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Abstract 
Cyber losses in terms of number of records breached under cyber incidents 
commonly feature a significant portion of zeros, specific characteristics of 
mid-range losses and large losses, which make it hard to model the whole 
range of the losses using a standard loss distribution. We tackle this modeling 
problem by proposing a three-component spliced regression model that can 
simultaneously model zeros, moderate and large losses and consider hetero-
geneous effects in mixture components. To apply our proposed model to 
Privacy Right Clearinghouse (PRC) data breach chronology, we segment 
geographical groups using unsupervised cluster analysis, and utilize a cova-
riate-dependent probability to model zero losses, finite mixture distributions 
for moderate body and an extreme value distribution for large losses captur-
ing the heavy-tailed nature of the loss data. Parameters and coefficients are 
estimated using the Expectation-Maximization (EM) algorithm. Combining 
with our frequency model (generalized linear mixed model) for data breach-
es, aggregate loss distributions are investigated and applications on cyber in-
surance pricing and risk management are discussed. 
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1. Introduction 

According to Gartner [1], the global market for information security would 
reach $170.4 billion in 2022. Given the potential economic impact of a successful 
large-scale cyber attack, cybersecurity risks remain the second-most important 

How to cite this paper: Sun, M. (2023) 
Modeling Cyber Loss Severity Using a 
Spliced Regression Distribution with Mix-
ture Components. Open Journal of Statis-
tics, 13, 425-452. 
https://doi.org/10.4236/ojs.2023.134021 
 
Received: June 6, 2023 
Accepted: July 8, 2023 
Published: July 11, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2023.134021
https://www.scirp.org/
https://doi.org/10.4236/ojs.2023.134021
http://creativecommons.org/licenses/by/4.0/


M. Sun 
 

 

DOI: 10.4236/ojs.2023.134021 426 Open Journal of Statistics 
 

emerging issue risk experts highlight [2]. Beyond traditional technologies, a 
larger set of risks at the intersection of technology and society is rapidly emerg-
ing. AI and big data have led emerging technologies, transforming economic and 
social structures. The full-scale implications of cyber threats are yet to be expe-
rienced, especially since technology is rapidly evolving. COVID-19 has com-
pelled businesses to establish remote workforces and utilize cloud-based plat-
forms. Due to the pandemic, remote work and digital transformation increased 
the average total cost of a data breach. The FBI reports a 300% increase in re-
ported cybercrimes since the pandemic began. According to IBM [3], data 
breach costs increased from $3.86 million to $4.24 million in 2021, the highest 
average total cost in the report’s history. Attackers stole $121,000 in bitcoin 
through nearly 300 transactions due to a Twitter breach that affected 130 ac-
counts [4] resulting in attackers swindling. A security breach disclosed by Mar-
riott compromised the data of more than 5.2 million hotel guests [5]. The Equi-
fax Data Breach, which cost over $4 billion in total, affected 147.9 million con-
sumers [6]. The increasing number of large-scale, widely publicized security 
breaches suggests that the number of security breaches and their severities is in-
creasing. In 2021, the average cost of a breach will increase by 10%, necessitating 
quantifying its effects. Regulations and best practices in cyber security hygiene 
and risk management are changing due to the frequency and severity of cyberat-
tacks. Prominent legislations like the European Union’s 2018 General Data Pro-
tection Regulation (GDPR)1, California’s 2020 California Consumer Privacy Act 
(CCPA)2 and Illinois’s 2018 Biometric Information Privacy Act (BIPA)3 have 
been passed to enforce severe consequences. To collect, store, process and trans-
fer consumer data, these regulations all have one thing in common: they require 
organizations to adhere to specific standards. 

In addition to reducing vulnerable exposure and increasing technology de-
fence investment, cyber insurance is a fundamental and wildly applicable tool for 
organizations to maintain their enterprise solvency in light of the rise in cyber-
security threats. Cyber insurance is a type of insurance intended to product 
against the financial costs associated with the failure or compromise of an or-
ganization’s information system [7]. Cyber events include a hacking attack by an 
external party or malware infection, fraud involving debit and credit cards, and 
the unintentional disclosure of electronic records due to human error. Most cy-
ber insurance providers offer a core set of coverages and various supplement 
coverages. With the cyber risk insurance market is at an inflection point, it pro-
vides an opportunity to embrace a paradigm shift. To safeguard its profitability, 
the cyber insurance market took four deliberate measures to combat rising loss 
ratios [8]: cyber premiums increased across the board, regardless of the industry 
sector or organization size; many carriers imposed sub-limits and coinsurance 
provisions specific to ransomware claims; carriers wanted to limit their exposure 

 

 

1General Data Protection Regulation https://gdpr.eu/. 
2California Consumer Privacy Act https://oag.ca.gov/privacy/ccpa. 
3Illinois Biometric Information Privacy Act https://www.ilga.gov/legislation/.   
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by limiting capacity; and almost all carries requested more information regard-
ing data security control efforts. An insurance company cannot only rely solely 
on standard actuarial methods when modeling cyber risk and pricing cyber in-
surance products. Given how difficult it is to quantify this emerging and evolv-
ing risk, new methods and techniques must be developed. In order to identify 
risk characteristics and assess cyber risk severity, this paper takes an innovated 
rather than an empirical approach. 

A growing number of disciplines are researching Cyber risk. However, acturi-
al risk management is hindered by the need for mature predictive analysis ap-
proaches for quantifying and predicting risk severity. We review quantitative re-
search works in actuarial science and describe several research works that focus 
on loss severity modeling and predictive analysis. [9] combines regression 
models based on the class of Generalized Additive Models for Location Shape 
and Scale (GLMLSS), which permits parameters in both the severity and fre-
quency distributions, and a class of ordinal regressions. [10] model hacking da-
ta breaches frequency using a hurdle Poisson model and severity using a non- 
parametric generalized Pareto distribution (GPD). [11] particularly focus mainly 
on severe claims by combining a generalized Pareto modelling and a regression 
tree approach for severity analysis. Most of these methods pay special attention 
to large claims with heavy tail distributions. Traditional actuarial modelling 
techniques for heavy-tailed insurance loss data concentrate on simple models 
based on a single parametric distribution that adapts the tail well, such as gene-
ralized linear models (GLMs), regression models and quantile regression [12]. 
Because these techniques are based on a single distribution, they may not be ap-
plicable when the behaviour of the tail is inconsistent with the behaviour of the 
entire loss distribution. It is well known that the actuarial loss distribution is 
strongly skewed with heavy tails and consists of small, medium and large claims 
that are difficult to fit with a single parametric distribution. The Extreme Value 
Theory (EVT) approach, which employs GPD to model excesses over a high 
threshold ([13] and [14]), gained popularity when dealing with heavy-tailed and 
high losses data. However, they cannot capture the characteristics across the en-
tire loss distribution range making them unsuitable for use as a global fit distri-
bution [15]. In order to model the complete loss distribution, it is frequently ne-
cessary to obtain a global fit for the distribution of losses by splicing [16] several 
distributions in order to model the complete loss distribution. Several actuarial 
works proposed splicing models for the application of risk measures. For finan-
cial risk analysis, [17] suggest a splicing model with a mixed Erlang (ME) distri-
bution for the body and a Pareto distribution for the tail. [18] suggests a three- 
component spliced regression model for fitting insurance loss data and demon-
strate that spliced results outperform the Tweedie loss model regarding tail fit-
ting and prediction accuracy. 

The risk portfolio typically contains unobserved heterogeneity in terms of 
claim severity, such as workers’ compensation and cyber risk data. Given this re-
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ality, researchers typically employ a mixture approach to capture the multimo-
dality of the observed loss distribution. [19] designs an optimal Bonus-Malus 
system in automobile insurance using finite mixture models. [20] models an ac-
tual motor insurance claim data set using a mixture Lognormal distribution. [21] 
proposes a finite mixture of skew-normal distributions that better describes in-
surance data. [22] suggests a different method for modelling mixture data with 
heavy tails and skewness in insurance loss distribution that exhibit multimodali-
ty. [23] proposes an Erlang loss model using a generalized expectation-maximi- 
zation (GEM) and clustered method of moments (CMM) algorithm to fit insur-
ance loss data and calculate quantities of interest for insurance risk mixture 
management. Finally, [24] propose a class of logit-weighted reduced mixtures of 
experts (LRMoE) models for multivariate claim frequencies or severity distribu-
tions and perform the estimation and application to correlated claim frequencies 
[25]. 

Upon the above literature review, all the studies on cyber loss severity do not 
consider excess of zeros loss, spliced composites and mixture models under a 
global distribution with corresponding sets of covariates. Motivated by cyber 
risk specific nature, our study aims to fill these gaps using a finite mixture model 
(FMM) under a non-linear regression framework and a three-component splic-
ing model with a zero-inflated component. We provide four significant contri-
butions overall. 

First, we adapt the methodology by providing a flexible mixture distribution 
model. Instead of modelling the univariate distributions of all mixture compo-
nents within the same parametric distribution family, we propose a different 
method that combines different types of distributions such as Gamma, Log- 
Normal, Weibull, Burr, Inverse Gaussian and Pareto within a single FMM frame. 
The aim is to determine the degree to which wide cyber loss range of severity 
distribution and the exhibition of heavy-tailed and skewed. The model’s compo-
sitional distributions make it a valuable, understandable modelling tool for var-
ious risks with heterogeneous performance. 

Second, in addition to developing components from parametric non-Gaussian 
families of distributions, we incorporate FMM into a generalized linear model 
(GLM) to fully utilize the risk characteristics by treating them as covariates 
within the regression framework. Traditional actuarial loss distribution analysis 
examines the loss distribution but rarely considers the impact of individual risk 
characteristics. Moreover, a generalized linear regression mixture model rarely 
relates a dependent variable to a set of explanatory variables. Our model divides 
the unobserved mixture probabilities of observations into subgroups and simul-
taneously estimates a GLM model for each subgroup. 

Third, we built an FMM model together with a zero-inflated regression com-
ponent for our continuous data type. This adaptable strategy enables using cova-
riates to model both the non-zero mixture distribution and the rate of point 
mass zero. We demonstrate the adaptability of our method by applying conti-
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nuous mixture model components to the zero-inflation component, in contrast 
to zero-inflated discrete models such as Poisson and Hurdle. Then we create a 
zero-inflated mixture model with a complete cumulative distribution function 
by adjusting the mixture proportions following logistic odds. 

Last but not least, our work enables cyber risks to be completely quantified 
under one distribution taking into consider its extreme loss heavy tail. Cyber 
risk loss exposures permeate every facet of an organization’s operations, making 
the consequences of a data breach potentially catastrophic. Unlike other kinds of 
property and casualty risk that capping incurred loss at a 95% level could effec-
tively rule out extreme value, cyber risk has the nature that, even upon loga-
rithm, loss distribution is too heavily skewed to be capped at a bell shape distri-
bution. Traditional insurance pricing set up a policy limit and doesn’t consider 
extreme loss when training the model. However, this technique can’t be applied 
to cyber risk as there is no such limit can be set so that cyber loss could be mod-
eled via one single distribution. We brought up a more statistically rigorous at-
tempt to incorporate excess zero, mixture components and heavy tail of cyber 
risk in a single, statistically consistent step where other estimation process, such 
as covariates dependence, is also going on. 

This paper presents a series of finite mixture regression (FMR) models and 
discusses their application in cyber risk estimation. In Section 2, we introduce 
our PRC dataset and conduct cluster analysis on geographical information. Sec-
tion 3 reviews the definition and composition of FMR models and propose our 
unique FMR model adjusted by zero-inflated component based on dataset. Next, 
we introduce the expectation-maximization (EM) algorithm used to estimate 
coefficients and model parameters in Section 4. Followed by details on how to fit 
and choose from among these models as well as information about how to assess 
the goodness of fit of a model in Section 5. Then, we combine the proposed se-
verity model together with our previous frequency model to simulate aggregate 
cyber loss over a future time interval in Section 6. Finally, we discuss a model 
application from the insurers’ perspective and suggest rate filing and future dis-
cussions in Section 7. 

2. Chronology of Data Breaches from PRC Dataset 

In this section, we perform an empirical data analysis which supports and moti-
vates our data-driven modeling approach and further analysis and application. 
Several necessary initialization procedures must be investigated. Starting with 
the explanatory data analysis, we investigate unique features of the dataset 
through an empirical data analysis in the Section 2.1, followed by a cluster anal-
ysis to study a multidimensional location feature of the dataset in Section 2.2. 

2.1. Empirical Data Analysis 

The dataset serves as a resource for researchers examining the effect of data 
breaches on the performance of insurance companies. It encourages research on 
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the loss prediction and premium determination. Our previous work discussed 
several frequently considered databases from nonprofit corporations. It used a 
generalized linear mixed model (GLMM) [26] to examine a quarterly frequency 
modelling approach. 

In this paper, we consider a publicly available cyber security dataset, Privacy 
Rights Clearinghouse (PRC)4 dataset. Most of the PRC data comes from state 
attorneys general and the U.S. Department of Health and Human Services. This 
dataset contains the data breach incidents as well as the number of records 
breached due to breach incidents. As a sample of the choronology shown in 
Figure 1, the type of cyber event and the victim’s information, such as the com-
pany’s name, type of business, and location, were gathered from breach inci-
dents. Because it contains risk-related characteristics that can be utilized as rat-
ing factors, this information is essential for filing insurance rates. In [26], a ge-
neralized linear mixed model (GLMM) is proposed to study the quarterly fre-
quency (number of incidents) of the data breaches recorded in this same PRC 
database and its application to the cyber insurance is discussed. In this study, we 
are interested in the number of records breached affected by each recorded data 
breach incident, which is considered as the severity of the breach caused by cyber 
breach incidents and collected in PRC database. We late convert the breached data 
record to dollar amount loss in order to get a dollar amount magnitude. 

We illustrate in Section 6 an application of our proposed severity methodolo-
gy in examining aggregate cyber losses by combining the frequency modeling 
approach proposed in [26] based on the same dataset. 

As discussed in the previous section, fitting an adequate loss distribution to 
the cyber breach data set is difficult due to its nature. Here, we conduct an em-
pirical data analysis of related target and explanatory variables on the PRC data 
set to demonstrate the necessity of addressing/accounting for several risk fea-
tures. Our work is based on the most recent download of the PRC data breach 
chronology, including 9012 data breach incidents observed in the United States. 
After removing incomplete and inconsistent observations, 8095 incidents from 
2001 to 2019 are investigated and modeled. A summary statistics of this data set 

 
Table 1. Sample of PRC Chronology. 

Incident Date Type of Breach Type of Business Location Loss of Records 

2018/02/03 CARD BSF California 30 

2018/05/26 HACK GOV Washington 1000 

2018/06/30 DISC MED Massachusetts 900 

2018/09/27 PHYS EDU Florida 1500 

2018/10/09 INSD BSR Texas 700 

2018/12/05 PORT NGO Ohio 150 

 

 

4Privacy Rights Clearinghouse (PRC) database is available for public download at  
https://privacyrights.org/data-breaches.  
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is provided in Table 1. 
The first row of Table 2 provides summary statistics for the target variable, 

the “number of records” breached for a total number of 8095 data breach inci-
dents, rounded to the nearest 100 units, where qα denotes the empirical α-quantile. 
We observe from these summary statistics that the number of records has a 
32.9% excess of zeros and a very heavy right tail, given that the sample mean is 
significantly larger than the sample median. This can be revealed by the fact that 
some types of loss such as competitive advantage and reputation damage can not 
be measured in digital record units. The breach incident occurred without any 
reported loss or expenses if there were no records lost in that incident. Loss 
records range from 0 to 500 billion which is difficult to quantify under one dis-
tribution. In this regard, the remainder of the analysis in this paper is based on 
the logarithm of severity in order to maintain complete low and high loss 
amounts information. 

The PRC data set contains three explanatory variables that can be used as re-
gressors: breach type, organization type, and company location. The first two 
variables are documented to have 7 subcategories each, while the location is 
listed in 50 geographical states. We modify on their levels, based on their nature 
and characteristics to reduce factor dimensions and increase predictive power. 
Table 3 summarizes the combined model inputs of business and breach types. 
The level combination of the geographic locations is discussed and introduced in 
Section 2.2. After obtaining 6 combined levels of information, we investigate their 
performance on the target variable and find those medical and non-medical or-
ganizations behave differently concerning the number of breached records. It 
can be observed from last two rows of Table 2 the significant differences be-
tween the medical data and the non-medical data; the latter refers to the business 
and non-business types of organizations in Table 3. Although they all process a 
similar point mass of zero, their zero proportions differ notably to the extent of 
the heavy tail and maximum amount measured on the non-zero claim amount. 
In addition, the medical losses are more compact compared to non-medical 
losses. We hence postulate that the underlying severity distribution features 
multimodality; in this sense, a multimodal distribution or mixture distribution 
could be candidates for modeling the overall losses. 

The above-mentioned fact can also be observed from Figure 1, where both 
histograms of logarithmic records breached and incurred by the medical and the 
non-medical organizations are displayed. The non-zero severity body part of den-
sity of medical organization has a peak of around 600 records, and the probability  

 
Table 2. Summary statistics of target variable. 

 Number Zero Prop. q0.25 Mean Median q0.75 Maximum 

Total 8095 32.90% 1000 1,018,488 2800 13,000 5 × 108 

Medical 4161 15.66% 1000 69,353 2300 8800 7.88 × 107 

Non-medical 3934 51.12% 900 2,750,425 4700 38,900 5 × 108 
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Table 3. Type of organizations and breaches. 

Original Types Combined Levels 

MED Healthcare, Medical Providers and Insurance Services Medical 

BSF Businesses (Financial and Insurance Services) 

Business BSO Businesses (Other) 

BSR Businesses (Merchant including Online Retail) 

EDU Educational Institutions 

Non-business GOV Government or Military 

NGO Nonprofits 

CARD Fraud Involving Debit and Credit Cards 
External Malicious 

HACK Hacked by an Outside Party or Infected by Malware 

INSD Insider 

Internal Malicious PHYS Physical 

PORT Portable Device 

STAT Stationary Computer Loss 
Internal Negligent 

DISC Unintended Disclosure 

 

 
Figure 1. Histograms between medical and non-medical organizations. 

 
for losses being smaller than the mode value is relatively low. Meanwhile, the 
body part density for non-medical organizations shows a relatively smooth and 
flat distributional pattern before and after its mode point and relatively a heavier 
tail. Compared to financial services industry, which has spent the last 20 years 
focusing on cyber security and protection [27], healthcare organization is not as 
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frequently attacked by cyber related incidents. Medical organizations form tradi-
tionally risk retention group to mitigate huge liability losses caused by cyber 
breaches, making them reluctant to understand, track, report, and manage 
threats via open market cyber insurance coverage. Besides, mature incident and 
vulnerability risk management processes are lacking in most medical organiza-
tions [28]. Thus, daily threats are not even reported or managed effectively, 
which explains the low occurrence of cyber-severity loss of less than 600 incident 
records. Even though some of the data are already appropriate to model losses 
with heavy tails, they do not account for this type of multimodality case resulting 
from data variations observed between medical and non-medical organizations. 
In this regard, estimating the moderate loss density component with a fixed 
number of mixed components is advantageous. 

2.2. Cluster Analysis 

Because the PRC data also contains the geographical location of the victims of 
cyber attacks, a list of 51 states of U.S. with their latitudes and longitudes serves 
as the raw data information. It is a common practice that the number of levels in 
the geographical rating factor are to be reduced in order to provide effective risk 
measurement for insurance rate-making. For this purpose, we use one of the in-
itialization strategies, cluster analysis [29], to do the analysis. Clustering analysis 
is a newly developed computer-oriented data analysis which utilize unsupervised 
machine learning algorithm. Clustering is segmenting a data set based on simi-
larities between the data points. We conduct cluster analysis for three reasons. 
First, it avoids diluting predictive power caused by the geographical location 
factor with 51 levels. Second, when states with similar characteristics are grouped, 
implementing rate-making is simpler. Third, it reduces the likelihood that the 
rate for one area is drastically differ from that for its neighbouring areas. Cluster 
analysis divides observations into distinct groups so that the observations within 
each group are quite similar to one another, as opposed to grouping 51 states 
into some official government regions, such as those used by the U.S. Census 
Bureau and the Standard Federal Regions. Cluster analysis divides observations 
into distinct groups such that the observations within each group are similar to 
each other. Before clustering, we conduct a cluster analysis using the means of 
latitude and longitude in each state as representatives. In this regard, we smooth 
the regression coefficients to make them more reasonable and interpretable, 
given that clustered groups are based on state average level. Now we have a set 
of 8095 observations, each with two features, longitude and latitude, that can be 
used to identify subgroups. We are attempting to discover geographical hetero-
geneity structures based on the PRC data set, which is an unsupervised prob-
lem. 

Figure 2 represents the geographical heat map information in a two-dimensional 
space of longitude and latitude. These are the first two principal components of 
the data, which summarize the 8095 investigated incidents for location information  
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Figure 2. Average severity level among states. 

 
in terms of two geographical dimensions. Each small, closed area corresponds to 
one of the 51 states, allowing for a visual examination of the average severity lev-
el for signs of clustering. There appear to be multiple groups of clusters with 
similar colour patterns. Two commonly used clustering techniques are k-means 
[30] and hierarchical [31], which have been widely applied in territory studies 
for finding patterns and investigating the underlying geographical structure of 
the data. This study uses the k-means method with elbow [32] to improve an ef-
ficient and effective k-means performance. The elbow method is the default me-
thod for determining the optimal number of clusters for a characteristic process. 
The k-means clustering algorithm formalizes finding the best similarity group-
ing where the observations within each cluster are as small as possible, and the 
variation between clusters is significant. The similarity is measured by the sum 
of the squared Euclidean distance (SSE) [33], one of the most widely used cluster 
distance criteria: 

( )2

1
SSE ,

i k

K

i k
k x C

x µ
= =

 
= − 

 
∑ ∑

 

where kµ  is the cluster centroid/mean, and kC  represents one of the K clus-
ters. We manually conduct a k-means cluster analysis with one to six clusters 
and calculate the ratio between cluster sum of squares and the total sum of 
squares for each round. We take this ratio as the y-axis and create an elbow plot 
as inllustrated in Figure 3(a). The plot demonstrates the elbow at 5k = , 
beyond which the gains in the between cluster of sum of squares appear to be 
minimal as the increase in total sum of squares after 5k =  is greatly shrinking 
down; therefore 5 is the best cluster cut-off point. Figure 3(b) depicts the relative  
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Figure 3. Cluster selection. (a) Elbow plot for clusters; (b) Five geographical clusters. 

 
geographical location of five clusters, while Appendix A provides context-speci- 
fic information about cluster partitioning by state. This way, we can identify the 
geographical segments of cyber severity and classify them according to similar 
risk factor factors. 

3. Modeling Framework 

One of the professional ethics of actuaries is to study loss distributions. Sug-
gested by the empirical data analysis in Section 2.1, the severity distribution of 
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cyber loss records possesses point masses of zero, over-dispersion and heavy tail 
on extreme values, and various severity performance types on medical and non- 
medical organizations, which hardly can be fitted by a single analytic and para-
metric distribution. Our data set also allows us to examine individual risk cha-
racteristics via regression predictors, such as breach type, business type, and lo-
cation. Based on these characteristics, we propose an FMM with three compo-
nents integrated into a GLM framework to analyze the severity of a cyber loss. 

3.1. Splicing Models 

Many risk and loss variables, such as bodily injury costs and cyber losses, have 
long tails. Therefore, when modelling claim size to set premiums, calculating 
loss measures, and determining capital requirements for solvency regulations, it 
is frequently necessary for the actuarial analytic domain to obtain a global fit for 
risk distributions. In the literature, a splicing model is also called a composite 
model, in which multiple light-tailed distributions for the body and a heavy-tailed 
distribution for the tail are combined. The general density form of an m-com- 
ponent spliced distribution is as follows: 

( )

( )
( )

( )

1 1 1

2 2 2

,
,

,m m m

p f y y C
p f y y C

f y

p f y y C

 ∈
 ∈= 

 ∈



                  (3.1) 

where if  is a legitimate density function with all probability on the mutually 
exclusive and sequentially ordered interval iC , and positive weights 1, , mp p  
that add up to one, i.e., 

1 1m
ii p

=
=∑ . In this regard, the density function (3.1) 

and its corresponding cumulative distribution function can be written as a com-
pact form and as 

( ) ( ) ( ) ( ) ( ) ( )
1
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where I is an indicator function with ( ) 1

iCI y = , if iy C∈ , otherwise 0, iF  is 
the corresponding cumulative distribution function of if  in the interval iC . 

Based on the empirical analysis results shown in Table 2, we consider a 
spliced distribution with three components: the first component contains zeros, 
the second component models the middle segment of the amount of lost data, 
and the third component models the tail segment. Let jY  denote the random 
variable that represents the jth loss amount, c is the non-zero loss threshold, and 
then the pdf of jY  can be expressed as 
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where 1f  and 2f  are two density functions with cdf 1F  and 2F , respective-
ly, defined on ( )0,∞ , ( )TT T

1 2,=α α α  is a set of parameter vector associated 
with the distributions for the components. The threshold c is a parameter to be 
estimated from the data which is investigated in Section 4.3. The remaining un-
known parameters 1 2,p p  and α  can be estimated using the maximum like-
lihood estimation (MLE) method by maximizing the log-likelihood function 
based on observations 1 2, , , ny y y , which is 

( ) ( )( ) { } ( )

( ( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( )

1 0
1

2 1 1 1 1 1 10 ,
1

1 2 2 2 2 2,
1

log log ;

log ; log ; log ; 0 ;

log 1 ; ; log ; log 1 ; .
j

n

j j
j

n

j j jc
j

n

j j jc y
j

p y I y

I y p y f y F c F

I p y p y f y F c

+

=

+

=

∞
=

=

 + + − − 

 + − − + − − 

∑

∑

∑

 α α

α α α α

α α α α

(3.3) 

3.2. Finite Mixture Models 

Due to the adaptability in utilizing high-dimensional features, coping with pop-
ulation heterogeneity, and achieving multiple interrelated goals, mixture distri-
butions have gained popularity in recent years. [34] provides a thorough discus-
sion of using the EM algorithm to find maximizers of MLE and the selection of 
the number of components in finite mixture models. Let 1, , nY Y  denote a 
random sample of size n, and ( )T

1, , ny y=y 
 is the observed value of random 

vector. Suppose that jY  follows a finite mixture distribution with density func-
tion f on  , which can be written in the form5 

( ) ( )
1

,
g

M j i i j
i

f y f yπ
=

= ∑                     (3.4) 

where for 1,2, ,i g= 
, if  is a density function and iπ  is a non-negative 

quantity such that 0 1iπ≤ ≤  and 
1 1g

ii π
=

=∑ . The quantities 1, , gπ π  are 
the mixing proportions or weights, and 1, , gf f  are called the component 
densities of the mixture. We call density (3.4) as a g-component finite mixture 
density function and its corresponding distribution MF  as a g-component fi-
nite mixture distribution function. 

In order to well interpret the mixture models, let jZ  be a g-dimensional 
component label vector where the ith element ( )ij j i

Z = Z  is defined to be one 
or zero according to whether the component of jY  in the mixture is equal to i 
or not ( 1, ,i g= 

). Thus this categorical random vector jZ  can be viewed as 
following a multinomial distribution with probabilities 1, , gπ π ; that is, 

{ } 1 2
1 2

j j gjz z z
j j gπ π π= =Z z                    (3.5) 

according to a multinomial distribution consisting of one draw on g categories 
with probabilities 1, , gπ π  We write 

 

 

5In this formulation of the mixture model, the number of components g is considered fixed. In many 
applications, the value of g is unknown and inferred from the available data, along with the mixing 
proportions and the parameters in the specified forms of the component densities. 
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( )~ Mult 1, ,j gZ π                      (3.6) 

where ( )T
1, , gπ π= π . In the interpretation of a mixture model, jY  is drawn 

from a population with G with g groups, 1, , gG G  in proportions 1, , gπ π , 
where the density of jY  in group iG  is ( )i jf y  The component-indicator 
variables ijz  will be used in finding optimizers under ML estimation via the 
EM algorithem in Section 4. 

Generally, the components can be any exponential family distribution [35]; 
observations are available from a population known to be a mixture of K 
sub-populations. In our study, each subpopulation will not necessarily be as-
sumed to have the same type of distribution, which is one of the most significant 
departures from previous research. For a single observation, the probability den-
sity of the exponential family can be expressed as follows: 

( ) ( ) ( ); , exp ,j j j
j j j

y b
f y c y

θ θ
θ φ φ

φ

 − = + 
  

           (3.7) 

where jθ  is a natural parameter or canonical parameter, φ  is the dispersion 
parameter or scale parameter6, ( )jb θ  is a known function called cumulant 
function and ( ),jc y φ  is a normalizing function, thus ensuring that (3.7) is a 
probability function. The mean and variance of exponential family distributions 
can be expressed by ( )jb θ  as follows: 

( ) ( ) ( ) ( )and .j j j j jE Y b Var Y bµ µ θ φ θ′ ′′= = = =           (3.8) 

Considerations are given to the family of mixtures of generalized linear mod-
els (GLMs) because many applications of non-normal mixtures involve compo-
nents from the exponential family. GLMs are a statistical framework for unifying 
several significant exponential family models [37]. In this framework, it is per-
missible for the mixing proportions and the component distributions are al-
lowed to depend on some associated covariates. We have independent sample 
data { },j jyx , 1, ,j n= 

, in which jy  is the response/target variable, n is the 
sample size, and ( )T

1, ,j j jpx x=x   is a vector of p explanatory variables, 
GLMs thus fit the following: 

( ) T
1 1j j j j p jpg x xµ η β β= = = + +x β              (3.9) 

where jη  is the linear predictor, and jµ , the mean of an exponential family 
distribution ( ); ,j jf y θ φ , is a known function of the canonical parameter jθ  
described in (8), ( )g ⋅  is a known link function that connects distribution mean 
and linear combination together. 

From the above methodologies, we propose a finite mixture regression model 
where mixture components can be from same or different types of parametric 
family. Our model employs candidate distributions like Gamma, Log Normal, 

 

 

6When φ  is known, the distribution of jY  is one-parameter canonical exponential family mem-

ber. When φ  is unknown, it is often a nuisance parameter and then it is estimated by the method 
of moments. In most of GLM theory, the role of φ  is often treated as an unknown constant but 
not as a parameter [36]. 
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Inverse Gaussian, and Weibull because loss or severity is typically modelled as 
continuous random variables. 

3.3. Zero Inflated Mixture and Composite Regression Models 

In this subsection, we introduce a order to provide a clear understanding of our 
combined finite mixtures and splicing model, we first perform our model under 
a general splicing framework with three parts spliced densities jointing with 
weighting probabilities, followed by a detailed finite mixture section expression 
of the moderate spliced density part. 

Let Y +∈  be the claim severity random variable, and let P∈x   be the 
vector of covariate information. The density of the zero-inflated mixture com-
posite regression model written in a spliced form with zero and two densities 

Mf  and Tf  and their corresponding cumulative distribution functions (CDFs) 

MF  and TF  is given by 

( )
( ) { }

( ) ( )
( ) ( ) { }

( ) ( ) ( )
( ) { }

1

2

1 2

; , , , , , ,

; , 0

; , , ,
; , , 0

; , , , 0 ; , , ,

; , ,
1 ; , ; , , ,

1 ; , ,

Y j j

j j j

M j j
j j j

M j M j

T j
j j j j j

T j

f y

p y y

f y
p y c y c

F c F

f y
p y p y c y c

F c

κ

κ

κ

+

= =

+ < ≤
−

 + − − >  −

x

x

x
x

x x

x
x x

x

 

 

   

α φ γ

α

φ
α

φ φ

γ
α α

γ

1

1

1

 (3.10) 

where { } ( )1 2, 0,1p p ∈  are the splicing weights, c is the splicing point which is 
the threshold separating the moderate and extreme loss values, α  is covariate 
coefficients of zero-inflated weight,  ,   and φ  are parameter vectors of 
the density of body Mf  which is a finite mixture model, and γ  and κ  are 
coefficients of the density of tail Tf . 

In this study, the finite mixture distribution Mf  is the density of positively 
defined continuous distributions with upper truncation at the threshold loss lev-
el c. 

( ) ( ) ( )( )T

1
; , , , ; ;exp ,

g

M j j ij j i j i j i
i

f y f yπ φ
=

= ∑x x x  φ β      (3.11) 

where   contains the elements of 1, , gβ β  known a priori to be distinct, 

( )T
1, , gφ φ= φ  is a vector of fixed dispersion parameters of g distribution 

components from the exponential family. The parameter ijπ  is the mixing 
proportion of the ith function and jth observation which is a function of jx  
and commonly modeled by logistic distributions 

( ) ( )
( )

T

1 T
1

exp
; ,

1 exp
i j

ij i j g
h jh

π π −

=

= =
+∑

x
x

x


ω

ω
            (3.12) 

where ( )TT T T
1 1, , ,g g−=  ω ω ω , with g =ω 0 , contains the logistic regression 

coefficients. Lastly, Tf  is the tail density function from the exponential family 
with heavy-tailed performance, given by 
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( ) ( )( )T; , , ;exp ,T j j T j jf y f yκ κ=x xγ γ             (3.13) 

where ( )Texp j j jθ=xγ , the canonical parameter in (3.7), and κ  is the disper-
sion parameter. 

4. Parametric Estimation 

Let Ψ  represent the set of vectors representing all the unknown parameters in 
(3.10) that must be estimated, namely, 

( )TT T T T, , , .=  α γΨ                    (4.1) 

The density of our spliced mixture regression model (3.10) of the jth response 
variable jY  can then be written as follows: 

( ) { } ( )
( ) ( ) { }

( ) ( )
( ) { }

1 2

1 2

1 ; ,
; 0 0

; 0 ;

; ,
1 > .

1 ;

j j

j j

g
ij i j ij i

j j j
M M

j
j

T

i

T j

f y
f y p y p y c

F c F

f y k
p p y c

F c

π φ
+

== = + < ≤
−

+ − −
−

∑ β

γ

1 1

1

Ψ
Ψ Ψ

Ψ

  (4.2) 

where ( )1 1 ;
j jp p= x α  and ( )2 2 ; ,

j jp p c= x α . In this way, the log likelihood 
for Ψ  can be formed as 

( )

( ) { } ( ) ( )

( ) ( ) { }

( ) ( ) ( ){ } { }

1 2
1 1 1

1 2
1

log

log 0 log log ; ,

log ; 0 ; 0

log 1 log ; , log 1 ; .

j j

j j

gn n

j ij i j ij i
j j i

M M j

n

T j j T j
j

p y p f y

F c F y c

p p f y k F c y c

π φ
= = =

+

=

  ∝ = + +  
  

 − − < ≤ 

+ − − + − − >  

∑ ∑ ∑

∑



β

γ

1

1

1

Ψ

Ψ Ψ

Ψ

 (4.3) 

The EM algorithm [38] can be applied to obtain the MLE of Ψ  in this 
spliced mixture regression model. The complete-data log likelihood is given by 
the following 

( )

( ) { } ( ) ( ) ( )

( ) ( ) { }

( ) ( ) ( )( ) { }

1 2
1 1 1

1 2
1

log

log 0 log log log ; ,

log ; 0 ; 0

log 1 log ; , log 1 ;

j j

j j

c

gn n

j ij ij i j ij i
j j i

M M j

n

T j j T j
j

p y p z f y

F c F y c

p p f y k F c y c

π φ
= = =

+

=

  ∝ = + + +  
 − − < ≤ 

 + − − + − − >
 

∑ ∑ ∑

∑



β

γ

1

1

1

Ψ

Ψ Ψ

Ψ

(4.4) 

where ijz  denotes the component-indicator variables as defined in (3.5). 

4.1. E-Step 

The EM algorithm is applied to this problem by treating the ijz  as missing da-
ta. E (for expectation) and M (for maximization) are the two iterative steps. 
Given an observed data y , we take the conditional expectation of the compe-
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lete-data log likelihood (4.4) using the current fit for Ψ . We consider ( )0Ψ  as 
an initial value of the iterative computation. The E-step computes the condition-
al expectation of ( )log c Ψ  given y  using ( )0Ψ  for Ψ  on the first EM al-
gorithm iteration, that is 

( )( ) ( ) ( )0
0; log |cQ =   y 

Ψ
Ψ Ψ Ψ                (4.5) 

where the subscript ( )0Ψ  means that using ( )0Ψ  for Ψ  effect the expecta-
tion. In this manner, the E-step calculates ( )( ); kQ Ψ Ψ  on the ( )1k + th itera-
tion, where 

( )kΨ ) is the value of Ψ ) after kth iteration. The E-step requires the 
calculation of the current conditional expectation of ijZ  given the observed da-
ta y , respectively 

( ) ( ) ( ) { } ( )( )| 1 | ; ,k k
k

ij ij ij jZ Z yτ= = =y y Y 
Ψ Ψ

          (4.6) 

where 

( )( ) ( )
( )( )

( )( )
( )

( )( )
( )( ))

1
(

; ,
;

;

; ,

; ,

k
i j ij ik k

ij j ij k
M j

k
i j ij ik

ij g kk
hj h j hj hh

f y

f y

f y

f y

φ
τ π

φ
π

π φ
=

=

=
∑

y
β

β

β

Ψ
Ψ

           (4.7) 

for 1, ,i g= 
; 1, ,j n= 

. The quantity ( )( ); k
ij jτ y Ψ  is the posterior proba-

bility that the jth member of the sample with observed value jy  belongs to the 
ith component of the mixture. Taking the conditional expectation of (4.4) using 
(4.6) that 

( )( )
( ) { } ( ) ( )( ) ( )

( ) ( ) ( ) { }

( ) ( ) ( )( ) { }

1 2
1 1 1

1 2
1

;

log 0 log ; log

log ; , log ; 0 ; 0

log 1 log ; , log 1 ;

j j

j j

k

gn n
k

j ij j ij
j j i

i j ij i M M j

n

T j j T j
j

Q

p y p

f y F c F y c

p p f y k F c y c

τ π

φ

= = =

+

=

 = = + + 
 + − − < ≤  

 + − − + − − > 

∑ ∑ ∑

∑

y

β

γ

1

1

1

Ψ Ψ

Ψ

Ψ Ψ

Ψ

 (4.8) 

We assume ( )0 ; 0MF + =Ψ  in the following derivations, which is generally 
the case. 

4.2. M-Step 

The M-step on the ( )1k + th iteration entails solving the following system of 
four equations: 

( ) { } ( ) { } ( ) { }1 2 1 2
1

log 0 log 0 log 1

,

j j j j

n

j j j
j

p y p y c p p y c
=

∂  = + < ≤ + − − > ∂

=

∑ α
1 1 1

0
(4.9) 

( )( ) ( ) { }
1 1

; log 0 ,
gn

k
i j ij j

j i
y cτ π

= =

∂
< ≤ =

∂∑∑ y


1 0Ψ         (4.10) 
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( )( ) ( ) ( ) ( ) { }
1 1

; log ; , log ; 0 ; 0
gn

k
i j i j ij i M M j

j i
f y F c F y cτ φ +

= =

∂   − − < ≤  ∂

=

∑∑ y


β 1

0

Ψ Ψ Ψ (4.11) 

( ) ( )( ) { }
1

log ; , log 1 ; .
n

T j T j
j

f k F c y c
=

∂  − − > = ∂∑ y γ
γ

1 0Ψ      (4.12) 

Equations (4.9) and (4.10) can be solved using a standard algorithm for logis-
tic regression to produce updated estimate ( )1k+α  and ( )1k+  for the logistic 
regression coefficients as they both represent the probabilities between 0 and 1. 
Concerning the computation of   and γ  and applying the chain rule of [39], 
the likelihood equation for γ  (4.12) can be expressed as 

( )( ) ( )
1

,
n

j j j j j
j

w yµ µ η µ
=

′− =∑ x 0                (4.13) 

where ( )Texpj jµ = xγ , ( ) d dj j jη µ η µ′ =  and ( )jw µ  is the weight func-
tion defined by 

( ) ( ) ( )2
1 .j j j jw Vµ η µ µ ′=                   (4.14) 

The likelihood Equation (4.13) can be solved using iteratively reweighted least 
squares (IRLS) [37]. The adjusted response variable jy  for the ( )1k + th itera-
tion is 

( ) ( )( ) ( )( ) ( )( ).k k k k
j j j j jy yη µ µ η µ′= + −               (4.15) 

These n adjusted responses are then regressed on the covariates 1, , nx x  
using weights ( )( ) ( )( )1 , ,k k

nw wµ µ . This produces an updated estimate ( )1k+γ  
for γ  and, consequently, the updated estimates ( )1k

jµ
+  for the jµ  for use in 

the right-hand side of (4.15) to update the adjusted responses, and so on. This 
procedure is repeated until the variations in the estimates are small enough. 
Same as (4.13), the likelihood for   in (4.11) can be written as 

( )( ) ( )( ) ( ) ( )
1 1

;
g n

k
ij j ij j ij i ij i ij

i j
y w yτ µ µ η µ η µ

= =

∂ ′− = ∂ 
∑∑ 

0Ψ      (4.16) 

where ijµ  is the mean of jY  for the ith component. Given that 

( ) , if

0, otherwise,
j

i ij
h

h i
η µ

=∂ = 
∂ 

x
β

                (4.17) 

Equation (4.16) reduces to solving 

( )( ) ( )( ) ( )
1

;
n

k
ij j ij j ij i ij j

j
y w yτ µ µ η µ

=

′− =∑ x 0Ψ           (4.18) 

Separately for each iβ  to produce ( )1k
i

+β , 1, ,i g= 
. As (4.15) responses 

1, , ny y  are fitted with weights ( )( ) ( )( )1 1; , , ;k k
i in ny yτ τΨ Ψ  and fixed dis-

persion parameter ik . (4.18) then can be solved using the IRLS approach for a 
single GLM. The double summation over i and j in (4.16) can be handled by ex-
panding the response vector to have dimension g n×  by replicating each orig-
inal observation ( )TT;j jy x  g times, with weights ( )( ) ( )( )1 1; , , ;k k

i in ny yτ τΨ Ψ , 

https://doi.org/10.4236/ojs.2023.134021


M. Sun 
 

 

DOI: 10.4236/ojs.2023.134021 443 Open Journal of Statistics 
 

fixed dispersion parameters 1, , gk k , and linear predictors T T
1, ,j j gx xβ β . 

4.3. Starting Values 

To allow the overall distribution to disjoint at the splicing point, we maintain a 
density equation at c by setting 

( )
( ) ( ) ( ) ( )

( )2 1 2

; , , ; , ,
1 ; , .

1 ; , ,; , , 0 ; , ,
M T

TM M

f c f c
p p y p

F cF c F +
= − −   −−

x x
x

xx x


 

γ θ
α

γ θ
Φ

Φ Φ
(4.19) 

After simplifying 4.19, we derive 2p  as a function of any given 1p  

( ) ( )
( )

( )
( ) ( )

( )
( )

2 1
; , , ; , ,

1 ; ,
1 ; , , ; , , 0 ; , ,

; , ,
1 ; , ,

T M

T M M

T

T

f c f c
p p y

F c F c F

f c
F c

+

 = −   − −
+ − 

x x
x

x x x

x
x



 

γ θ
α

γ θ

γ θ
γ θ

Φ

Φ Φ

 
Until now, we have considered the fitting of a Zi-MCR for a given value of se-

verity threshold c in the composite model. Typically, where our model is being 
used to handle overdispersion, c is predetermined from data using extreme value 
analysis or expert opinion via performing cyber insurance policy limit and simi-
lar matters. This is primarily motivated by estimation stability, which is adopted 
by [17]. Furthermore, conducting formal tests at any stage of this sequential 
process is chanllenging because regularity conditions for the likelihood ratio test 
statistic’s typical asymptotic null distribution do not hold [34]. Observing the 
trend in the log-likelihood as c is increased from a sequence of severity levels 
(1000, 5000, 10,000, 50,000, 100,000) can provide us with a heuristic for deter-
mining the optimal value for c. When dealing with a data-driven model, this 
method for selecting a splicing point makes more sense and is widely used [40]. 

5. Analysis of Severity of Data Breaches 

In this Section, we illustrate the efficiency of the EM algorithm on estimation by 
fitting a Zi-MCR model, as proposed in Section 3.3, to the PRC dataset. Fur-
thermore, general model form and covariates are discussed, and several distribu-
tion combinations are tested to select the best performance. 

This study is based upon the PRC cyber breach incident data by stratifying the 
residuals. The training set fine-tunes all candidate models, and their perfor-
mance and out-of-sample validation are checked upon the test set. We conduct 
5-fold cross-validation and set 80% as the training data to fit the models. Based 
on a set of breach observations, the problem is to estimate whether the unknown 
parameters can be contained in the vector ( )TT T T T, , ,=  α γΨ , as in 4.1. We 
represent the logarithm rescaled number of loss records of data breach incidents 
explained in Section 2 as a target or dependent random variable jY , and 9 cova-
riates, including intercept, 2 business levels, 2 breach levels, and 4 location area 
levels, as described in the Sections 2.1 and 2.2 as vector coefficients jx . 

Table 4 displays the summaries of three categorical variables; the proportion 
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of zeros and differences between the mean values of the categories numerically 
illustrate their distribution patterns. These results demonstrate the importance 
of letting splicing weights depend on covariates and separately modelling body 
and tail parts. 

In the PRC dataset, a source of the heterogeneity is mainly from businesses 
that have or do not have high prevention defence systems and active cyber risk 
managing activities, such as healthcare and financial service organizations. This 
is explained in Section 2.1 by comparing their kernel plots and enterprise fea-
tures. The body part component may be viewed as two groups corresponding to 
whether those incidents happened within medical organizations. The problem is 
to estimate the medical and non-medical organization mixture rate, that is, the 
mixing proportion 1π . Given 2g = , ( )1k+α  and ( )1k+  can be calculated 
using binomial error structure with the canonical logit transformation as the 
link. For illustrative purposes, we fit several popular distribution combinations 
on a mixture of body and heavy tail parts. To measure the overall goodness of fit 
of those fitted distributions, we calculate the Akaike information criterion (AIC) 
statistics. Table 5 reports the global fit distributions overall AIC values on a 
given 5000c =  threshold. The fit from Lognormal and Weibull body mixture 
and Pareto tail outperforms with the lowest AIC. We conduct a simulation study  

 
Table 4. Summary of categorical variables. 

Feature Category Zeros Mean Total Count 

Organizations 

Medical 652 (15.7%) 58,501 4161 

Businesses 1434 (63.0%) 2,197,387 2275 

Non-businesses 577 (34.8%) 174,932 1659 

Breaches 

External Malicious 1125 (44.1%) 1,635,354 2549 

Internal Malicious 775 (31.8%) 462,591 2440 

Internal Negligent 763 (24.6%) 75,805 3106 

Territories 

Area 1 1064 (35.2%) 390,949 3024 

Area 2 143 (26.9%) 301,578 531 

Area 3 449 (27.3%) 666,947 1642 

Area 4 283 (25.9%) 389,733 1093 

Area 5 724 (40.1%) 1,478,791 1805 

 
Table 5. Overall goodness-fit. 

Body Tail AIC Body Tail AIC 

Gamma Lognormal Pareto −46.3333 Gamma Lognormal Lognormal −51.5420 

Gamma Gamma Pareto −55.8390 Gamma Gamma Lognormal −49.0340 

Lognormal Weibull Pareto −56.6044 Lognormal Weibull Lognormal −45.6592 

Gamma Weibull Pareto −55.8390 Gamma Weibull Lognormal −47.3896 
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based on the entire data set to comprehend the chosen model’s adaptability fur-
ther. The procedure is repeated 200 times to ensure a thorough analysis of the 
chosen distribution combination. Finally, the estimated parameters are summa-
rized in Table 6 using the above distribution combined with the lowest AIC. 

Since the metric is based on data-driven analysis, we can draw a conclusion  
 

Table 6. Parameter estimations. 

Vector Coefficients Estimation Vector Coefficients Estimation 

Tα  

1α  −1.2292 

Tγ  

1γ  5.2892 

2α  −0.3876 2γ  0.6577 

3α  −0.0915 3γ  −0.1476 

4α  0.5934 4γ  −0.6063 

5α  1.6082 5γ  1.1548 

6α  −0.1650 6γ  −0.4896 

7α  −0.2233 7γ  0.7618 

8α  −0.1999 8γ  1.4402 

9α  −0.6482 9γ  1.5340 

T
1β  

11β  1.1170 

T
2β  

21β  2.1593 

12β  0.9828 22β  0.1305 

13β  −0.3131 23β  −0.2645 

14β  0.0360 24β  0.0192 

15β  0.0404 25β  −0.2291 

16β  −0.4804 26β  0.1814 

17β  0.4161 27β  0.2837 

18β  0.2168 28β  0.2892 

19β  0.0734 29β  0.2688 

T  

1w  0.1704    

2w  0.9999    

3w  0.5000    

4w  0.2856    

5w  0.1557    

6w  0.6757    

7w  1.0000    

8w  1.0000    

9w  0.0027    

that the selected combination, Lognormal-Weibull and Pareto, has the most ex-
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planation power of PRC dataset. If other dataset is given, methodology and algo-
rithm in generating the metric should not change, selected distribution combi-
nation would depend on a case by case basis. 

6. Cyber Loss Aggregation and Application 

The premium calculation algorithm, known as rate order calculation, is applied 
to categorize segmentation to derive final premium rates. In order to set com-
petitive premiums and develop sustainable underwriting plans, insurers exten-
sively use historical loss data to seek economies of scale and premium balancing. 
Statistical algorithms and mathematical modelling arguments are used to struc-
ture aggregate cyber risk. The purpose of this Section is to describe an aggregate 
loss model based on the total amount of cyber loss that occurs in a quarter con-
cerning a group of homogeneous risk characteristics and apply this model to de-
termining increased limit factors (ILFs) based on the underlying data in order to 
balance statistical and economic constraints. A case study is established for two 
locations and business types (non-business and business, respectively). Their 
cyber risks are aggregated under all possible policy limits and deductible combi-
nations. One method for addressing this issue is to separately model the indi-
vidual severity levels and the quarterly incidence rate. These components can 
then derive a distribution for the total in a period. This approach has several ad-
vantages: changes over time can be monitored and attributed to frequency or 
severity as cyber risk shows a strong seasonal pattern. The other is that metho-
dology can be quickly adapted to find suitable models for the components, as in 
the previous model selection. According to risk theory [41], a collective risk 
model with aggregate loss S, which represents the total amount for a quarterly 
cyber risk, can be defined as follows 

1 2 ,NS X X X= + + +  

where loss count N and non-negative severities 1, , NX X  are random va-
riables with independence assumptions that N does not rely on the severity of 
loss and iX s  are i.i.d. independently with respect to a given count N. Under 
this assumption, the aggregate loss distribution (ALD) SF  is a compound cdf 
of the following form [16]: 

( ) ( ) ( ) ( ) ( )
0

| ,n
S N N X

n
F s p n Pr S s N n E F s

∞
∗

=

= ≤ = =∑
 

where ( ) ( )Np n Pr N n= =  and ( )n
XF ∗  is the n-fold convolution of XF , which 

is defined by: 

( ) ( ) ( ) ( ) ( )
( )

1

0
d d 2,3,

1.

x n
n X X

X

X

f y F x y y n
F x

F x n

∗ −
∗

 − == 
=

∫ 

 
Because of the complexity of this claim amount distribution in practical ap-

plications, the following approximations for the distribution of the total loss are 
typically taken into account: 
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• Pure Risk Premium 

( ) ( ) ,P E N E X=  
• Premium with Safety Loading Factor θ  

( ) ( ) ( ) ( )1 0,SLP E N E Xθ θ θ= + ≥  
• Premium with Variance Loading Factor a 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0,VP a E N E X a E N Var X E X Var N a = + + ≥   
• Premium with Standard Deviation Loading factor b 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0,SDP b E N E X b E N Var X E X Var N b= + + ≥
 

In our case study, where loading factors are not specified, pure premium 
creates an example, which can be modified once loading information is obtained 
from businesses. Table 7 displays the total quarterly dollar loss caused by cyber 
risk. While frequency distribution is determined by our previous investigation of 
the generalized linear mixed model [26] of the same dataset, severity distribution 
is the distribution combined with the lowest AIC in Section 5. With dollar 
amount transferred from units of loss record by applying following rule [42]: 

( ) ( )ln dollar amount loss 7.68 0.76 ln loss records breached= + ×  
 

Table 7. Quarterly aggregate loss in dollar amount. 

Location 
Business 

Type 
Deductible 

Max. 
Coverage 

Estimated Loss TVaR0.95 

Northeast 

Business 

- - USD 197,891 USD 37,569 

USD 10,000 - USD 188,469 USD 37,284 

- USD 1M USD 197,891 USD 32,182 

USD 10,000 USD 1M USD 188,469 USD 31,983 

Non-Business 

- - USD 2,283,023 USD 38,256 

USD 10,000 - USD 2,273,881 USD 37,965 

- USD 1M USD 1,164,335 USD 28,538 

USD 10,000 USD 1M USD 1,162,902 USD 28,019 

West 

Business 

- - USD 1,408,541 USD 24,103 

USD 10,000 - USD 1,398,568 USD 23,997 

- USD 1M USD 1,264,013 USD 19,326 

USD 10,000 USD 1M USD 1,260,245 USD 19,145 

Non-Business 

- - USD 14,661,661 USD 104,839 

USD 10,000 - USD 14,651,699 USD 104,401 

- USD 1M USD 1,680,241 USD 43,843 

USD 10,000 USD 1M USD 1,680,149 USD 43,497 

For the collective risk model, the expected value and variance of aggregate 
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claims S are as follows: 

( ) ( ) ( ) ,E S E N E X=  

( ) ( ) ( ) ( ) ( )2 .Var S E N Var X E X Var N= +  
Estimates of quantities such as VaR, TVaR, and ILFs can be analyzed using 

aggregated results at a given risk tolerance level. Utilizing risk characteristics, 
our model divides homogeneous risks into segments. Then, product designers 
can decide whether to implement policy limits or seek reinsurance. It can be 
broken down into four steps: establishing the base rate, applying risk factors, 
multiplying discount and surcharge, and factoring in expense retention. The first 
and second steps lay the groundwork for the entire pricing process. They are 
frequently carried out using an experienced-based pricing technique with pre-
liminary data for analysis. Our cyber risk loss aggregation results are generated 
within a Bayesian framework, which proves to be a useful prediction tool for es-
timating future loss among segmentation with confidence. 

7. Conclusions and Discussions 

Once an insurance loss model has been constructed, in addition to applying 
techniques to data sets, we must consider numerous modelling-related factors, 
such as risk management and pricing decisions (for insurers) or the impact on 
capital requirements (for enterprises). Our model and findings provide mea-
ningful insights to risk mitigation and risk transfer techniques, which benefit not 
only the individual organization, but also the overall economy. 

Cyber risk exists because computer data is valuable to individuals. Business, 
and governments; therefore, the data must be protected by organizations that 
store privileged information. Financial firms receive, maintain, and store large 
amounts of personally identifiable information. Recent security research [43] in-
dicates that most businesses have unprotected data and inadequate cybersecurity 
practices, making them susceptible to data loss. As more executives and deci-
sion-makers recognize the value and significance of security investments, cyber-
security budgeting has steadily risen to successfully combat potential digital 
property loss. A systemic cyber event could cost multiple times the current risk 
retention estimate. As a result of regulatory scrutiny and the need for improved 
portfolio management, businesses conduct scenario modelling and sensitivity 
tests regularly based on their changing risk appetite. To reduce cyber risk, or-
ganization can adopt threshold limits by monitoring risk with preset limits based 
on established risk criteria, trigger will be placed in threshold that has been 
breached. The objective is to achieve and maintain an acceptable level of risk at a 
reasonable cost. Under the leadership of the Chief Risk Officer, companies must 
revise their strategies, including changes to their risk appetite and the composi-
tion of their hedge products. Due to some businesses’ nature or responsibilities, 
increasing risk appetite or security investments may not be sufficient to achieve 
the risk management objective. Such limited reserved retention can have dis-
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astrous financial consequences if a data breach occurs, forcing the organization 
to absorb the costs associated with internal remediation and its liability to third 
parties. In this perspective, cyber insurance has become an effective alternative 
or backup tool for managing cyber risk. 

Our investigation of large claims and an excess of zeros raises the issue of the 
risk’s insurability under various feature characteristics. To eliminate the variance 
caused by the heavy tail, the non-catastrophe loss will then be used to train a 
predictive model. Reinsurance will kick in if the loss exceeds the company’s to-
lerance level to ensure that insurers are not severely impacted. Our model offers 
additional perspective on coping with extreme loss value, such as cyber risk. Risk 
selection is one of the most crucial processes when designing an insurance 
product. Since not all customers are equally attracted to an insurance product, 
segmenting the risks into distinct groups is advantageous to prevent adverse se-
lection. To ensure that cyber insurance products are priced appropriately, we use 
the results from the Section 6 to divide risks into categorizable segments. In ad-
dition, our model can be utilized to perform a preliminary pre-screening of a 
prospective client to facilitate rate discrimination and the creation of customized 
contracts. This security audit enables the insurer to capitalize on the profit op-
portunity presented by the interdependence of cyber risk. 

Combining the loss frequency and severity distribution through convolution 
is the conventional method for estimating the aggregate loss distribution. Given 
the proposed mixture and composite severity model, aggregate losses can be es-
timated through simulation since our previous frequency model was semi-pa- 
rametric with a simulated posterior distribution without a closed form of distri-
bution. 

The financial sector faces cybersecurity risks in their daily operations while 
insuring product providers. Insurers receive personal health and financial in-
formation from both policyholders and claimants. The cost of cyber insurance 
increased by an average of 96% in the third quarter of 2021 as organizations 
faced a daily onslaught of cyberattacks [44]. To mitigate the premium price in-
crease, policyholders increased their retention. As a result, insurers must im-
prove predictive analysis and cyber risk models to maintain market share and 
company solvency. Our model provides a method for measuring cyber risk se-
verity, and there are multiple ways to extend this method. As previously stated, 
all of our results are based on the assumption of equal exposure, whereas expo-
sure is the most crucial factor in determining the pure premium. Cyber risk loss 
exposures is any condition that presents the possibility of financial loss to an or-
ganization from property, net income and liability as a consequence of advanced 
technology transmissions, operations, maintenance, development and support. 
Training the predictive model under the assumption of equal exposure in a de-
fined time period would be an important direction for future research once prior 
experience data with exposure information is obtained. 
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Appendix 
A. Geographical Location Clusters 

Cluster Label Number of Observations States 

1 3024 CT, DE, DC, IL, IA, ME, MD, MA, MI, NE, 

  NH, NJ, NY, OH, PA, RI, SD, VT, WI, WY 

2 531 AK, MN, MT, ND, OR, WA 

3 1642 AL, AR, FL, GA, ID, LA, MS, OK, SC, TX 

4 1093 IN, KS, KY, MO, NC, TN, VA, WV 

5 1805 AZ, CA, CO, HI, NV, NM, UT 
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