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Abstract 
Next Generation Sequencing (NGS) provides an effective basis for estimating 
the survival time of cancer patients, but it also poses the problem of high data 
dimensionality, in addition to the fact that some patients drop out of the 
study, making the data missing, so a method for estimating the mean of the 
response variable with missing values for the ultra-high dimensional datasets 
is needed. In this paper, we propose a two-stage ultra-high dimensional vari-
able screening method, RF-SIS, based on random forest regression, which ef-
fectively solves the problem of estimating missing values due to excessive data 
dimension. After the dimension reduction process by applying RF-SIS, mean 
interpolation is executed on the missing responses. The results of the simu-
lated data show that compared with the estimation method of directly delet-
ing missing observations, the estimation results of RF-SIS-MI have significant 
advantages in terms of the proportion of intervals covered, the average length 
of intervals, and the average absolute deviation. 
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1. Introduction 

With the increasingly powerful performance of computers and storage devices, 
people can easily access high-dimensional or even ultra-high-dimensional data, 
and more and more research fields urgently need ultra-high-dimensional data 
analysis methods, so the statistical analysis of ultra-high-dimensional data has 
become a focus of attention in recent years. The dimensional of ultra-high di-
mensional data is exponentially related to the sample size, and the dimension of 
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the variable is much larger than the sample size, i.e., ( )log p O nα= . Ultra- 
high-dimensional data to bring more information to the people at the same time 
also caused great difficulties in data organization and analysis, that is, often re-
ferred to as the “dimension of the disaster”, which exists so that the traditional 
statistical analysis methods cannot be directly applied to the ultra-large data sets. 

Data integrity is the most basic requirement of classical statistical methods for 
data, if the data are missing it is impossible to carry out statistical modeling. 
There are many uncertainties in the process of collecting and organizing data, 
which can lead to incomplete data, and the existence of missing data will not 
only increase the difficulty and complexity of statistical analysis, but also lead to 
the loss of validity of the results of statistical analysis. Barzi et al. [1] pointed out 
that, when the rate of missing data is very high, such as reaching more than 60%, 
any data interpolation method cannot restore the data effects of missing data. 
When the missing data rate is not high, interpolation methods can be used to 
improve the results of statistical analysis. The “dimension catastrophe” makes 
existing statistical inference methods applied to missing data impossible to apply 
because of too many co-variable and too few samples, so data dimension reduc-
tion is the first problem to be solved. 

In high-dimensional statistical modeling, the feature screening method is 
more popular in practice. Tibshirani [2] proposed Least Absolute Shrinkage and 
Selection Operator(LASSO), an algorithm which, by adding L1 paradigm as a 
penalty term in the optimization process of minimizing the sum of squares of 
the residuals, makes it possible to solve the optimization variables with small 
absolute values of parameter estimates during the problem will be compressed 
to 0, thus obtaining a sparse regression model, but LASSO was difficult to solve 
until Bradley Efron et al. proposed Least Angle Regression(LAR), which made 
LASSO popular. 

Penalizing the least squares method in ultra-high dimensional datasets en-
counters problems such as slow computation, algorithmic instability, and loss of 
statistical certainty, and often fails to yield better results. In the case of high di-
mension of co-variable, it is generally believed that the number of variables that 
have a significant effect on the response variable is generally small. Fan Jianqing 
et al. [3] proposed Sure Independence Screening (SIS), an ultra-high dimension-
al feature screening method. the SIS screening method uses the marginal corre-
lation coefficient as the correlation measure of the variables, and sets a hard 
threshold for ranking and eliminates irrelevant co-variable at the bottom of the 
rankings, which is able to rapidly reduce the dimension of the data from ul-
tra-high dimension to general high dimensionality, which makes it possible for 
the high dimensional statistical analysis methods to be used in a more efficient 
way. It makes the application of high-dimensional statistical analysis methods to 
ultra-high-dimensional data possible. 

The SIS, proposed based on the linear model, measures its correlation using 
marginal correlation coefficients. However, these coefficients can only assess li-
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near correlation between variables. As a result, the SIS is unable to screen out 
variables that have complex relationships with the response variable. Further-
more, strong correlations between co-variable can make it more difficult for SIS 
to identify important variables. It is inconceivable to set a specific model catego-
ry for an ultra-high-dimensional model, which may lead to modeling errors. 
When the sample size is small, it is impossible to guarantee filterability. Later, 
Fan et al. [4] proposed ISIS (Iterative Deterministic Independence Screening) 
based on SIS, which solved this problem to some extent. However, the risk of 
model setting error still exists, and the problem of insufficient identification of 
correlation indicators based on marginal correlation coefficients remains unre-
solved. Recent studies have shown that model-free dimensionality reduction 
methods perform well in identifying nonlinear features and are more effective in 
identifying real variables in complex models than parametric methods. In this 
paper, we propose the Radom Forests Sure Independent Screening (RF-SIS), an 
ultra-high-dimensional variable screening method for random forests that is 
model-free. RF-SIS replaces marginal correlation coefficients with indicators of 
variable importance in random forest regression, allowing SIS to screen impor-
tant variables with complex relationships with co-variable [5] [6] [7]. 

In cancer patient survival analysis, it is of utmost importance to address the 
challenges of missing data regarding patient survival time and the high dimen-
sionality of the data. Firstly, the absence of survival time data can significantly 
impact the accuracy and completeness of the analysis results. Since survival time 
is a crucial variable in predicting patients’ outcomes and assessing treatment ef-
fectiveness, its absence can lead to erroneous conclusions that may negatively 
impact the doctor’s treatment plan. 

Secondly, with the advancement of medical technology, the amount of col-
lected data is increasing, resulting in higher dimensionality. However, filtering 
out irrelevant features and identifying key factors in these high-dimensional da-
tasets is a daunting task. Feature selection becomes even more challenging to 
perform effectively, while avoiding overfitting, to extract the variables that truly 
impact patients’ survival time. 

Therefore, it is crucial to address these two issues to enhance the accuracy and 
reliability of cancer patient survival analysis. 

2. Methods 
2.1. Sure Independent Screening 

In ultra-high dimensional datasets, we generally assume that the important va-
riables are sparse. This means that only a few co-variables have a significant ef-
fect on the response variable. Based on the above assumptions, we compute the 
marginal correlations of all co-variable on the response variable, and then 
pre-screen them according to their ordering to achieve fast dimension reduction. 
The following linear regression model is considered: 

Y X β ε= + .                         (1) 
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Let ( )T
1 2, , , pX x x x=   be the p-dimensionally normalized covariate and y 

be a response variable, where p n . let { }* 1 : 0ii p β= ≤ ≤ ≠  denote the 
subscript of the corresponding active variable in the true model, i.e., the indica-
tor set of the true sparse model, and then consider the marginal correlation of 
the covariate to the response variable ω : 

( )T T
1 2, , , p X yω ω ω ω= = ,                   (2) 

iω  denotes the marginal correlation coefficient of the co-variable on the re-
sponse variable. For [ ]0,1δ ∈ , we have an estimate *

δ  of the true sparse set 
of variables ∗  

[ ]{ }* 1 : , the first in ,ii p nδ ω δ ω= ≤ ≤               (3) 

where [ ]n nδ < . 
The SIS efficiently filters variables weakly correlated with the response varia-

ble by reducing dimension from ( )( )expp O nα=  to [ ]p nδ′ =  through the 
computation of subsample correlation coefficients. SIS is a two-stage feature 
screening algorithm. SIS is a two-stage feature screening algorithm. The size of 
the candidate set, γ , has not been thoroughly researched by scholars. We 
typically use the empirical value [ ]logd n n=  or 1n − , as proposed by Fan [3]. 
In situations where the sample is sufficient, γ  is usually set to [ ]logn n . 
Following pre-screening, we can reduce dimension using methods such as Lasso, 
elastic net Zou H et al. [8], Adaptive Lasso Zou H et al. [9] or SCAD Fan et al. 
[10] method (Figure 1). 

2.2. Random Forest Regression 

Random Forest is a machine learning algorithm proposed by Breiman [11] that 
integrates the advantages of Bagging and Random Subspace with the CART me-
thod. It avoids overfitting by using multiple predictive models and has excellent 
extrapolation prediction ability. The algorithm is effective in determining the 
significance of co-variable on response variables. Random forests are centered 
on the randomness of the sample data and the randomness of the variables 
(Figure 2). 

As shown in Figure 2, random forest regression generates different regression 
trees in such a way that the variables considered in each tree are only a subset of 
all variables. In addition, the samples used to construct these regression trees are 
also sets obtained by resampling through the Bootstrap method. Therefore,  

 

 
Figure 1. SIS ultra-high-dimensional model selection. 
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Figure 2. Variable randomization and sample randomization. 

 
when forming a random forest, we can form diversified regression trees. This 
diversified construction method can improve the prediction accuracy and stabil-
ity of the model. 

Due to the presence of both variable and sample randomness, Random Forest 
is capable of simultaneously creating a multitude of distinct trees, while also 
maintaining their mutual independence and promoting prediction result diver-
sity. This functionality not only resolves overfitting issues but also guarantees 
model precision significantly. Random Forest is inherently fit for parallel com-
puting, which optimizes computer resources, and the program’s run time re-
mains manageable even with an increase in CART tree numbers. 

2.3. Variable Importance Measures 

Measurement of variable importance are complex problems. The problems of 
multicollinearity, nonlinear correlation, and combinatorial correlation of va-
riables make the results of traditional statistical tests of variable parameters do 
not reflect the variable importance of the co-variable to the response variable 
well. In this paper, we use Permutation Importance Measure (PIM), which is a 
measure of variable importance based on the rearrangement mechanism of the 
change in the reduction of the mean square error. 

Assuming that we have t out-of-bag sample sets, after the random forest mod-
eling is completed, we obtain t out-of-bag 1 2, , , tMSE MSE MSE , respectively, 
in the out-of-bag sample set tOBB  for all co-variable xi sequentially and ran-
domly rearranged to calculate itMSE , to obtain the importance measure pimit 
of covariate iX  on this out-of-bag dataset (Figure 3). 
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Figure 3. Permutation importance measure. 

 
The matrix is obtained as follows: 
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,                 (4) 

where each row ijPIM  represents the amount of change in the jth out-of-bag 
mean square error after rearranging for the ith variable to obtain the ith variable 
importance measure iPIM : 

1

1 t

i it
j

PIM PIM
t =

= ∑                        (5) 

If the covariate has a negligible effect on the response variable, then a change 
in the value of that variable will not result in a significant change in the MSE 
when assessing the model error. However, once a covariate has a significant ef-
fect on the response variable, then a change in the value of the covariate can have 
a significant effect on the MSE when it is calculated. The PIM is based on this 
principle and the order of the covariate values is rearranged when calculating the 
PIM. If a change in the value of a covariate results in a significant change in the 
mean square error, then that variable has a significant effect on the response va-
riable, i.e., the larger the PIM the more important the covariate ix  is. 

2.4. Random Forest Sure Independent Screening 

The correlation coefficients employed by SIS as an initial pre-screening measure 
of variable significance fail to accurately depict the effect of the variable on the 
response variable. Furthermore, SIS cannot guarantee screening certainty if the 
model is incorrectly established. For solving this issue, RF-SIS substitutes the 
marginal correlation coefficients of SIS with PIM, which is determined through 
the out-of-bag mean-square error variation based on the rearrangement me-
chanism. 

The algorithm follows the steps outlined below: 
Step 1: Initialize y and X; 
Step 2: Random forest regression modeling to calculate iPIM ; 
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Step 3: iPIM  descending order obtained to *
δ ; 

Step 4: Establishing a Lasso regression on (y, a) and obtaining ( )*
δ γ  based 

on the BIC criteria. 

 

2.5. Feature Screening Simulation 

To assess the ability of random forests to screen variables, we perform the fol-
lowing numerical simulations using the SIS proposed by Fan (2010) as a bench-
mark method. 

We considered a sample set for ultra-high dimensional simulation consisting 
of 100 and 200 samples and dimensions of 1000 and 2000, where the co-variable 
covariance matrix was set to ( ), i j

i jcov X X ρ −Σ = = . The simulation involved 
different covariate autocorrelations categorized into three datasets for simula-
tion, i.e., low, medium, and high, which were repeated 500 times. To fully show-
case the model-free screening effects of RF-SIS, we conducted five groups of ex-
periments and compared them to Fan’s ISIS method. The experimental model 
settings are listed below: 

Model 1: ( )1 2 3 , ~ 0,1y x x x Nε ε= + + + . 
Model 2: ( )2 3

1 2 32 , ~ 0,1y x x x Nε ε= + + + . 
Model 3: ( ) ( )2

1 2 32 3sin , ~ 0,1y x x x Nε ε= + + + . 
Model 4: ( ) ( ) ( )2

1 2 3cos sin , ~ 0,1y x x x Nε ε= + + + . 
Model 5: ( ) ( )1 2 33cos 2 2 , ~ 0,1y x x x Nε ε= + − + . 
The model evaluation indicators are as follows: 
( )ip x : Proportion of identifying variables ix  in 500 simulations. 
( )allp x : Proportion of all variables identified in 500 simulations. 

Model 1 is a linear model, and as can be seen from Table 1, Fan’s SIS method 
is able to identify all the true co-variable at the same time when the correlation 
between the co-variable is low, i.e., 0.3ρ = . When 0.6ρ = , the SIS method is 
able to identify 99% of x2 in a small sample set, and as the sample increases to 
200, SIS is able to identify all the true co-variable at the same time. And the 
RF-SIS method proposed in this paper still achieves more than 95% identifica-
tion rate even though it cannot identify the true co-variable perfectly in all expe-
rimental conditions. Therefore, when the model is a linear model, the screening 
effect of RF-SIS is excellent based on its screening effect even if it cannot reach 
the height of SIS. 

The Simulation 2 model is a non-linear polynomial model. Table 2 shows that 
the accuracy of the marginal correlation-based SIS method reduces substantially 
when the model is non-linear. Nonetheless, it is evident that SIS in Simulation 2 
cannot choose all variables simultaneously with a high percentage, regardless of  
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Table 1. Model 1: ( )1 2 3 , ~ 0,1y x x x Nε ε= + + + . 

 ρ  Method ( )1p x
 ( )2p x

 ( )3p x
 ( )allp x

 

100n =  
1000p =  

0.3 
SIS 1 1 1 1 

RF-SIS 1 0.970 0.978 0.950 

0.6 
SIS 1 0.990 1 0.990 

RF-SIS 1 0.970 0.984 0.958 

0.8 
SIS 0.996 0.882 0.962 0.840 

RF-SIS 1 0.992 0.990 0.984 

200n =  
2000p =  

0.3 
SIS 1 1 1 1 

RF-SIS 1 0.952 0.976 0.94 

0.6 
SIS 1 1 1 1 

RF-SIS 1 0.966 0.968 0.948 

0.8 
SIS 1 0.966 1 0.966 

RF-SIS 1 0.964 0.962 0.954 

 
Table 2. Model 2: ( )2 3

1 2 32 , ~ 0,1y x x x Nε ε= + + + . 

 ρ  Method ( )1p x
 ( )2p x

 ( )3p x
 ( )allp x

 

100n =  
1000p =  

0.3 
SIS 0.542 0.092 0.384 0.026 

RF-SIS 0.9 0.798 0.766 0.512 

0.6 
SIS 0.494 0.236 0.346 0.096 

RF-SIS 0.808 0.742 0.580 0.334 

0.8 
SIS 0.462 0.342 0.402 0.204 

RF-SIS 0.646 0.646 0.484 0.196 

200n =  
2000p =  

0.3 
SIS 0.678 0.158 0.384 0.068 

RF-SIS 0.796 0.910 0.672 0.454 

0.6 
SIS 0.670 0.310 0.404 0.184 

RF-SIS 0.754 0.890 0.472 0.332 

0.8 
SIS 0.586 0.378 0.448 0.218 

RF-SIS 0.622 0.786 0.532 0.272 

 
the scenario. The SIS is unable to select the true variables when the co-variable 
are nonlinearly correlated with the response variables, as ( )allp x  is less than 
10%, and the identification ratio of squared and quadratic terms is less than 50% 
for 100n < , 0.8ρ < . However, the RF-SIS enhances the screening effective-
ness in all scenarios, including univariate and all-variable screening effects, 
compared to the SIS. Under the conditions of small sample size and low correla-
tion, RF-SIS improves the proportion of all-variable screening from 0.026% to 
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51.2%. Additionally, both nonlinearly correlated variables x2 and x3 exceed 50% 
in terms of screening proportion. 

Model 3 enhances the model’s complexity by replacing the quadratic term 
with a sinusoidal function from Model 2. Table 3 exhibits that SIS has a high 
sensitivity to the linear term x1. 

SIS identifies the linear term in all instances at 100%, and RF-SIS identifies it 
effectively as well. Regarding the square term x2, RF-SIS outperforms SIS by 
identifying over 90% of it. Surprisingly, the SIS method demonstrates a strong 
ability to recognize the sinusoidal term, while RF-SIS exhibits a slightly weaker 
performance with recognition rates exceeding 50%. Furthermore, RF-SIS out-
performs SIS in identifying full variables, with a significantly higher proportion. 
Although the identification ability of SIS is comparable to that of RF-SIS when 
covariate correlation is weaker and the sample size is larger, there is still a 10% 
difference between the two methods. 

To further test the comparison between RF-SIS and SIS under a complex 
model, Simulation 4 substitutes the linear function of the linear term x1 in Si-
mulation 3 with the cosine function. The model now consists of an additive 
combination of cosine, sine, and quadratic functions. The results in Table 4 re-
veal that the RF-SIS screening effect is stronger than SIS in both the univariate 
screening effect and all-variable screening ability. Specifically, in Model 4, 
RF-SIS demonstrates a robust capability to capture the square term, along with 
better ability to capture the sine-cosine function compared to SIS. Furthermore, 
while SIS lacks the ability to select all variables, with its selection percentage be-
ing less than 5%, RF-SIS is capable of selecting all variables with a percentage of 
approximately 50%. 

 
Table 3. Model 3: ( ) ( )2

1 2 32 3sin , ~ 0,1y x x x Nε ε= + + + . 

 ρ  Method ( )1p x
 ( )2p x

 ( )3p x
 ( )allp x

 

100n =  
1000p =  

0.3 
SIS 1 0.45 1 0.45 

RF-SIS 1 0.966 0.752 0.73 

0.6 
SIS 1 0.380 1 0.380 

RF-SIS 0.986 0.904 0.652 0.558 

0.8 
SIS 0.998 0.248 0.982 0.236 

RF-SIS 0.956 0.886 0.764 0.588 

200n =  
2000p =  

0.3 
SIS 1 0.500 1 0.500 

RF-SIS 1 0.984 0.616 0.604 

0.6 
SIS 1 0.376 1 0.376 

RF-SIS 0.998 0.962 0.624 0.582 

0.8 
SIS 1 0.272 0.998 0.272 

RF-SIS 0.982 0.904 0.660 0.554 
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According to Table 5, RF-SIS exhibits a high proficiency in identifying the 
cosine function under simulation condition five. Its selection ratio exceeds 90%. 
Additionally, it can screen absolute value terms with a screening ratio mostly 
above 50%. Conversely, SIS performs decently in identifying linear terms, but 
struggles to identify cosine and absolute value functions, resulting in a low over-
all identification rate for all variables. In comparison, RF-SIS exhibits better  

 
Table 4. Model 4: ( ) ( ) ( )2

1 2 3cos sin , ~ 0,1y x x x Nε ε= + + + . 

 ρ  Method ( )1p x
 ( )2p x

 ( )3p x
 ( )allp x

 

100n =  
1000p =  

0.3 
SIS 0.252 1 0.232 0.006 

RF-SIS 0.798 0.9 0.932 0.644 

0.6 
SIS 0.082 0.186 0.710 0.010 

RF-SIS 0.718 0.890 0.908 0.548 

0.8 
SIS 0.114 0.196 0.584 0.002 

RF-SIS 0.674 0.818 0.782 0.386 

200n =  
2000p =  

0.3 
SIS 0.064 0.172 0.952 0.016 

RF-SIS 0.696 0.988 0.920 0.634 

0.6 
SIS 0.150 0.262 0.896 0.026 

RF-SIS 0.640 0.960 0.844 0.516 

0.8 
SIS 0.206 0.250 0.838 0.030 

RF-SIS 0.520 0.944 0.588 0.278 

 
Table 5. Model 5: ( ) ( )1 2 33cos 2 2 , ~ 0,1y x x x Nε ε= + − + . 

 ρ  Method ( )1p x
 ( )2p x

 ( )3p x
 ( )allp x

 

100n =  
1000p =  

0.3 
SIS 0.252 1 0.232 0.06 

RF-SIS 0.964 0.714 0.758 0.532 

0.6 
SIS 0.372 0.998 0.334 0.154 

RF-SIS 0.960 0.628 0.512 0.310 

0.8 
SIS 0.406 0.994 0.370 0.166 

RF-SIS 0.902 0.606 0.500 0.274 

2000p =  

0.3 
SIS 0.398 1 0.328 0.136 

RF-SIS 0.964 0.686 0.568 0.370 

0.6 
SIS 0.454 1 0.424 0.226 

RF-SIS 0.948 0.576 0.498 0.286 

0.8 
SIS 0.364 1 0.318 0.152 

RF-SIS 0.896 0.628 0.424 0.234 
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abilities in identifying changes in all variables across all cases. 

2.6. Missing at Radom 

Little et al. [12] classify missing mechanisms into three main categories, Missing 
Completely at Random (MCAR), Missing at Random (MAR), and Missing Not 
at Random (MNAR or Nonignorable) 

Let Y represent an n p×  matrix of complete data, where obsY  indicates the 
observed data and missY  indicates the missing data that has not been observed. 
Let δ  be an n p×  matrix consisting of indicator variables, where the element 

ijδ  within the matrix indicates whether the data is missing or not. When 
1ijδ = , it signifies that ijY  is not missing, and when 0ijδ = , ijY  is missing. 

The missing mechanism denotes the likelihood of the data being missing with 
respect to the missing mechanism, the missing data, and the observations. The 
missing probability, noted as ( )| ,P Yδ ξ , and ξ , a parameter in the missing 
mechanism, are explained. 

The missing at random mechanism means that the probability of missing data 
depends on obsY . In the Survey of Income Levels of the Population, the fixed 
income of respondents varies with age. For example, if the respondent is young-
er and has no fixed income, it will result in a missing fixed income. i.e. 

( ) ( )1| , , | ,obs miss obsP Y Y P Yδ ξ δ ξ= = .               (6) 

The conditions for satisfying a random deletion are not strict, and when 
( )1P δ =  is related only to obsY  and not to missY , the deletion mechanism can 

be identified as MAR, which is more common in clinical medical research. 

2.7. Response Variable Mean Estimation with MAR 

The response variable for ultra-high dimensional data frequently has missing 
values. Consequently, it is necessary to utilize appropriate methods to address 
this issue. Given that existing data interpolation methods are inadequate for ul-
tra-high dimensional data, this paper uses RF-SIS to screen its features. After-
wards, it employs established processing methods, including regression interpo-
lation and inverse probability weighting, to handle the missing data. This is done 
to obtain a mean estimation of the response variable. 

The response variable missing processing method under the random missing 
mechanism MAR cannot be applied to ultra-high dimensional data, and needs to 
be combined with the RF-SIS proposed in this paper to be able to use it. 

For the Inverse Probability Weighting (IPW): 

( )1

1ˆ ,
1 |

n
i i

ipw
i

y
n P X

δ
µ

δ=

=
=∑                      (7) 

By the law of large numbers, it follows that 

( )
ˆ

1 |
P yE

P X
δµ

δ
 

→  
=  

,                    (8) 

https://doi.org/10.4236/ojs.2023.136043


W. H. Li et al. 
 

 

DOI: 10.4236/ojs.2023.136043 861 Open Journal of Statistics 
 

( ) ( ) { }

( ) ( )

{ }

| |
1 | 1 |

1 |
1 |

.

y yE E X E E X
P X P X

yE P X
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where ( )1|P P Xδ= =  is Propensity. The propensity score is frequently esti-
mated utilizing a logistic regression model. However, the variables acquired 
from RF-SIS pose a challenge for ( )1|P P Xδ= = . 

RF-SIS is able to reduce the variable dimension ( )log p O nα=  to  
[ ]logd n n= . Assuming that the Lasso step fails, the dimension d is still high for 

regression modeling in regression interpolation and estimation of missing 
probabilities in the inverse probability weighting method. In order to be able to 
extract further effective information about the covariates on the response varia-
ble, SIR [13], the dimensionality of the estimated model is further reduced to 
obtain more effective modeling results. 

The SIR method is shown below: 
Step 1: Standardized X 
Step 2: Divide y into H intervals, each containing roughly the same number of 

observations. 
Step 3: Calculate the conditional expectation for all observations in each in-

terval [ ]| HE X y . 
Step 4: Calculate their covariance matrix [ ]{ }|H HE X E X y− . 
Step 5: Solve for the eigenvalues and eigenvectors of this covariance matrix. 
Step 6: Based on the magnitude of the eigenvalues, select the eigenvectors B̂  

corresponding to the largest d eigenvalues 
Using SIR we can further compress the { }*X

δ
 into the *

ˆ ˆS BX
δ

=


. Thereaf-
ter, ipwµ  is estimated using such Ŝ , followed by IPW estimation of ˆipwµ , 
based on the ( )ˆˆ 1 |P P Sδ= =  

1

1 .ˆ
n

i i
ipw

i

y
n P

δ
µ

=

= ∑                        (10) 

For the regression interpolation technique, this paper utilizes full samples 
without any missing data and constructs a linear regression model using Ŝ . 

ˆ ˆˆ ,Y Sβ=                           (11) 

Interpolation of the response variable values using Ŷ  yields 

( ) ˆ ˆˆ 1 ,i i i i iy y Sδ δ β= + −                     (12) 

Use the sample means as the estimate for the response variable’s mean 

1

1 ˆ .
n

mi i
i

y
n

µ
=

= ∑                         (13) 

2.8. Mean Estimation Simulation 

Consider the following linear model: 
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T
k k ky X β ε= +                         (14) 

where X is a random variable with a multivariate normal distribution and a co-
variance matrix ( ), i j

ik jkCov X X ρ −= , , , 1, ,k i j n=  . ( )T1,1, ,1= µ , 
( )~ 0,1k Nε , ( )T5,0, ,5,5 pRβ = ∈ . Let the propensity score function be 

( ) ( )1| , , exp
1

eP X e X
e

δ θ θ= = =
+

               (15) 

In order to increase the complexity of the model, 2 3,X X  are replaced by 
( )2,0U −  and ( )1,2U , respectively. In order to verify the validity of this pa-

per’s method, all the samples are used as benchmarks, and the inverse probability 
weighting and mean interpolation methods are used to estimate the mean value of 
the complete samples after the missing samples are eliminated, respectively, and the 
effects are compared. In this paper, the parameters of sample size and number of 
covariates in the simulation process are set to ( ) ( ), 100,1000n p =  and  
( ) ( ), 100,1000n p =  and the covariance matrix coefficient is set to  

0.3, 0.6, 0.8ρ ρ ρ= = = , θ  controls the missing rate of the datasets, and when 
( )T

1 1,0,0, , 2, 2θ =  , the average missing proportion is 20%, and when  
( )T

2 3,0,0, , 2, 2θ = −  , and ( )T
3 6,0,0, , 2,1θ = −  , the average missing propor-

tion of the response variable of the simulated dataset is 40% and 60%, respec-
tively, and simulation is carried out under the above parameter settings for 1000 
times. 

To measure the effectiveness of the proposed methodology, the following in-
dicators are defined: 

1) CP: Coverage Probability, Probability that µ̂  is included in the true 95% 
confidence interval. 

2) AB: Average Bias, 1 ˆn µ µ− − . 
3) AL: Average Length, average length of confidence intervals. 
Tables 6-8 present the estimation results of the simulated dataset, consisting 

of 100 samples, 1000 covariate dimensions, and varying degrees of correlation 
between the variables, ranging from weak to highly correlated. Our analysis 
shows that the estimation results remain largely unaffected by the strength of 
correlation among the covariates across the three sets of simulation results. In 
terms of estimating coverage probability (CP), the inverse probability weighting 
(IPW) and regression mean interpolation (MI) produce accurate mean estimates 
when the response variable’s missing proportions are 20% and 40%. These me-
thods achieve a true coverage proportion around 95%, with IPW estimators 
showing higher coverage probability than MI estimates overall. In contrast, the 
direct deletion (CC) method yields a mean estimate with CP lower than 0.95, 
and its maximum value is only 0.92. When the proportion of missing data 
reaches 60%, the estimation accuracy of both the IPW and MI methods are sig-
nificantly affected. Specifically, the coverage probability of the IPW estimation 
decreases from over 95% to approximately 25%, whereas the coverage probabili-
ty of the MI estimation decreases from 95% to around 70%. Although the MI 
method also experiences estimation inaccuracies, the degree of its decrease is  
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Table 6. 100n = , 1000p = , 0.3ρ = . 

Method Miss Rate CP AB AL 

Full 

20% 

0.940 0.750 3.713 

CC 0.734 1.711 4.789 

IPW 0.972 1.180 8.211 

MI 0.932 0.803 3.675 

Full 

40% 

0.934 0.736 3.719 

CC 0.744 1.681 4.7968 

IPW 0.98 1.152 8.41 

MI 0.944 0.775 3.685 

Full 

60% 

0.960 0.792 3.714 

CC 0.810 2.021 6.473 

IPW 0.253 7.581 12.896 

MI 0.690 1.874 3.532 

 
Table 7. 100n = , 1000p = , 0.6ρ = . 

Method Miss Rate CP AB AL 

Full 

20% 

0.941 0.845 4.033 

CC 0.482 1.932 3.759 

IPW 0.949 1.254 8.055 

MI 0.944 0.845 4.018 

Full 

40% 

0.942 0.842 4.033 

CC 0.570 2.386 5.124 

IPW 0.976 1.297 8.173 

MI 0.930 0.869 4.005 

Full 

60% 

0.945 0.847 4.032 

CC 0.885 1.815 7.069 

IPW 0.245 7.966 14.136 

MI 0.715 1.779 3.908 

 
Table 8. 100n = , 1000p = , 0.8ρ = . 

Method Miss Rate CP AB AL 

Full 

20% 

0.934 0.736 3.719 

CC 0.744 1.681 4.796 

IPW 0.98 1.152 8.415 

MI 0.944 0.775 3.685 
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Continued 

Full 

40% 

0.934 0.736 3.719 

CC 0.744 1.681 4.796 

IPW 0.98 1.152 8.415 

MI 0.944 0.775 3.685 

Full 

60% 

0.946 0.853 4.203 

CC 0.920 1.598 7.286 

IPW 0.271 7.716 15.844 

MI 0.716 1.909 4.148 

 
lower, indicating a certain level of robustness. 
On the absolute mean bias AB, the MI method’s absolute bias is nearly iden-

tical to the bias of the mean estimate acquired from complete data, which is on 
par. The sample mean gathered from complete data is an unbiased estimation, 
leading to the belief that the MI method’s estimation is also unbiased. Mean-
while, the IPW’s mean bias is excessively high, indicating that the estimation 
obtained by IPW is biased. When the proportion of missing data reaches 60%, 
the absolute mean bias of estimates obtained by the multiple imputation (MI) 
method is comparable to the absolute bias obtained by the direct deletion me-
thod, suggesting that MI is not unbiased. Additionally, the mean absolute bias of 
inverse probability weighting (IPW) estimates increases drastically, reaching up 
to seven times the conventional level, indicating that the IPW method is highly 
sensitive to missing proportions and lacks robustness. 

In terms of the average length of confidence intervals (AL), when the missing 
proportion is 20% and 60%, both estimation methods show similar changes to 
the average absolute deviation. The confidence intervals estimated by multiple 
imputation (MI) are shorter in length and at the same level as the estimation ef-
fect obtained from complete data. It is noteworthy that the MI method’s average 
confidence interval length remains insensitive to the missing proportion. Specif-
ically, when the proportion of missing data reaches 60%, the MI method displays 
almost no change in the confidence interval length. This suggests that the MI 
method is robust with regard to this indicator. When the proportion of missing 
data reaches 60%, the interpolation method is less effective and estimates may 
not be as accurate as those generated by CC. These results align with Barzi’s [1] 
description of the limited impact of the interpolation method under those cir-
cumstances. 

Tables 9-11 present the simulation data for three groups with a sample size of 
200 and a covariate dimension of 2000. The degree of correlation between the 
variables ranges from 0.3 to 0.8. The results reflect consistent variation in corre-
lation coefficients among covariates as found in Tables 6-8, and the degree of 
correlation shows limited influence on the estimation results. Concerning esti-
mated value coverage probability, the results align with Tables 6-8 estimation  
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Table 9. 200n = , 2000p = , 0.3ρ = . 

Method Miss Rate CP AB AL 

Full 

20% 

0.950 0.523 2.639 

CC 0.322 1.539 3.874 

IPW 0.956 0.541 5.364 

MI 0.954 0.521 2.629 

CC 

40% 

0.958 0.537 2.637 

IPW 0.542 1.574 3.409 

MI 0.968 0.685 5.192 

CC 0.962 0.550 2.618 

Full 

60% 

0.958 0.540 2.641 

CC 0.694 1.763 4.559 

IPW 0.818 2.648 11.836 

MI 0.876 0.705 2.594 

 
Table 10. 200n = , 2000p = , 0.6ρ = . 

Method Miss Rate CP AB AL 

Full 

20% 

0.938 0.592 2.849 

CC 0.169 1.933 2.650 

IPW 0.927 0.649 3.043 

MI 0.939 0.590 2.841 

Full 

40% 

0.980 0.472 2.639 

CC 0.560 1.563 3.447 

IPW 0.980 0.671 5.212 

MI 0.920 0.523 2.615 

Full 

60% 

0.936 0.609 2.846 

CC 0.880 1.289 4.923 

IPW 0.828 2.545 11.910 

MI 0.860 0.756 2.812 

 
Table 11. 200n = , 2000p = , 0.8ρ = . 

Method Miss Rate CP AB AL 

Full 

20% 

0.949 0.600 2.973 

CC 0.105 2.202 2.749 

IPW 0.936 0.652 3.073 

MI 0.950 0.601 2.966 
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Continued 

Full 

40% 

0.949 0.600 2.973 

CC 0.105 2.202 2.749 

IPW 0.936 0.652 3.073 

MI 0.950 0.601 2.966 

Full 

60% 

0.950 0.597 2.977 

CC 0.916 1.200 5.154 

IPW 0.828 2.876 12.768 

MI 0.848 0.807 2.951 

 
performance, where the IPW and MI methods provide superior estimations with 
low missing proportion. When the sample size is increased to 200, the coverage 
probability of the IPW method and MI method significantly improves under a 
missing proportion of 60%. Specifically, the coverage probability of the IPW 
method increases from 25% to 80%, while the coverage probability of the MI 
method increases from 70% to 85%. These findings suggest that increasing the 
sample size can improve the accuracy of estimation values when facing a missing 
proportion of 60%. 

As the sample size increases from 100 to 200, the MI estimate’s absolute mean 
bias significantly decreases when the missing proportion is at 60%, indicating 
that increasing the sample size permits the MI method estimate to regain unbia-
sedness. Additionally, it appears that the problem of excessive bias in the IPW 
estimate is addressed. 

When the sample size is increased by 200, the average length of intervals de-
creases for the CC and IPW methods with a missing proportion of 60%. Specifi-
cally, the length decreases from approximately 7 to 5 for the CC method and 
from approximately 15 to 12 for the IPW method. This shows that increasing the 
sample size can slightly alleviate the problem of excessively long estimation con-
fidence intervals. Additionally, the MI method remains highly robust for esti-
mating the confidence interval length. 

2.9. Real Data Example: Ovarian Cancer 

Next-Generation Sequencing (NGS), also known as high-throughput sequenc-
ing, refers to a number of different modern sequencing technologies that allow 
us to sequence DNA and RNA much faster and cheaper than the previously used 
Sanger sequencing. These NGS technologies can generate thousands or millions 
of sequences concurrently, enabling a wide variety of applications and opening 
new avenues of genomic research. 

NGS is a powerful tool for analyzing the genetic sequence of cancerous tissues. 
When there is a mutation in the DNA, normal cells have the potential to trans-
form into cancerous cells. Using NGS, we can determine not only the specific 
type of cancer, but also the stage of the cancer. In addition, NGS can quantify the 
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expression levels of cancer genes. This data reflects the current status of a pa-
tient’s cancer lesions and can be combined with existing clinical records to 
create a predictive model of patient survival time in relation to gene expression 
levels. Healthcare practitioners can then use the model to make an estimate of a 
patient’s survival time, guiding them to develop an appropriate and effective 
treatment plan. 

The genetic data analyzed in this paper was sourced from biopsies of lesion 
sites taken from 562 ovarian cancer patients through the TCGA program. The 
dataset includes 16,383 gene expression levels, which is considerably larger than 
typical clinical medical data. Consequently, it is characterized by high dimen-
sionality, small samples, and high noise. The datasets include information on 
Status, Days to death, and Days to last follow-up. In this paper, we used the du-
ration until death as the response variable with gene expression level serving as a 
covariate to estimate the mean (Figure 4). 

The TCGA report indicated that TP53 gene is one of the important onco-
genes. In this section, the proposed RF-SIS ultra-high dimensional feature 
screening method will be used to perform feature screening with the TP53 gene 
expression level as the response variable and the rest of the gene expression as 
the independent variable, and a comparison will be made using the SIS proposed 
by Fan, QC-SIS by Ma X. et al. [14], and BC-SIS by Pan et al. [15] to examine the 
different method The similarities and differences of the screened genes. The 
overlapping results of RF-SIS ultra-high dimensional feature screening with SIS, 
QC-SIS, and BC-SIS are shown in the following results (Table 12, Table 13). 

Only two genes were selected for SIS, numbered 4590 and 10197, and it is 
worth noting that genes 4590 and 10197 also existed in the variable sets of 
RF-SIS, QC-SIS, and BC-SIS. 8 genes intersected with RF-SIS, QC-SIS, and 
BC-SIS were 4590, 10197, 11389, 4872, 11487, 4812, 4973, 2691, 1713, and 3991; 
18 genes intersected with BC-SIS and 19 genes intersected with QC-SIS; and 19 
genes intersected with BC-SIS. 11487, 4812, 4973, 2691, 1713, 3991; the total 
number of genes intersecting with BC-SIS is 18, while the total number of genes 
having intersection with QC-SIS is 19. The above results show that the screening 
results of RF-SIS proposed in this paper can achieve the same screening effect as 
the genes that can be screened by the methods proposed by the previous authors. 
In the actual screening, RF-SIS screened a total of 63 genes, and on this basis 
provided medical researchers with genes that may be associated with key onco-
genic TP53. 

 

 
Figure 4. Patient survival over the course of the project. 
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Table 12. Comparative results of four different feature screenings. 

SIS RF-SIS BC-SIS QC-SIS RF-SIS BC-SIS QC-SIS 

4590 4590 4590 4590 15370  15,370 

10,197 10,197 10,197 10,197 1213  1213 

 11,389 11,389 11,389 11,556 11,556  

 4827 4827 4827 9666  9666 

 11,487 11,487 11,487 7420 7420  

 4812 4812 4812 8241 8241  

 4973 4973 4973 7764 7764 7764 

 2691 2691 2691 11,453 11,453 11,453 

 1713 1713 1713 771  771 

 3911 3911 3911 12,973  12,973 

 3521  3521 1154 1154  

 14,285  14,285 6458 6458 6458 

 15,630 15,630  15,484 15,484  

 10,486 10,486  15,018  15,018 

 2866 2866  1764 1764  

 
Table 13. Genetic intersection. 

Gene number Name 

4590 DULLARD 

10,197 NFKB2 

11,389 PFN1 

4872 EMB 

11,487 PI4K2A 

4812 EIF4A1 

4973 EPS15L1 

2691 CCDC107 

1713 C15orf5 

3911 CUEDC2 

 
In the datasets used in this paper, Days to Death has a total of 277 pieces of 

missing data, with a missing proportion of 50.71%. When the sample size is 
higher than 200 and the missing proportion of the response variable is not high-
er than 60%, the mean estimation method with random missing covariates given 
in this paper is able to effectively obtain the mean estimation of patient survival 
time. 

The estimation results are as follows: 
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Table 14. Estimation of patient survival time. 

Method Mean lower upper Interval Length 

CC 1116.54 1028.319 1204.761 176.442 

MI 1101.715 1063.852 1141.675 77.823 

IPW 1097.433 974.3215 1220.545 246.223 

 
Table 14 gives the estimation of the mean value of the survival time of the pa-

tients under missing randomization. From the results, the mean survival time of 
the 562 ovarian cancer patients who participated in the trial was 1116.54, 
1101.715, and 1097.433 days, respectively, i.e., the mean survival time of the pa-
tients was about 3 years, which shows that ovarian cancer is a malignant tumor 
that poses a serious threat to the life and health of women. Taking the direct de-
letion method as the standard, it can be found that the estimates obtained by the 
direct deletion method are not much different from the MI estimation and the 
IPW estimation, but the length of the confidence interval of the MI estimation 
method is significantly smaller than that of the CC and the IPW, which indicates 
that the estimates obtained by the MI method are more accurate, and it can ef-
fectively solve the problem of large standard deviation of the estimation that oc-
curs in the direct deletion method. In addition, IPW estimation performs poorly 
in the actual data, with a confidence interval length of 246.223, which is signifi-
cantly higher than that of CC estimation, indicating that the scope of application 
of IPW estimation has limitations, and that only by correctly setting the form of 
the propensity score function and correctly estimating the probability of missing 
can we get better results. 

3. Discussion 

This study examines how to cope with the “dimensional catastrophe” and miss-
ing data problems in ultra-high dimensional large-scale datasets. The article 
proposes an improved SIS method, the RF-SIS method, which uses random for-
est regression without model setup and utilizes the change in the mean squared 
error of out-of-bag data as a variable importance measure, thus effectively iden-
tifying real variables in complex models. When dealing with missing data, the 
IPW and MI estimates were obtained by weighting the missing response data 
using the logistic model estimation propensity score function and by completing 
the missing data using regression interpolation, respectively. Both methods 
yielded better estimates when missingness was not higher than 60%. Finally, the 
validity of these methods was verified by applying them to the estimation of sur-
vival time in ovarian cancer patients. 

RF-SIS-MI is an advanced method for dealing with missing values of response 
variables in high dimensional data. This method incorporates techniques such as 
Random Forest Regression, sure independent screening, and Mean Imputation 
to obtain important variables through the RF-SIS step and utilize them to fill in 
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the missing data, which improves the data completeness and accuracy of the 
predictive model. As a result, physicians can utilize more accurate predictions to 
develop more effective treatment plans. 

RF-SIS excels in identifying variables that have complex correlations with re-
sponse variables, which helps researchers better understand the mechanisms of 
cancer development. Compared with other interpolation methods, RF-SIS-MI is 
simpler and more robust, which reduces the bias introduced by interpolation 
errors and improves the credibility of research results. In addition, RF-SIS-MI 
can help physicians identify which patients are likely to have a longer or shorter 
survival period, so that medical resources can be allocated in a targeted manner 
with the aim of improving treatment outcomes. 

4. Conclusion 

In summary, the RF-SIS-MI method has an important impact on the survival 
analysis of cancer patients as well as clinical decision-making or research, which 
not only improves the prediction accuracy and discovers important features, but 
also enhances the robustness of the study results and optimizes the allocation of 
resources. 
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