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Abstract 
This study investigates the impact of various factors on the lifespan and di-
agnostic time of HIV/AIDS patients using advanced statistical techniques. 
The Power Chris-Jerry (PCJ) distribution is applied to model CD4 counts of 
patients, and the goodness-of-fit test confirms a strong fit with a p-value of 
0.6196. The PCJ distribution is found to be the best fit based on information 
criteria (AIC and BIC) with the smallest negative log-likelihood, AIC, and 
BIC values. The study uses datasets from St. Luke hospital Uyo, Nigeria, con-
taining HIV/AIDS diagnosis date, age, CD4 count, gender, and opportunistic 
infection dates. Multiple linear regression is employed to analyze the rela-
tionship between these variables and HIV/AIDS diagnostic time. The results 
indicate that age, CD4 count, and opportunistic infection significantly impact 
the diagnostic time, while gender shows a nonsignificant relationship. The 
F-test confirms the model's overall significance, indicating the factors are 
good predictors of HIV/AIDS diagnostic time. The R-squared value of ap-
proximately 72% suggests that administering antiretroviral therapy (ART) 
can improve diagnostic time by suppressing the virus and protecting the im-
mune system. Cox proportional hazard modeling is used to examine the ef-
fects of predictor variables on patient survival time. Age and CD4 count are 
not significant factors in the hazard of HIV/AIDS diagnostic time, while op-
portunistic infection is a significant predictor with a decreasing effect on the 
hazard rate. Gender shows a strong but nonsignificant relationship with de-
creased risk of death. To address the violation of the assumption of propor-
tional hazard, the study employs an assumption-free alternative, Aalen’s 
model. In the Aalen model, all predictor variables except age and gender are  
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statistically significant in relation to HIV/AIDS diagnostic time. The findings 
provide valuable insights into the factors influencing diagnostic time and sur-
vival of HIV/AIDS patients, which can inform interventions aimed at reduc-
ing transmission and improving early diagnosis and treatment. The Power 
Chris-Jerry distribution proves to be a suitable fit for modeling CD4 counts, 
while multiple linear regression and survival analysis techniques provide in-
sights into the relationships between predictor variables and diagnostic time. 
These results contribute to the understanding of HIV/AIDS patient outcomes 
and can guide public health interventions to enhance early detection, treat-
ment, and care. 
 

Keywords 
Chris-Jerry Distribution, Power Chris-Jerry Distribution, Cox Proportional 
Hazard, Aalen’s Model, Factors Affecting HIV/AIDS Patients, CD4 Counts of 
HIV/AIDS Patients 

 

1. Introduction 

HIV/AIDS continues to be a significant global health concern, affecting millions 
of individuals worldwide. The lifespan of HIV/AIDS patients can vary consider-
ably, with several factors influencing disease progression and survival rates. Un-
derstanding these factors is crucial for healthcare professionals and policymakers 
to develop effective strategies for managing and improving the quality of life for 
HIV/AIDS patients. This article aims to analyze the impact of diagnosis date, 
gender, age, and CD4 counts on the lifespan of HIV/AIDS patients, utilizing 
multiple linear regression and as well to model the CD4 counts data of patients 
from St. Luke’s hospital Uyo, Nigeria using Power Chris-Jerry distribution, a 
new model proposed by the authors for modeling CD4 counts of patients with 
HIV/AIDS. Before now, many studies exist that have written much on the fac-
tors that affect the time to diagnosis of HIV/AIDS infection. For instance, the 
time of HIV/AIDS diagnosis plays a critical role in patient outcomes. Earlier di-
agnosis allows for early initiation of antiretroviral therapy (ART), leading to im-
proved immune function and prolonged survival. Mark et al. [1] demonstrated 
that delayed diagnosis is associated with a higher risk of disease progression and 
mortality. Mugavero et al. [2] in their studies showed that delayed diagnosis of-
ten leads to a delayed start of ART, resulting in lower CD4 counts and higher 
viral loads, both of which are strong predictors of disease progression. There-
fore, interventions to promote early HIV testing and diagnosis are crucial for 
improving patient outcomes and prolonging lifespan. Gender as well has been 
recognized as a significant factor influencing the lifespan of HIV/AIDS patients. 
Numerous studies have reported differences in survival rates between men and 
women, with conflicting findings. Some studies have suggested that men have a 
higher risk of disease progression and mortality compared to women, May et al. 
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[3], while others have found no significant gender-based differences. Sobri-
no-Vegas et al. [4]. However, they stated that factors such as access to health-
care, engagement in treatment, adherence to ART, and underlying biological 
differences may contribute to the observed gender disparities. Palella et al. [5] 
argued that age at the time of HIV/AIDS diagnosis has consistently shown to 
impact patient’s survival. Young individuals tend to experience slower disease 
progression and longer lifespans compared to older adults. However, Pathai et 
al. [6] in his studies discovered that old age is associated with a higher incidence 
of comorbidities, reduced immune response, and increased vulnerability to op-
portunistic infections, all of which contribute to poorer outcomes. Furthermore, 
age-related factors such as social support, socioeconomic status, and overall 
health status may influence disease progression and survival rates. Effective 
management strategies tailored to the unique needs of older HIV/AIDS patients 
are crucial for optimizing outcomes. Studies have also shown that CD4 counts 
are a key immunological marker used to assess the progression of HIV/AIDS 
and predict patient outcomes. Lawn et al. [7] has shown that lower CD4 counts 
reflect more advanced immunosuppression and are associated with an increased 
risk of opportunistic infections and mortality. Studies by Kuller et al. [8] has 
proven that utilizing multiple linear regression have consistently identified CD4 
counts as a strong predictor of survival in HIV/AIDS patients. Early initiation of 
ART and regular monitoring of CD4 counts are essential for maintaining im-
mune function and extending the lifespan of patients with HIV/AIDS. Nacher et 
al. [9], also claim that Human Immune Deficiency Virus (HIV) is an infection 
that attacks the body’s immune system, specifically the white blood cells called 
CD4 cells. They’re also called CD4 T lymphocytes or “helper T cells.” That’s be-
cause they help fight infection by triggering your immune system to destroy vi-
ruses, bacteria, and other germs that may make one sick. The loss of CD4 
T-lymphocytes will result in the inability to have a proper immune response 
HIV destroys these CD4 cells, weakening a person’s immunity against opportu-
nistic infections, such as tuberculosis and fungal infections, severe bacterial in-
fections and some cancers. A CD4 count is a blood test that measures the num-
ber of CD4 cells in a sample of the blood. It is a type of white blood cell. If you 
have AIDS, your CD4 count is so low that you may develop serious infection 
from virus, bacteria or fungi that usually don’t cause problems in healthy people. 
These are called “opportunistic infections,” and they can become life-threatening 
and can lead to death. There is no cure of AIDS but there is certain medicine 
which are used to slow down the virus for the HIV patient to stay healthier for a 
long time Coffin [10]. Udofia et al. [11] conducted a study in South-South Nige-
ria to investigate and model the survival rates of patients undergoing Antiretro-
viral Therapy (ART), based on stages of immune suppression and opportunistic 
infections. The research utilized data from 221 Human Immune Deficiency Vi-
rus (HIV) patients treated at St. Luke’s Hospital Uyo, Nigeria, spanning the pe-
riod from 2008 to 2017. To analyze the survival data, four different parametric 
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models (extreme, lognormal, logistic, and log-logistic distributions) and the 
nonparametric Kaplan-Meier method were considered. These models were em-
ployed to assess the survival rates and experiences of patients. Additionally, the 
goodness of fit for each model was evaluated using Akaike’s Information Criteria 
(AIC) and Bayesian Information Criteria (BIC). The results of the analysis indi-
cated that the extreme distribution model exhibited the lowest AIC and BIC 
values, suggesting it were the most suitable parametric model for representing 
the survival of HIV patients at the hospital. Furthermore, the Kaplan-Meier me-
thod revealed that female patients had a more favorable survival experience 
compared to male patients. Jin et al. [12] studied the factors influencing survival 
status of HIV/AIDS after administration of HAART in Huzhou City, Eastern 
China. The data on patients’ sociodemographic characteristics, treatment infor-
mation, and follow-up results from the Information Management System of the 
Chinese Center for Disease Control and Prevention were obtained and bivariate 
and stepwise multivariate Cox proportional hazards regression model analyses 
were performed. The results indicated that respondents who were elderly and 
who had heterosexual transmission and whose current WHO clinical stage was 
stage III or IV were more likely to have died; respondents whose baseline CD4+ 
T-lymphocyte count was equal to or more than 200 cells/μL were unlikely to 
have died. 

In the field of literature, there is a significant focus on developing new para-
metric distributions to accurately represent real-world phenomena. This area of 
research aims to enhance the flexibility of existing distributions by introducing 
additional scale or shape parameters. The objective is to improve the applicabil-
ity of statistical distributions in various practical domains. As a result, numerous 
extensions and modifications have been proposed to enhance the capabilities of 
existing distributions. 

Shanker [13] introduced a lifetime distribution named Shanker distribution 
which contains a two-component mixture of an exponential distribution (with 
scale parameter θ) and a gamma distribution (with shape parameter 2 and scale  

parameter θ), with mixing proportion 
2

2 1
p θ

θ
=

+
. Ghitany et al. [14] proposed 

Power Lindley distribution (PLD), a convex combination of Weibull (α, θ) and a 

generalized gamma (2, α, θ) distribution with mixing proportion 
1

θ
θ +

, when α 

= 1, the PLD reduces to Lindley distribution introduced by Lindley [15], a con-
vex combination of exponential (θ) and gamma (2, θ) distributions with their 

mixing proportion 
1

θ
θ +

. Assuming power transformation 
1

X Y α= , Shanker et 

al. [16] proposed a power Shanker distribution (PSD) a two-component mixture 
of Weibull distribution (with shape parameter α and scale parameter θ), and a 
generalized gamma distribution (with shape parameters 2, α and scale parameter 

θ) with mixing proportion 
2

2 1
θ

θ +
. Shukla [17] introduced Prakaamy distribu-
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tion, a two-component mixture of an exponential distribution with scale para-
meter θ and a gamma distribution with shape parameter 6 and scale parameter 

θ, with mixing proportion 
5

5 120
θ

θ +
. The power transformation of Prakaamy 

distribution resulted to a new distribution called Power Prakaamy distribution 
(PPKD), Clearly PPKD is also a two-component mixture of WD with parame-
ters (θ, α) and a generalized gamma distribution (GGD) with parameters (θ, α, 

6) suggested by Shukla et al. [18] with their mixing proportion 
5

5 120
p θ

θ
=

+
.  

Using power transformation on Akshaya distribution proposed by Shanker R. 
[19], Ramadan et al. suggested a new generalized power Akshaya distribution 
with probability distribution. Rosa et al. [20] proposed Alpha Power Trans-
formed Power Lindley Distribution, a generalization of the Power Lindley Dis-
tribution. Onyekwere and Obuleze [21] proposed a new one parameter lifetime 
distribution with a mixture of exponential distribution with scale parameter θ 
and Gamma distribution with shape and scale parameter 3 and θ respectively. 
The mixture is of the form ( ) ( ) ( ) ( )1 2, , 1 ,3,CJf x pg x p g xθ θ θ= + − , where  

2
p θ

θ
=

+
 having the probability distribution function (pdf): 

( ) ( )
2

2, 1 , 0, 0
2

x
CJf x x xθθθ θ θ

θ
−= + > >

+
              (1) 

and Cumulative density function 

( ) ( )2
, 1 1 , 0, 0

2
x

CJ

x x
F x xθθ θ

θ θ
θ

−+ 
= − + > > 

+ 
            (2) 

One of the drawbacks of most of parametric, semi-parametric and nonpara-
metric distributions already proposed by different authors is their applicability 
in different areas. It common to notice that what is obtainable in one country 
may not be obtainable in another country. Different factors may contribute to 
this. For instance, changing weather, climatic factors, experimental units, availa-
bility of equipment, others. These factors are considered are considered when 
manufacturing vaccines for treatment of diseases. These makes it impracticable 
for one model applied for describing an event in one place to be used in another 
place. Hence, the need to develop another model that can best describe the event 
under study while considering the environmental factors affecting the treatments. 

In this paper, we proposed Power Chris-Jerry distribution, a new distribution 
for modelling the CD4 counts of HIV/AIDS patients at St. Luke’s hospital Uyo, 
Nigeria. The fitting of CD4 count data using Power Chris-Jerry model provides a 
systematic and quantitative framework for analyzing and understanding the dy-
namics of HIV/AIDS progression, aiding in patient care and clinical research. 
Also, the model can be used to forecast future CD4 counts for individual pa-
tients or groups. This information is valuable for treatment planning, determin-
ing optimal timing for interventions such as starting antiretroviral therapy 
(ART), and monitoring disease progression. In the analysis of the data obtained 
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for studying how age, gender, CD4 count, and opportunistic infections affect the 
diagnostic date of HIV/AIDS patients at St. Luke Hospital in Uyo, Nigeria, we 
used multiple regression analysis, Cox proportional hazard modeling, and Aa-
len’s additive model. 

Multiple regression analysis was used to assess the relationship between the 
dependent variable (diagnostic date) and multiple independent variables (age, 
gender, CD4 count, opportunistic infections) simultaneously. It helps identify 
the strength and significance of the associations between these variables and the 
diagnostic date. The analysis provides regression coefficients that indicate the 
direction and magnitude of the relationships, as well as statistical significance 
tests. 

Cox proportional hazard model help to evaluate the impact of covariates (age, 
gender, CD4 count, opportunistic infections) on the time to an event (diagnostic 
date). It allows for the estimation of hazard ratios, which measure the relative 
risk associated with each covariate. This modeling technique takes into account 
censoring, which occurs when the event of interest (diagnostic date) has not yet 
occurred for some individuals in the study. While Aalen’s additive model is 
another approach in survival analysis that focuses on estimating the cumulative 
hazard function. It provides a nonparametric estimation of the hazard rate over 
time, considering the effects of covariates (age, gender, CD4 count, opportunis-
tic infections). Aalen’s model is useful for examining the time-varying effects of 
these covariates on the diagnostic date and can help identify how the hazard 
changes with different values of the covariates. 

By employing multiple regression analysis, Cox proportional hazard model-
ing, and Aalen’s additive model, researchers can gain a comprehensive under-
standing of how age, gender, CD4 count, and opportunistic infections influence 
the diagnostic date of HIV/AIDS patients at St. Luke Hospital in Uyo, Nigeria. 
These statistical techniques allow for the identification of significant predictors, 
estimation of hazard ratios, and assessment of time-varying effects, facilitating a 
more nuanced analysis of the data. 

2. Power Chris-Jerry Distribution 
The distribution was formed by employing power transformation method. If we 

let 
1

X Y α= , and performing the transformations involved, we get the pdf of the  
power Chris-Jerry distribution as given in Equation (1). For more information 
on power transformation, readers may consider reading the articles by Abebe et 
al. [22], Shanker et al. [23], others. 

( ) ( )
2

2 1, , 1 e ; 0, 0, 0
2

xf x x x x
αα α θαθα θ θ α θ

θ
− −= + > > >

+
       (3) 

and the corresponding cumulative density function is 

( )
( )2

, , 1 1 e ; 0, 0, 0
2

x
x x

F x x
α

α α
θ

θ θ
α θ α θ

θ
−

 +
 = − + > > >
 +
 

      (4) 
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The plot of the pdf and cdf of the new distribution for CD4 counts of patients 
are provided in Figures 1(a)-(d) for some values of the parameter θ and α. The 
graph was plotted using R software version 4.0.3. 

As α and θ assume different values, the shapes changes. In Figure 1(a) and 
Figure 1(b), increasing the value of α makes the distribution assume leptokurtic, 
also, as the values of α and θ go close to zero, the curve moves towards becoming 
mesokurtic. That is, it tends to assume the shape of a normal distribution. The 
cdf as we can see in Figure 1(c) and Figure 1(d) has an increasing function for 
varying values of α and θ. Figure 2 below shows more on the visualization of pdf 
and the original data from CD4 count cells of patients. 

Equation (5) below shows the rth moment ( )rE X  of PCJ distribution 

( )
( )

1 3

2

r
r r

r r

E X
α

θ
α αµ
θ θ

   Γ + + Γ +   
   ′= =

+

               (5) 

For r = 1, 2, 3, and 4, we obtain the first four crude moments of the PCJ dis-
tribution. The rth moment helps describe the central tendency, spread, shape, 
and behavior of the event under study. Moments provide important statistical 
measures and serve as building blocks for various statistical techniques, such as 
estimation, hypothesis testing, and distribution characterization. Figure 2 shows 
the coefficient of skewness and Kurtosis of the Power Chris-Jerry distribution. 

 

 
Figure 1. (a) pdf of PC-J distribution; (b) pdf of PC-J distribution; (c) cdf of PC-J distribution; (d) cdf 
of PC-J distribution. 
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Figure 2. Skewness and kurtosis of power Chris-jerry distribution. 

2.1. Maximum Likelihood Method 

Let 1 2, , , nx x x  constitute a random sample of size𝑛𝑛 from PCJ (α, θ) distribu-
tion. Then, the likelihood function is defined as 

( ) ( )

( ) 1

2
2 1

1

2
2 1

1 1

, | 1 e
2

1 e
2

n
i

n x
i

n
x

i
n n

i

L L x x x

x x

α

α

α α θ

θα α

αθα θ θ
θ

αθ θ
θ

=

− −
=

−−
= =

∑

= = +
+

 
= + + 

∏

∑ ∑
            (6) 

Taking the natural logarithm of the above gives the following 

( ) ( )
( )

1

2
1 1

ln ln 2 ln ln 2 1 ln

ln 1
i

i i

n

n n

L n n n x

x xα α

α θ θ α

θ θ
=

= =

= + − + + −

+ + −

∑
∑ ∑  

The maximum likelihood estimators of ˆMLEα  and ˆ
MLEθ  for the parameters 

α and θ can be obtained numerically by maximizing, with respect to α and θ the 
log-likelihood function. In this case, the log-likelihood function is maximized by 
solving in α and θ, the non-linear equations are: 

2

21 1

2
2 1

n
i i
nLL n n xx

x

α
α

αθ θ θ θ= =

∂
= − − +

∂ + +
∑ ∑              (7) 

2

21 1 1

2 lnln ln
1i i i

n n nLL n x xx x x
x

α
α

α

θ θ
α α θ= = =

∂
= + + −

∂ +∑ ∑ ∑          (8) 

The solution of ln 0L
θ

∂
=

∂
 and ln 0L

α
∂

=
∂

 gives the maximum likelihood es-

timates of the parameters 

2.2. Application of the Proposed Distribution to CD4 Count Data of 
HIV/AIDS Patients 

In order to illustrate the real-life application of Power Chris-Jerry distribution, a 
data set on CD4 count cells of HIV/AIDS patients from St. Luke hospital Uyo, 
found in Udofia et al. [11], was fitted to the new distribution, and compared to-
gether with Power Prakaamy distribution (PP), Power Garima distribution (PG), 
Chris-Jerry distribution (CJ), and Lindley distribution (LD). Table 1 show the  
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Table 1. MLE, LL, AIC, BIC, KS and P-values of PCJ (CD4 Count). 

Model Parameters S.E LL AIC BIC KS P 

PCJ 
θ = 0.07630469 0.01309 −1391.94 2787.88 2794.677 0.05002 0.6196 

α = 0.6976365 0.0309866 
     

PP 
θ = 0.5818447 0.0694722 −1392.132 2788.265 2795.061 0.06693 0.2635 

α = 0.4539251 0.0219133 
     

PG 
θ = 0.0041663 0.0006301 −1392.509 2789.018 2795.814 4.809 3.11E−15 

α = 1.09783782 0.0271936 
     

CJ θ = 0.0144119 0.0005608 −1430.526 2863.052 2866.45 0.17723 0.000001 

LD θ = 0.009644 0.0004537 −1397.698 2797.395 2800.793 0.10394 0.01564 

 
results of the estimates, that is, MLE, LL, AIC, BIC, KS and P-values, obtained 
when analyzed with R software. See appendix for the data used in this study. 

The test of goodness of fit conducted using Kolmogorov Smirnov test indi-
cates that the CD4 count cell data fitted the proposed distribution very well since 
the value of KS for the distribution (PCJ) is 0.05002 with p value 0.6196, which is 
above 5% level of significance. To discriminate among the models, the informa-
tion criteria, that is, AIC and BIC were used. The distribution with the largest 
negative log-likelihood, least AIC and BIC, is considered the best. In Table 1, it 
is obvious that PCJ distribution possesses the largest negative log-likelihood with 
value −1391.94, with AIC and BIC respectively given by 2787.88 and 2794.677. 
These values are smaller than that of the competing distributions, hence, power 
Chris-Jerry distribution is chosen in preference to them. Hence, the PCJ model 
provided a suitable fit with the smallest AIC and BIC values. 

3. Multiple Linear Regression Model 

The Multiple linear regression model aid to explain the relationship between the 
response variable, HIV/AIDS date of diagnosis and the regressor variables. That 
is, age, CD4 count of patients, opportunistic infections and gender. The rela-
tionship is given by the model 

0 1 2 3 4HIV/AIDS AGE CD4_C OI_T Genderβ β β β β ζ= + + + + +      (9) 

The aim is to examine the impact of age, CD4 count of patients, opportunistic 
infection dates and gender on the HIV/AIDS diagnosis time of patients at St. 
Luke hospital Uyo, Nigeria. 

The relationship between HIV date of diagnosis and age, CD4 count, oppor-
tunistic infection, and gender can be analyzed using a multiple linear regression 
model. In this type of model, we can estimate the effect of each independent va-
riable (age, CD4 count, opportunistic infection, and gender) on the dependent 
variable (HIV date of diagnosis), while controlling for the other independent va-
riables in the model. 

The coefficients of the independent variables in the multiple linear regression 
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model can help us understand the direction and magnitude of the relationship 
between each independent variable and the dependent variable. For example, if 
the coefficient for age is negative, it suggests that older patients tend to have a 
shorter time from HIV infection to diagnosis, while a positive coefficient sug-
gests that younger patients tend to have a shorter time to diagnosis. 

If the coefficient for CD4 count is negative, it suggests that patients with 
higher CD4 counts tend to have a longer time from HIV infection to diagnosis, 
while a positive coefficient suggests that patients with lower CD4 counts tend to 
have a shorter time to diagnosis. 

Also, if the coefficient for opportunistic infection is positive, it suggests that 
patients who have had an opportunistic infection tend to have a shorter time 
from HIV infection to diagnosis, while a negative coefficient suggests that pa-
tients who have not had an opportunistic infection tend to have a longer time to 
diagnosis. 

For gender, if the coefficient for gender is positive, it suggests that female pa-
tients tend to have a shorter time from HIV infection to diagnosis compared to 
male patients, while a negative coefficient suggests that male patients tend to 
have a shorter time to diagnosis compared to female patients. Table 2 shows the 
regression coefficients and the corresponding p values. After performing the re-
gression analysis using R software, we observe that the value of β0 is about 13, 
which indicates the average diagnostic time of the HIV/AIDS patients in the 
hospital when other factors are kept constant. The value of the coefficient of age, 
β1 provided in Equation (10) is 0.02434. This suggests that younger patients tend 
to have a shorter time from time of contracting HIV infection to diagnosis time 
than the older ones. 

Also, the value of β2 is −0.02254. Since the coefficient for CD4 count is nega-
tive, it suggests that patients with higher CD4 counts tend to have a longer time 
from HIV infection to diagnosis. While controlling for the effects of age, CD4 
count, the coefficient of opportunistic infection β3 is 0.77155. This suggests that 
patients who have had an opportunistic infection tend to have a shorter time 
from HIV infection to diagnosis. 

Gender with coefficient β4 and value −2.29265 suggest that male patients in the 
hospital tend to have a shorter time to diagnosis compared to female patients. 

The estimated regression model for the diagnostic time of HIV/AIDS patients 
 

Table 2. Regression coefficients. 

Coefficients Estimates S.E t-value p value 

Intercept 12.72536 6.00300 2.120 0.035161 

AGE 0.02434 0.09509 0.256 0.798181 

CD4_C −0.02254 0.00631 −3.572 0.000436 

OI_T 0.77155 0.03423 22.539 0.0001 

Gender −2.29265 2.32511 −0.986 0.325216 
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in the hospital is given by 

HIV_AIDS 12.73 0.02AGE 0.02CD4_C 0.77OI_T 2.29Gender ζ= + − + − +  (10) 

To assess the significance of the model formulated, we implement a statistical 
technique called hypothesis testing. To perform the hypothesis testing, we adopt 
the t-test. The null hypothesis generally denoted by H0 and alternative hypothe-
sis represented by H1 can be formulated as 0 : 0iH β =  Vs 1 : 0iH β ≠ . A p 
value less than 0.05 shows significance impact. From Table 2, the t-value for age 
is 0.256 with p value 0.7981. This shows that, although younger patients tend to 
have a shorter time of HIV infection to diagnosis time than the older ones, the 
time is not statistically significant. Also, apart from Gender whose p value is 
above 0.05, other factors such as CD4 count and opportunistic infection diag-
nostic time have significant impact on the HIV/AIDS diagnostic time. Figure 3  

 

 
Figure 3. Relationship between the HIV/AIDS predictor variables. 
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shows a visual display (graphical illustration) of the relationship between 
HIV/AIDS predictor variables used in this research. 

Figure 3 shows the visualization of the data sets. Residuals represent the devi-
ation of an observed value of an element and its theoretical value. In regression 
analysis, the residual is the difference between any data point and the regression 
line. Sometimes they are also known as an error. The residual is the error that is 
not explained by the regression line. 

Figure 4 shows the behavior of the residuals. From the graphical visualization 
of the residuals in 4, the following were observed: 

1) The red line in the residual vs. fitted plot lies closer to the residual value of 
0. Based on the plot, it can be seen that the residuals of the model are weakly li-
nearly related. Linearity means that the predicted variable in the regression 
model has a straight-line relationship with Y. 

2) Homoscedasticity is a fundamental assumption of linear regression models. 
If this assumption is violated, the problem of heteroscedasticity arises. The 
scale-location plot shows the fact that the residuals follow the homoscedasticity 
property. 

3) In regression analysis, an observation whose deletion from the data has a 
significant effect on the estimates of the model parameters is called influential  

 

 
Figure 4. Visual display of residual and fitted values, normal q-q, scale location and leverages. 
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observation. Residual vs. leverage plot shows that there are some influential ob-
servations. 

4) Quantile-quantile (Q-Q) function is a visual approach to check the normal-
ity. The Q-Q function of the residuals follows normal distribution. 

F-Test 

Here, we implement another powerful statistical test (called F-test) to check the 
overall significant of the model. If the value of the F-statistic is far from zero, 
then it is indicating a positive impact of age, CD4 count, opportunistic infection 
time and gender on HIV/AIDS diagnostic time. As given in Table 3, the value of 
the F-statistic is 140.5 with p value 2.20 × 10−16. This indicates that the factors 
considered are better predictor of the HIV/AIDS diagnostic time model. To ex-
amine the percentage contribution of the HIV/AIDS patients predictor variable 
or goodness of fit of the model, R2 is used. For this study, the R2 is about 0.72 
(72%). This indicates that the HIV/AIDS diagnostic time to infection of the pa-
tients can be improved to about 72%. This can be done by administering antire-
troviral therapy (ART) to HIV patients which tends to suppress the replication 
of the virus and prevent further damage to immune system. 

4. Application of HIV/AIDS Patient Data to Cox Proportional 
Hazard Model 

Cox proportional hazards regression aid to describe the effects of the predictor 
variables on survival time of patients. Table 4 & Table 5 below show the results  

 
Table 3. Model summary. 

R-Square Adj. R-Sq F-value p value 

0.7223 0.7172 140.5 2.20E−16 

 
Table 4. Cox Proportional hazard model. 

 
coef exp(coef) se(coef) z p 

AGE −0.00257 0.9974377 0.007601 −0.338 0.736 

CD4_Count −0.00041 0.9995867 0.000635 −0.651 0.515 

OI_Time −0.20507 0.8145931 0.017953 −11.422 2e−16 

Gender −0.22447 0.7989408 0.181366 −1.238 0.216 

 
Table 5. Cox Proportional hazard model 

 
exp(coef) exp(coef) lower.95 upper.95 

AGE 0.9974 1.003 0.9827 1.0124 

CD4_Count 0.9996 1.0000 0.9983 1.0008 

OI_Time 0.8146 1.228 0.7864 0.8438 

Gender 0.7989 1.252 0.5599 1.14 
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obtained using R software, for Cox proportional hazard model. 
The output shows that the model includes four predictor variables, age, CD4 

count, opportunistic infection date of diagnosis (time) and gender. The P value 
for all the tests (likelihood ratio test, Wald test and Score) are significant, indi-
cating that the Cox hazard model is significant. These tests evaluate the omnibus 
null hypothesis that all the (βi) are 0. From the results, the test statistics are in 
close agreement, and the null hypothesis is rejected. In the multivariate Cox 
analysis, the covariates age, CD4 count of patients and gender are not significant 
( 0.05p > ). However, the covariate opportunistic infection is the only factor that 
appears to be significant ( 162 10p −= × ). The coefficient estimates indicate the 
change in the log hazard ratio associated with a one-unit increase in the predic-
tor variable, holding the other predictor variables constant. Based on the 
p-values, age has p value 0.736 with 0.99HR =  which is not significant at 0.05. 
This indicates that the association between patient’s age and decreased risk of 
death is not significant. For CD4_Count, the coefficient is −0.00041, with p value 
0.515 and ( )exp coef 0.99HR = = . This suggest that CD4 count is not signifi-
cantly associated with the hazard of HIV/AIDS diagnostic time after adjusting 
for the other covariates included in the model. Specifically, for one unit increase 
CD4 count, the hazard of the HIV/AIDS diagnostic time decreased by a factor of 
0.99, although the relationship is not significant. Opportunistic infection has 
coefficient of −0.2051, 162 10p −= ×  and 0.81HR = . This means that opportu-
nistic infection is a significant predictor of HIV/AIDS diagnostic time. That is, it 
significantly associated with the hazard of HIV/AIDS diagnostic time. For a unit 
increase in opportunistic infection, the hazard of HIV/AIDS diagnostic time de-
creased by a factor 0.81. 

However, gender has coefficient of −0.224, p values 0.216 and  
( )exp coef 0.79HR = =  respectively. For the gender, it indicates a strong and 

nonsignificant relationship between the patient’s gender and decreased risk of 
death. This means that the male gender has higher hazard rate than the female. 

4.1. Test of Assumption for Proportional Hazard 

We test the assumption using the graph of scaled Schoenfeld residuals (shown in 
Figure 5) against the transformed time. 

From the graphical inspection, there is pattern with time. However, the as-
sumption of proportional hazard appears to have been violated. The Global 
Schoenfeld value is 37.07 with p value of 1.7 × 10−7. This is an indication of the 
violation of the assumption of Cox proportional hazard model. Since the as-
sumption has been violated, in order to obtain the right estimate of the coeffi-
cient of the model, it is pertinent to resort to an assumption free model, a non-
parametric alternative to Cox model. That is Aalen Model. Figure 6 shows the 
graph of the survival function 

The survival curve for a Cox model represents the probability of survival over 
time for a group of individuals, based on their characteristics or covariates.  
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Figure 5. Graph of Schoenfeld residuals. 

 

 
Figure 6. Plot of the survival function for Cox proportional Model. 

 
When the survival curve is increasing, it means that the probability of survival is 
increasing over time. Conversely, when the survival curve is decreasing, it means 
that the probability of survival is decreasing for the HIV/AIDS patients. Figure 7 
also shows the hazard function 

Figure 6 and Figure 7 show the survival and hazard rate of the Cox propor-
tional model. From Figure 6, it can be seen that the probability of survival de-
creased and increased over time. Figure 6 revealed that age, CD4 count, oppor-
tunistic infection and gender had a negative effect on the HIV/AIDS diagnostic 
time for some time (for area with decreasing function), at a point, they cova-
riates began to produce positive effects (for areas with increasing function). Also, 
the hazard plot in Figure 7, shows that the hazard rate is highest at the begin-
ning of the study and later stationary with time. 

4.2. The Aalen Model 

The results obtained by R software for Aalen model is given in Table 6 below. 
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Figure 7. Plot of the hazard rate for Cox proportional model. 

 
Table 6. Aalen Model Estimates of the coefficients. 

 
slope coef se(coef) z p 

INTERCEPT 0.214 0.0303 0.00369 8.2 0.0001 

AGE 0.000154 0.0000328 0.0000462 0.711 0.477 

CD4_Count 0.0000569 0.00000847 3.84E−06 2.21 0.0274 

OI_Time −0.00249 −0.000255 0.0000234 −10.9 0.0001 

Gender 0.00456 0.00083 0.00116 0.713 0.476 

 
2 132.11χ =  on 4 df, 162.0 10p −≤ ×  

From Table 6, all the predictor variables except for age and gender are statis-
tically significant. This means that they are likely to have a significant effect on 
HIV/AIDS diagnostic time. On the general note, chi-square value of 132.11 with 
p value of 2.0 × 10−16 indicates that the Aalen’s model is significant. 

The baseline hazard rate at time 0 is exp (0.214) = 0.58, which means that the 
hazard rate of the event of interest at time 0 is 0.58. 

For every one-year increase in age, the hazard of being diagnosed with 
HIV/AIDS increases by 0.000154 units, holding other variables constant. How-
ever, since the p value for age is not significant, we cannot conclude that this ef-
fect is real. 

For every one-unit increase in CD4 count, the hazard of being diagnosed with 
HIV/AIDS increases by 0.0000569 while keeping other variables constant, and 
this is statistically significant. 

For individuals with opportunistic infections, the hazard of being diagnosed 
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with HIV/AIDS decreases by 0.00249 units, holding other variables constant. 
However, since the p value is 0.0001, we can conclude that the effect is statisti-
cally significant. 

For females compared to males, the hazard of being diagnosed with 
HIV/AIDS increases by 0.00456 units, holding all other variables constant. 
However, the effect of gender on HIV/AIDS is not statistically significant since 
the p value is 0.476. These results provide important insights into the factors that 
influence the time to HIV/AIDS diagnosis, and can help inform public health 
interventions aimed at reducing HIV/AIDS transmission and improving early 
diagnosis and treatment. Figure 8 demonstrate the probability plots of the 
Alen’s model used in modeling the HIV/AIDS diagnostic time of the patients in 
St. Lukes hospital Uyo. It can be seen from the plot that intercept and CD4 
counts have an increasing effect on the hazard of HIV/AIDS time over time. The 
covariates become more influential as time progresses. Age and gender remain 
fairly constant and after some time, became more beneficial in the study. After 
some sometime in the study, growing older and a male becomes an advantage in 
the study. 

However, from the graph, opportunistic infection has a decreasing effect on 
the hazard of HIV/AIDS diagnostic time. 

 

 
Figure 8. Probability plot of the effects of the covariates on the HIV/AIDS diagnostic time. 
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5. Conclusions 

In conclusion, this study aimed to explore the impact of various factors on the 
diagnostic time and survival of HIV/AIDS patients using advanced statistical 
techniques. The analysis involved Power Chris-Jerry distribution, multiple li-
near regression, Cox proportional hazards regression, and Aalen’s additive 
hazard model. In this research, a new distribution known as “Power Chris- 
Jerry distribution” was introduced. It was used to model the CD4 counts of pa-
tients. In order to measure its performance and superiority over other models, 
the log-likelihood (LL), Akaike information criteria (AIC), Bayesian information 
criteria (BIC) and K-S statistics were used. After comparing the results with oth-
er distributions as shown in Table 1, PCJ distribution appear to perform better 
than the other distributions. 

The multiple linear regression model revealed that age, CD4 count, opportu-
nistic infection, and gender were significant predictors of the diagnostic time of 
HIV/AIDS patients. Younger patients tended to have a shorter time from HIV 
infection to diagnosis, while patients with higher CD4 counts had a longer time 
to diagnosis. Patients with opportunistic infections were diagnosed more quick-
ly, and male patients tended to have a shorter time to diagnosis compared to fe-
male patients. However, the significance of age and gender was not statistically 
supported. 

The Cox proportional hazards regression model focused on survival time and 
identified opportunistic infection as the only significant predictor. CD4 count 
showed a non-significant association with the hazard of HIV/AIDS diagnostic 
time after adjusting for other covariates. Gender demonstrated a nonsignificant 
relationship with decreased risk of death. The assumption of proportional ha-
zards was violated, necessitating the use of Aalen’s additive hazard model as a 
nonparametric alternative. 

The Aalen’s model confirmed that age, CD4 count, and opportunistic infec-
tion significantly influenced HIV/AIDS diagnostic time, while gender did not. 
The hazard of being diagnosed with HIV/AIDS increased with age and CD4 
count, while opportunistic infections decreased the hazard. These findings pro-
vide valuable insights into the factors affecting the time to HIV/AIDS diagnosis 
and can contribute to public health interventions aimed at reducing transmis-
sion and improving early detection and treatment. It is vital to note that this 
study has certain limitations, such as being based on data from a specific hospital 
and focusing on a particular region. Therefore, the generalizability of the results 
to other populations and settings may be limited. Further research incorporating 
a broader sample and considering additional variables would enhance our un-
derstanding of the factors influencing the survival of HIV/AIDS patients. In 
general, the study highlights the significance of advanced statistical techniques in 
exploring and identifying factors that affect the lifespan and diagnostic time of 
HIV/AIDS patients, providing valuable information for improving patient care 
and public health interventions. 
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Appendix A.  

R Codes for the Analysis 
#load the survival packages 
library(survival) 
library(ggplot2) 
library(dplyr) 
#create a survival object 
surv<-with(HIV_DATA,Surv(time,status)) 
#Fit a Cox proportional hazards model 
cox_model<-coxph(surv~AGE+CD4_Count+OI_Time+gender, data = HIV_DATA) 
#View model summary 
summary(cox_model) 
================================================================================ 
### Test of assumption for cox model 
test.ph<-cox.zph(cox_model) 
test.ph 
================================================================================ 
####Plot graph of diagnostic 
library(survminer) 
ggcoxzph(test.ph)  
####Plot of the survival function 
sfit<-survfit(cox_model) 
plot(sfit,main="Survival Function", xlab = "Time", ylab = "Survival Probability") 
###Plot of the Hazard rate 
hfit<-basehaz(cox_model) 
plot(hfit,main="Hazard Function", xlab = "Time", ylab = "Hazard Rate") 
================================================================================ 
# Fit the Aalen model 
model <- aareg(Surv(time) ~ AGE+CD4_Count+OI_Time+gender, data = HIV_DATA) 
# Print the model summary 
summary(model) 
autoplot(model) 
================================================================================ 
 # Plot the estimated cumulative hazard function 
plot(model, type = "hazard", main = "Estimated Cumulative Hazard Function") 
 
# Plot the covariate effects 
plot(model, type = "covariate", main = "Covariate Effects") 
 
# Plot the estimated survival function 
plot(model, type = "survival", main = "Estimated Survival Function") 
 
# Plot the cumulative incidence function 
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plot(model, type = "cuminc", main = "Cumulative Incidence Function") 
================================================================================ 
#Plot of the Skewness of PCJ distribution 
windows() 
par(mfrow=c(1,2)) 
# Required library 
library(plot3D) 
# Define the power Chris-Jerry distribution PDF 
pdf_power_chris_jerry <- function(x, a, t) { 
  (1/(t+2))*(a*t^2)*(x^(a-1))*(1+(t*x^(2*a)))*(exp(-t*x^a)) 
} 
# Define the skewness function for power Chris-Jerry distribution 
skewness_power_chris_jerry <- function(a, t) { 
  third_moment <- integrate(function(x) x^3 * pdf_power_chris_jerry(x, a, t), lower = 0, upper = Inf)$value 
  variance <- integrate(function(x) x^2 * pdf_power_chris_jerry(x, a, t), lower = 0, upper = Inf)$value 
  standard_deviation <- sqrt(variance) 
  (third_moment / standard_deviation^3)} 
# Parameter values 
a <- seq(0.5, 2, length.out = 100)  # Range of 'a' values 
t <- seq(0.1, 2, length.out = 100)  # Range of 't' values 
# Compute skewness for each combination of 'a' and 't' 
skewness <- outer(a, t, Vectorize(function(a, t) skewness_power_chris_jerry(a, t))) 
# Create the 3D plot using persp() 
persp(a, t, skewness, theta = 30, phi = 20, col = "orange", 
      xlab = "a", ylab = "t", zlab = "Skewness") 
# Add legend for the parameter values 
legend("bottomleft", legend = c("a = 0.5, 2", "t = 0.1, 2"), col = c("black", "blue"), lty = c(1, 1), 
       bty = "n", lwd = 2, cex = 0.8) 
 
================================================================================ 
#Plot of the Kurtosis of PCJ distribution   
  # Required library 
  library(plot3D) 
# Define the power Chris-Jerry distribution PDF 
pdf_power_chris_jerry <- function(x, a, t) { 
  (1/(t+2))*(a*t^2)*(x^(a-1))*(1+(t*x^(2*a)))*(exp(-t*x^a)) 
} 
# Define the kurtosis function for power Chris-Jerry distribution 
kurtosis_power_chris_jerry <- function(a, t) { 
  mean <- integrate(function(x) x * pdf_power_chris_jerry(x, a, t), lower = 0, upper = Inf)$value 
  fourth_central_moment <- integrate(function(x) { 
    (x - mean)^4 * pdf_power_chris_jerry(x, a, t) 
  }, lower = 0, upper = 10)$value  # Adjust the upper limit for integration 
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  variance <- integrate(function(x) { 
    (x - mean)^2 * pdf_power_chris_jerry(x, a, t) 
  }, lower = 0, upper = 10)$value  # Adjust the upper limit for integration 
  (fourth_central_moment / variance^2) - 3 
} 
# Parameter values 
a <- seq(0.5, 2, length.out = 100)  # Range of 'a' values 
t <- seq(0.5, 2, length.out = 100)  # Range of 't' values 
# Compute kurtosis for each combination of 'a' and 't' 
kurtosis <- outer(a, t, Vectorize(kurtosis_power_chris_jerry)) 
# Create the 3D plot using persp() 
persp(a, t, kurtosis, theta = 30, phi = 20, col = "orange", xlab = "a", ylab = "t", zlab = "Kurtosis") 
# Add legend for the parameter values 
legend("bottomleft", legend = c("a = 0.5, 2", "t = 0.5, 2"), col = c("black", "blue"), lty = c(1, 1), 
       bty = "n", lwd = 2, cex = 0.8) 
================================================================================ 
 
Data source 
The data sets below represent the age, CD4 counts, opportunistic infection, gender and HIV/AIDS date of diagnosis 
of patients at St. Luke Hospital Uyo, Nigeria. This data sets can also be found in Udofia et al. (2021) 
Age of Patients (in years) 
21,     37,40,52,30,5,39,32,43,40,36,34,48,27,    37, 25,  
25, 47, 40, 18, 32, 24, 32, 35,  
49, 45, 12, 30, 31, 35, 49, 30,  
4, 45, 8, 13, 33, 33, 21, 23,  
32, 40, 5, 23, 33, 42, 60, 12,  
30, 27, 40, 35, 40, 43, 50, 55,  
29, 25, 28, 6, 35, 33, 36, 55,  
35, 25, 35, 32, 36, 40, 27, 40,  
63, 42, 40, 65, 28, 34, 32, 32,  
14, 60, 28, 45, 18, 45, 30, 38,  
40, 25, 30, 10, 36, 26, 25, 60,  
40, 55, 40, 35, 37, 26, 37, 32,  
50, 31, 28, 46, 36, 40, 25, 12,  
40, 38, 32, 28, 30, 57, 40, 53,  
49, 64, 40, 20, 42, 35, 32, 24, 
28, 30, 63, 34, 25, 40, 42, 34,  
39, 24, 54, 37, 20, 31, 30, 41,  
35, 38, 54, 56, 28, 25, 42, 21,  
30, 30, 50, 30, 29, 40, 25, 26,  
25, 46, 28, 25, 45, 34, 53, 27,  
40, 32, 38, 31, 26, 23, 35, 30,  
40, 48, 32, 37, 35, 40, 28, 35,  
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31, 24, 26, 54, 27, 27, 17, 40,  
30, 27, 40, 59, 39, 29, 23, 30,  
35, 30, 40, 50, 31, 37, 40, 32,  
58, 42, 54, 33, 28, 28, 26, 65,  
30, 52, 23, 34, 25 
 
CD4 Counts of patients 
156, 252, 83, 200, 14, 290, 400, 138, 44, 298, 152,  
380, 53, 66, 90, 92, 116, 176, 406, 361, 82,  
146, 96, 7, 32, 373, 30, 22, 61, 13, 62,  
376, 30, 5, 56, 91, 18, 261, 85, 80, 253,  
201, 640, 207, 194, 79, 444, 134, 32, 72, 111,  
80, 72, 32, 222, 13, 33,  
60, 59, 296, 215, 162, 110, 79, 205, 84, 184,  
92, 80, 85, 240, 319, 16, 218, 236, 210, 370,  
56, 35, 150, 292, 161, 38, 134, 130, 143, 82,  
161, 207, 59, 73, 23, 37, 130, 129, 176, 27,  
33, 146, 161, 35, 248, 100, 37, 103, 77, 113,  
290, 29, 23, 54, 748, 105, 77, 104, 573, 67,  
144, 157, 77, 50, 391, 803, 243, 340, 200, 801,  
601, 199, 103, 483, 32, 515, 51, 299, 228, 125,  
572, 112, 41, 60, 443, 379, 219, 204, 16, 254,  
461, 497, 153, 152, 44, 187, 301, 201, 472, 190,  
42, 282, 587, 309, 65, 36, 686, 191, 80, 241,  
275, 292, 345, 277, 731, 251, 77, 293, 101, 436,  
106, 287, 290, 231, 198, 240, 161, 117, 177, 240,  
245, 222, 298, 445, 86, 92, 237, 212, 841, 266,  
360, 300, 363, 351, 128, 65, 345, 96, 156, 253,  
387, 267, 118, 381, 388, 278, 84, 149, 235, 207,  
337, 471, 938, 366 
HIV/AIDS diagnostic time (in months) 
36, 30, 31, 85, 102, 42, 27, 28, 33, 37, 71, 78, 
13, 4, 9, 45, 28, 36, 38, 36, 98, 78,  
84, 88, 70, 110, 110, 97, 79, 103, 16, 83,  
85, 87, 52, 57, 54, 45, 71, 58, 39, 99,  
99, 12, 98, 18, 13, 75, 30, 82, 91, 86,  
100, 56, 95, 11, 30, 8, 5, 1, 49,  
96, 106, 39, 95, 80, 8, 91, 80, 105,  
109, 108, 70, 54, 46, 104, 33, 32, 103,  
42, 27, 25, 42, 18, 102, 33, 104, 36,  
51, 82, 95, 98, 84, 85, 22, 84, 105,  
81, 104, 56, 54, 88, 83, 95, 25, 3,  
63, 15, 14, 31, 6, 50, 61, 61, 54,  
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62, 54, 49, 64, 28, 27, 26, 27, 27,  
27, 27, 27, 27, 27, 69, 43, 75, 27,  
24, 39, 24, 53, 18, 10, 36, 42, 14,  
107, 107, 67, 63, 107, 25, 6, 29, 29,  
29, 28, 28, 28, 28, 28, 28, 28, 28,  
28, 35, 28, 27, 27, 27, 27, 27, 27,  
27, 27, 27, 27, 26, 27, 27, 27, 27,  
27, 27, 26, 26, 26, 23, 26, 26, 27,  
26, 26, 26, 26, 25, 25, 31, 26, 25,  
26, 26, 26, 25, 25, 34, 25, 25, 25,  
25, 25, 25, 25, 25, 25, 25, 25, 25,  
25, 25, 24, 24, 25, 25 
 
Gender (male = 1, female = 0) 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 
Opportunistic infection diagnostic date (months) 
36,30,35,85,103,42,28,35,29,34,37,97, 79,14,4,24,45,63,37,39,37,99,79 
91,89,70,111,111,98,82,105,17,84,93,88,60,57,55,46,72,79,40,104,104,12, 
103,18,16,76,30,85,99,87,101,56,95,12,30,13,85,2,85,97,108,39,95,92,102, 
91,80,105,110,108,71,105,49,104,33,32,104,43,27,29,43,19,103,35,105,37, 
52,84,96,99,85,86,100,84,112,82,107,57,54,96,83,96,26,4,64,40,14,32,15, 
50,61,62,54,63,90,50,65,34,28,27,28,91,27,28,92,27,28,69,43,75,28,25,40, 
25,56,21,10,37,75,15,108,114,68,65,108,39,27,30,30,30,32,32,28,36,29,29, 
32,32,33,36,29,28,28,28,28,30,29,29,29,28,28,107,28,7,28,107,32,28,29,27, 
39,34,34, 28, 26, 28,99,27,109,28,26,29,107,102,26,26,26,54,29,26,42,29,26, 
26,33,27,25,29,27,27,25,30,35,25,25,26,25,26,26 
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