J J θθ
θ θ  

We begin our analysis of the bound by considering the terms involved. Thus 

( )
2∂ ∂ ′=
′∂ ∂ ∂

A a θ
θ θ θ  

remains the same as n →∞ . We have 

 ( ) ( )
12

1
log

n

i p
i

f X
−

=

 ∂
= − → ′∂ ∂ 

∑ θθ
θ θ

Σ Σ  (36) 

as n →∞  where the elements of pΣ  are zeros apart from the diagonal ele-
ments ( )jj θΣ  which are ones for 1,2, ,j p=   since the observations are iid 
and follow a p-multivariate standard normal distribution. Thus from (36) we 
have 

 ( ) 0jj
j

∂
→

∂
θ

θ
Σ  and ∂

→
∂θ

0Σ  (37) 

as n →∞  for 1,2, ,j p=  . This implies that 

 ( ) 1
0

j

−Τ Τ Τ∂
→

∂θ
G A A A A hΣ Σ  and ( ) 1−Τ Τ Τ∂

→
∂θ

G A A A A h 0Σ Σ  (38) 

for 1,2, ,j p=   as n →∞ . Then from (38) we have 

 ( )*ˆ 0
j nθ β′ →b  and ( )*ˆ

nθ β′ →b 0  (39) 

for 1,2, ,j p=   as n →∞ . Therefore from (38) and (39), then using (35) we 
have 

 

( )
( )

( )( )
( )

[ ]
( )
( )

2
1

2
*

2

1

1ˆ1

1 0

j n j

jj jj

jj

jj

θ
αβ

−Τ Τ Τ

−

 ∂
+  ′+ ∂    =

+
=

=

θ

θ θ

θ

θ

G A A A A hb

J J

J

J

Σ Σ

 (40) 

as n →∞  for 1,2, ,j p=  . Since for all 1,2, ,j p=   we have  

( ) ( ) 1
jj jj

−=θ θJΣ  then 1−= JΣ  as n →∞ . Hence from (40) we have the va-

riance for the James-Stein shrinkage estimator *ˆ
jnβ , ( )*ˆ

jj nβΣ  converges to the 

CRB as n →∞  for all 1,2, ,j p=  . This means that 

( )
( )
( )

*

* *

ˆ
1

ˆ ˆ
jj n

jj n jj n

β

β β
→ =

CRB Σ

Σ Σ
 as n →∞  

for all 1,2, ,j p=  . Thus the James-Stein shrinkage estimator *ˆ
nβ  is asymp-

totically efficient. 
Theorem 3 above shows that the James-Stein shrinkage estimator obtained 
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from shrinking the MLE achieves the CRB asymptotically. This means that the 
shrinkage estimator is asymptotically efficient and hence stable when we have 
large sample size values. Since the initial estimator (MLE) is known to be 
asymptotically efficient then we see that the shrinking process has no effect on 
the asymptotic efficiency of an estimator we are shrinking. 

3.4. Rate of Convergence 

We now investigate the rate of convergence of the shrinkage estimator *ˆ
nβ  

(JSSE) by using concepts applied on the MLE discussed in Hoeffding [15]. To 
proceed we consider the shrinkage estimator of the form in (1) using plug-in 
maximum likelihood estimators ˆ

nβ  and o
n
β . Let *ˆ

nβ  be a James-Stein shrin-
kage estimator obtained when we shrink the MLE ( )ˆ ˆ

n n=β θg  defined earlier 
before for 3p ≥ . We proceed to find the rate of convergence of this estimator 
by using its relationship with the MLE. Since the shrinkage target value may 
have no effect on the convergence rate, for easier transformation of our sequence 

nθ  we set o
n =θ 0  implying o

n =β 0 . Thus we have 

( )
*

1

2ˆ ˆ ˆ
ˆ ˆn n n

n n

p
n Τ −

+

 − = −
 
 V

β β β
β β

 
which becomes 

*
1

2ˆ ˆ1 ˆ ˆn n
n n

p
Τ −

+

 −
= −  
 V

β β
β β  

when we factor out ˆ
nβ  and drop out the n in the denominator to have a form 

with a lower MSE according to the James-Stein shrinkage strategy. Let 

 
1

21 ,ˆ ˆ
n n

pk
Τ −

+

 −
= −  
 β βV

 (41) 

then 

 *ˆ ˆ .n nk=β β  (42) 

Now consider the sequence 

 1ˆ
j jn o pO

n
 

= +  
 

β β  (43) 

for 1,2, ,j p=   where 
joβ  is the “true” jth parameter value. From the equal-

ity in (42) we have 

 *1ˆ ˆ
n nk
=β β  (44) 

for the shrinkage value k. Therefore substituting the right hand side of (44) in 
(43) the sequence ˆ

jnβ  becomes 

*1 1ˆ ,
j jn o pO

k n
 

= +  
 

β β
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hence we have the sequence 

 * 1ˆ
j jn o pk O k

n
 

= +  
 

β β  (45) 

which is in terms of the shrinkage estimator with the shrinking effect value k 
such that 0 1k< ≤ . Analysing this sequence further shows that it satisfies the 
smoothness regularity conditions for the MLE, therefore we can proceed. 

Let *
j jo ok=β β  be the true value in the shrinkage sense which is obtained 

when we scale the true value 
joβ  with the shrinkage factor k. Then the se-

quence (45) becomes 

 * * 1ˆ
j jn o pO k

n
 

= +  
 

β β  (46) 

implying that 

 * * 1ˆ
j jn o pO k

n
 

− =  
 

β β  (47) 

for all 1,2, ,j p=  . This means that ( )* *ˆ
j jn o−β β  is still within the neigh-

bourhood of 1
n

 since 0 1k< ≤ . Therefore, using the second order Taylor’s 

theorem we have 

( )

( )

( ) ( ) ( ) ( ) ( )
*

*

ˆ 2
* * * * * *1

1

ˆ ˆln 1
2

n ij

j j j j

o ij

n

x
i

n o jj o j n o jj o pn

x
i

f
nn Z O

f

=

=

= − − − +
∏

∏

β

β

β β β β β βI I  (48) 

for 1,2, ,j p=  . Since 

( )ˆln n
∂

=
∂

L 0β
β  

for the maximum likelihood estimator ˆ
nβ , then also 

( )*ˆln n
∂

=
∂

L 0β
β  

implying that 

 ( )*ˆln 0
jn

j

∂
=

∂
β

β
L  (49) 

for all 1,2, ,j p=  . Assuming that the log-likelihood function is differentiable, 
from (48) and (49) we have 

 

( )

( )

( ) ( ) ( ) ( ) ( )

*

*

ˆ
1

*

1

1 1 2 1
* * * * * *

lnˆ

2ˆ ˆ 1
2

n ij

j
o ij

j j j j

n

x
i
n

n
x

i

n o jj o j n o jj o p

f

f

nn Z O

=

=

− −

 
 ∂  
 ∂
 
 

= − − − +

∏

∏

β

β
β

β β β β β βI I

 (50) 

and simplifying (50) becomes 
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( )

( )

( ) ( ) ( ) ( )
*

*

ˆ
* * * *1

*

1

ˆln 1 0ˆ
n ij

j j

j
o ij

n

x
i

jj o j n o jj o pn
n

x
i

f
n Z n O

f

=

=

 
 ∂   = − − + =
 ∂
 
 

∏

∏
I I

β

β

β β β β
β

 

implying 

 ( ) ( ) ( ) ( )* * * *ˆ 1 0.
j jjj o j n o jj o pn Z n O− − + =β β β βI I  (51) 

Rearranging (51) we have 

 ( )( ) ( ) ( )* * * *ˆ 1
j jjj o n o p jj o jn O n Z− + =β β β βI I  (52) 

for 1,2, ,j p=   where ( )~ 0,
jjZ βV  where 

jβV  is the variance of the jth 

element of the covariance matrix βV  of the distribution ( ),pNΤ= G 0 V  and 

thus jZ  is the standard normal distribution for the jth element of ˆ
nβ . Now di-

viding the left and right hand side of (52) by ( )*
jj on βI  we obtain 

 ( ) ( ) ( )* * *ˆ 1
j jjj o n o p jn O Z− + =β β βI  (53) 

where jZ  is the distribution of the jth element of ˆ
nβ  and ( )~ ,pZ N β0 V . 

Using sequence (45), Equation (53) becomes 

 ( ) ( ) ( )* ˆ 1
j jjj o n o p jk n O Z− + =β β βI  (54) 

for some *
j jo o→β β  and 1,2, ,j p=   where ( )~ ,pZ N β0 V  and  

Τ=βV G VG . The distribution jZ  is a normal distribution for each jth element 

of the plug-in estimator ˆ
nβ  as described before in the analysis above. 

Thus Equation (54) establishes the condition which implies local asymptotic 
normality (LAN) and differentiability in quadratic mean (DQM) for the estima-

tor *ˆ
nβ  which implies that the rate of convergence is of order 1

k n
 and rate  

k n . This can also be achieved if we use the fact that the risk bound of the 
James-Stein shrinkage estimator is bounded by that of the MLE and the latter 
converges at the rate n . Hence the James-Stein shrinkage estimator is k n - 
consistent. 

3.5. Simulation Plots 

In this section the behaviour of the mean squared error (MSE) of the maximum 
likelihood estimator n̂θ  is compared to that of the James-Stein shrinkage esti-
mator *ˆ

nβ  as the sample size n increases. The statistical package R is used to 
simulate plots of the MSE for different sample size values of n using the R pack-
age library (MASS) to stimulate data which follow a multivariate normal distri-
bution. The data is generated using a 3 × 3 correlation matrix ( ρ ) to get the co-
variance matrix Σ  given by 
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1 0.3 0.1
0.3 1 0.2
0.1 0.2 1

 
 =  
  

Σ

 
which is symmetric and the variance in the major diagonal is 1 representing a 
standard normal variance. Thus we take 3p =  and this meets the James-Stein 
classical condition of 3p ≥ . Since ( )3~ ,X N θ Σ , we have 

 
1

1ˆ
n

n n in
i

X X
n =

= = ∑θ  for 3p =  (55) 

making the MLE n̂θ  a 3 × 1 matrix which implies that the dimension for the 
shrinkage estimator is also 3 × 1. Now knowing that the maximum likelihood es-
timator n̂θ  is unbiased and the James-Stein shrinkage estimator *ˆ

nβ  is biased, 
the following expressions were used to calculate the mean squared error (MSE) 
of the two estimators. Using (55), we have 

 ( ) ( ) ( ) ( )ˆ ˆ
n n n n n nX Var Xθ = = =θ θMSE Σ Σ  (56) 

as the mean squared error of n̂θ  for 3p =  since ( )ˆ 0nθ =θb . Similarly we 
have 

 
( ) ( ) ( )

( ) ( )

2
* * *

2
* *

ˆ ˆ ˆ

ˆ ˆ

n n n n

n nVar

θ θ

θ

 = +  

 = +  

β β β

β β

MSE b

b

Σ
 (57) 

for the James-Stein shrinkage estimator which becomes 

 
( ) ( ) ( )

( ) ( )

2
*

2

ˆ ˆ ˆ

ˆ ˆ

n n n n

n n

k k

Var k k

θ θ

θ

 = +  

 = +  

β θ θ

θ θ

MSE b

b

Σ
 (58) 

where k is a shrinkage value which shrinks the maximum likelihood estimator 

n̂θ  to a James-Stein shrinkage estimator *ˆ
nβ  for 3p = . Thus the mean 

squared error of the shrinkage estimator *ˆ
nβ  in (58) is obtained by using (56). 

The shrinkage value k is evaluated using the expression 

 
( ) ( )
1 11 1

n n n n n n n

k
X X X X Var X XΤ Τ

 
 = − = −
 
 Σ

 (59) 

for 3p = . The commands for all expressions and plots produced in R are pro-
vided in the appendix. 

We present MSE plots obtained by simulating the mean squared error using 
the sample size values of n = 30, 2000 and 100,000. The MSE plots for both the 
James-Stein shrinkage estimator and maximum likelihood estimator for each 
sample size value considered are plotted on the same graph for easy comparison 
of the MSE trends. We begin by considering a small sample size value of n = 30 
to compare the the way the MSE line plots change from one particular point to 
the other. Since we are interested in asymptotic behaviour, we increase the sam-
ple size value to 2000 and then 100,000 to analyse the MSE trends and the rate at 
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which the line plots become smooth. 
 

 
Figure 1. MSE plots for the MLE and JSSE for n = 30. 

 

 
Figure 2. MSE for the JSSE and MLE for n = 2000. 

 

 
Figure 3. MSE plots for JSSE and MLE for n = 10,000. 
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Collectively the scaled plots show that there is some reduction in the mean 
squared error of the James-Stein shrinkage estimator compared to that of the in-
itial estimator (MLE). The trend in mean squared error for both the maximum 
likelihood estimator and the James-Stein shrinkage estimator shows that as the 
sample size value n increases, the MSE values converge to some value. The MSE 
plots suggest that the James-Stein shrinkage estimator converges to a lower MSE 
value 0.9 compared to the maximum likelihood estimator which converges to a 
MSE value 1.0. They also show that the James-Stein shrinkage estimator con-
verges faster compared to the MLE though the difference is minimal. 

4. Conclusions and Suggestions 

In the study, we explored the asymptotic properties of the James-Stein shrinkage 
estimator *ˆ

nβ  which is obtained by shrinking a MLE n̂θ . Asymptotic consis-
tency and efficiency of the shrinkage estimator *ˆ

nβ  were investigated. From the 
regularity conditions, the MLE is known to be unbiased, consistent and efficient 
as the sample size value n →∞ . Therefore, the study analysed these asymptotic 
properties by checking whether the new estimator (shrinkage) obtained after 
shrinking possesses them. Thus the study examined whether the shrinking 
process has an effect on these properties. The results show that the James-Stein 
shrinkage estimator *ˆ

nβ  is asymptotically consistent and efficient. The study 
also showed that the shrinkage estimator (JSSE) is asymptotically biased, a 
property it possesses even for small values of the sample size value n. The bias is 
brought by the shrinking factor k given in Equation (59). We therefore see that 
the shrinking process introduces bias to the estimators obtained but it preserves 
asymptotic consistency and efficiency, and more importantly, it reduces the MSE. 

Thus the James-Stein shrinkage estimator obtained by shrinking techniques 
proves to be useful though it is biased. This estimator is more effective than the 
maximum likelihood estimator as shown in this study and by Hansen [10]. The 
study also showed that the JSSE is stable for large values of the sample size value 
n, making it suitable in practical applications since large sample size values are 
normally considered for effective estimation. Since error is always there in esti-
mation, we justify shrinking (minimising error) as a very important technique 
for yielding effective estimators. 

The study has investigated the asymptotic behaviour of the James-Stein shrin-
kage estimator. Asymptotic properties analysed in the study include rate of 
convergence, consistency and efficiency. The results show that the James-Stein 
shrinkage estimator has a lower mean squared error compared to the maximum 
likelihood estimator though it is biased. The results further show that the JSSE is 
asymptotically consistent and efficient. 

Acknowledgements 

The authors gratefully acknowledge the Department of Mathematics and Statis-
tics at the University of Zambia for supporting this work. Sincere thanks to the 

https://doi.org/10.4236/ojs.2023.136044


A. S. Mungo, V. M. Nawa 
 

 

DOI: 10.4236/ojs.2023.136044 892 Open Journal of Statistics 
 

managing editor Alline Xiao for a rare attitude of high quality. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Stein, C. (1956) Inadmissibility of the Usual Estimator for the Mean of a Multiva-

riate Normal Distribution. In: Neyman, J., ed., Proceedings of the Third Berkeley 
Symposium on Mathematical Statistics and Probability, Volume I, Statistical Labor-
atory of the University of California, Berkeley, 197-206.  
https://doi.org/10.1525/9780520313880-018 

[2] James, W. and Stein, C. (1961) Estimation with Quadratic Loss. In: Neyman, J., ed., 
Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and 
Probability, Statistical Laboratory of the University of California, Berkeley. 

[3] Baranchik, A.J. (1964) Multiple Regression and Estimation of the Mean of a Multi-
variate Normal Distribution. Technical Report No. 51. Department of Statistics, 
Stanford University, Stanford, CA. 

[4] Berger, J.O. (1976) Minimax Estimation of Multivariate Normal Mean with Arbi-
trary Quadratic Loss. Journal of Multivariate Analysis, 6, 256-264.  
https://doi.org/10.1016/0047-259X(76)90035-X 

[5] Stein, C. (1981) Estimation of the Mean of a Multivariate Normal Distribution. An-
nals of Statistics, 9, 1135-1151. https://doi.org/10.1214/aos/1176345632 

[6] Carter, R.L. and Ullah, A. (1984) The Sampling Distribution of Estimators and 
Their F-Ratios in Regression Model. Journal of Econometrics, 25, 109-122.  
https://doi.org/10.1016/0304-4076(84)90040-X 

[7] George, E. I. (1986) Minimax Multiple Shrinkage Estimation. Annals of Statistics, 
14, 188-205. https://doi.org/10.1214/aos/1176349849 

[8] Geyer, C.J. (1994) On the Asymptotic of Constrained M-Estimation. Annals of Sta-
tistics, 22, 1993-2010. https://doi.org/10.1214/aos/1176325768 

[9] Hansen, E.B. (2008) Generalized Shrinkage Estimators.  
https://web-docs.stern.nyu.edu/old_web/emplibrary/shrink3.pdf  

[10] Hansen, E.B. (2016) Efficient Shrinkage in Parametric Models. Journals of Econo-
metrics, 190, 188-205. https://doi.org/10.1016/j.jeconom.2015.09.003 

[11] Efron, B. (1975) Biased versus Unbiased Estimation. In Advances in Mathematics, 
Academic Press, New York. https://doi.org/10.1016/0001-8708(75)90114-0 

[12] Newey, W.K. and Mcfadden, D.L. (1994) Large Sample Estimation and Hypothesis 
Testing. University Press, Holland, 2113-2245.  
https://doi.org/10.1016/S1573-4412(05)80005-4 

[13] Stone, C.J. (1974) Asymptotic Properties of Estimators of a Location Parameter. The 
Annals of Statistics, 6, 1127-1137. https://doi.org/10.1214/aos/1176342869 

[14] Hogdes, J.L. and Lehman, E.L. (1975) Some Applications of the Cramér-Rao In-
equality. In Proceedings of Second Berkeley Symposium on Mathematical Statistics 
and Probability, University of California Press, Berkeley, CA, 13-22. 

[15] Hoeffding, W. (1948) A Class of Statistics with Asymptotically Normal Distribution. 
Annals of Mathematical Statistics, 19, 293-325.  
https://doi.org/10.1214/aoms/1177730196 

https://doi.org/10.4236/ojs.2023.136044
https://doi.org/10.1525/9780520313880-018
https://doi.org/10.1016/0047-259X(76)90035-X
https://doi.org/10.1214/aos/1176345632
https://doi.org/10.1016/0304-4076(84)90040-X
https://doi.org/10.1214/aos/1176349849
https://doi.org/10.1214/aos/1176325768
https://web-docs.stern.nyu.edu/old_web/emplibrary/shrink3.pdf
https://doi.org/10.1016/j.jeconom.2015.09.003
https://doi.org/10.1016/0001-8708(75)90114-0
https://doi.org/10.1016/S1573-4412(05)80005-4
https://doi.org/10.1214/aos/1176342869
https://doi.org/10.1214/aoms/1177730196

	Asymptotic Consistency of the James-Stein Shrinkage Estimator
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Parametric Structure
	2.2. Positive Part James-Stein Shrinkage Estimator
	2.3. Asymptotic Distribution

	3. Main Results
	3.1. Consistency of the James-Stein Shrinkage Estimator
	3.2. Asymptotic Distributional Bias
	3.3. Asymptotic Efficient
	3.4. Rate of Convergence
	3.5. Simulation Plots

	4. Conclusions and Suggestions
	Acknowledgements
	Conflicts of Interest
	References

