
Open Journal of Statistics, 2023, 13, 233-263 
https://www.scirp.org/journal/ojs 

ISSN Online: 2161-7198 
ISSN Print: 2161-718X 

 

DOI: 10.4236/ojs.2023.132013  Apr. 27, 2023 233 Open Journal of Statistics 
 

 
 
 

Probability Distribution of SARS-Cov-2 (COVID) 
Infectivity Following Onset of Symptoms: 
Analysis from First Principles 

Mark P. Silverman 

Department of Physics, Trinity College, Hartford, USA 

 
 
 

Abstract 
The phasing out of protective measures by governments and public health 
agencies, despite continued seriousness of the coronavirus pandemic, leaves 
individuals who are concerned for their health with two basic options over 
which they have control: 1) minimize risk of infection by being vaccinated and 
by wearing a face mask when appropriate, and 2) minimize risk of transmis-
sion upon infection by self-isolating. For the latter to be effective, it is essen-
tial to have an accurate sense of the probability of infectivity as a function of 
time following the onset of symptoms. Epidemiological considerations suggest 
that the period of infectivity follows a lognormal distribution. This proposi-
tion is tested empirically by construction of the lognormal probability density 
function and cumulative distribution function based on quantiles of infectiv-
ity reported by several independent investigations. A comprehensive exami-
nation of a prototypical ideal clinical study, based on general statistical principles 
(the Principle of Maximum Entropy and the Central Limit Theorem) reveals 
that the probability of infectivity is a lognormal random variable. Subsequent 
evolution of new variants may change the parameters of the distribution, which 
can be updated by the methods in this paper, but the form of the probability 
function is expected to remain lognormal as this is the most probable distri-
bution consistent with mathematical requirements and available information. 
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1. Introduction 

Although the SARS-Cov-2 virus presents many biochemical and biophysical 
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mysteries for scientists to research, the question of greatest import for the gener-
al public, to judge from numerous queries online and in the print news media, is 
a practical one: “If I get coronavirus disease (COVID), how long must I isolate”. 
This question is of critical significance to infected individuals and to those who 
determine public health policy, since the answer can have serious repercussions 
for the family, co-workers, and, in general, community of a sick person who 
does not self-quarantine long enough.  

Responses to the preceding question are given by numerous websites whose 
information often comes from secondary or tertiary news sources and rarely di-
rectly from scientists and clinicians who study or treat the disease; see for exam-
ple [1] [2] [3] [4] [5]. Reports such as these (which are but a small sample of 
many comparable sources) can be helpful, but the information provided is usual-
ly broadly general, and possibly mutually conflicting, with only qualitative asser-
tions of infectivity (“very likely”, “not very likely”, etc.), rather than a quantita-
tive measure of probability. Part of the problem is the complexity, uncertainty, 
and disagreement reflected in the medical literature itself [6] [7] [8] [9]. For 
example, the authors of Ref [9] take issue with the US Centers for Disease Con-
trol and Prevention (CDC), which decreased the recommended isolation period 
after a positive rapid antigen test from 10 days to 5 days. 

In confronting the question of isolation, it is essential to understand (as the 
general public, news media, and even medical professionals often do not) that 
the relevant answer is not a number, but a probability distribution. The period of 
isolation is a random variable, i.e. an uncertain quantity by virtue of many un-
controllable conditions such as the health of the person prior to COVID infec-
tion, the severity of the disease produced by infection, the specific variant of the 
infecting virus, the incubation period of the virus [10], and other variables.  

In this paper I propose that the conditional probability that a person with a 
positive rapid antigen test on day 0 will still test positive (and therefore poten-
tially shed virus) t days afterward follows a lognormal distribution. This propo-
sition is supported empirically by constructing the lognormal probability density 
function (pdf) and cumulative distribution function (cdf) from data provided 
by several published medical studies. Further support is provided by an objec-
tive (i.e. model-free) theoretical analysis of the probability of infectivity, em-
ploying the Principle of Maximum Entropy (PME) and the Central Limit Theo-
rem (CLT).  

Given the mathematical form of the lognormal distribution, the complete pdf 
and cdf are obtained from two empirical data from the medical literature, e.g. 
the median number of days of infectivity (i.e. the 50% quantile) as inferred from 
a positive antigen test, and the 95% quantile (i.e. the number of days after which 
the probability of a positive test is less than or equal to 5%). In statistical practice 
as applied to science and medicine, the 5% level is often set as the threshold of 
statistical significance.  

The utility of knowing the actual distribution function (in contrast to a few 
isolated qualitative guesses or estimates) is that the pdf provides 1) a self-con- 
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sistent measure of risk of infectivity as a function of time, 2) a mathematical 
structure for calculating statistical moments, quantiles, and uncertainties, as well 
as graphical output analogous to Kaplan-Meier type survival curves [11], 3) pre-
dictions against which new empirical observations can be tested, and 4) a syste-
matic framework for establishing whether different estimates of risk or different 
isolation guidelines are mutually consistent. Moreover, social science studies have 
indicated that people seriously underestimate the probability of having and spread-
ing the coronavirus [12]. It is all the more necessary, therefore, that reliable 
probabilities concerning self-isolation upon infection be available to the public 
and to public health agencies. 

The remainder of the paper is organized as follows: 
In Section 2 the lognormal pdf and cdf of the period of COVID infectivity are 

determined from several published clinical studies and tested empirically for con-
sistency. Graphical displays of the complementary cumulative distribution func-
tion (ccdf) show directly the probability of viral shedding (as determined by posi-
tive antigen or PCR tests) as a function of time following the onset of COVID 
symptoms. 

Because relatively few published reports of COVID clinical studies were found 
to provide adequate information for construction of the desired distribution 
functions, the author describes in Section 3 a prototypical procedure for obtain-
ing the pertinent statistics. These statistics comprise the mean numbers or quan-
tiles (percentages) of daily positive tests within a tracked cohort. As statistics, 
these data are variates (realizations) of random variables of unknown distribu-
tions. An objective analysis employing the PME and CLT shows that the most 
probable distribution of the number or fraction of positive COVID tests within a 
cohort, given the constraining information, is multinomial in form in which the 
probability of infectivity tp  at day t is itself a lognormal random variable (RV). 
It is then shown that the overall probability function of a multinomial distribu-
tion of a set of powers of products of lognormally distributed variables { }tp  
very closely approximates a lognormal pdf. The full demonstration comprises a 
sequence of steps, each one clearly explained and implemented in a separate 
subsection of Section 3. 

Section 4 examines the constraints of application of the PME and addresses 
questions of whether the derived distributions uniquely describe the period of 
infectivity and probability of infectivity. 

Conclusions and implications of this paper are summarized in the final Sec-
tion 5. 

2. Period of Infectivity Following COVID Infection 

It is widely, yet erroneously, believed that anthropometric features like height, 
weight, body mass index (BMI) and other variable human attributes follow a 
Gaussian distribution, which, after all, is called the “normal” distribution. How-
ever, as shown recently, height and weight are correlated bivariate lognormal 
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random variables [13], and BMI is a univariate lognormal variable [14]. Indeed, 
any non-negative distributed anthropometric quantity is more likely to follow a 
lognormal distribution than a normal distribution for at least two reasons. First, 
the range of a normal distribution spans the entire real domain and therefore 
theoretically includes unphysical negative variates, which lead to spurious results 
unless the ratio of mean to standard deviation is sufficiently high. Second, the 
normal distribution is symmetric about the mean, whereas non-negative physi-
cal variables often display a positive skewness in view of the fact that the lower 
bound is fixed and the upper bound is unlimited. 

Lognormal variables occur widely in medicine and biosciences, physical sciences, 
and social sciences [15] and engineering [16]. Of especial relevance to this paper 
is the comprehensive investigation of Sartwell [17] more than 60 years ago, 
showing that the incubation periods of approximately 20 diseases followed a 
lognormal distribution. Wide variations in the incubation periods were attri-
buted to differences in the strains of the pathogens and their modes of infection. 
Subsequent studies have also borne out Sartwell’s conclusion regarding lognor-
mal incubation periods in the case of coronavirus [18]. 

The incubation period is, in the words of Sartwell, “the time required for mul-
tiplication of the parasitic organism within the host organism up to the thre-
shold point at which the parasite population is large enough to produce symp-
toms of the host”. With regard to coronavirus and the current analysis, this can 
be considered the latent period between exposure to an infected agent and the 
first occurrence of a positive antigen test on day 0. The interval of concern in 
this paper, to be referred to as the infectivity period, is the interval between day 0 
and the first occurrence of a negative test on day 1t + , under the condition that 
the patient is isolated from further exposure and subject to antigen testing once a 
day. In analogy to the incubation period, the infectivity period is likewise a time 
period during which coronavirus levels grow and eventually subside in response 
to the body’s immune system.  

From a statistical perspective, incubation and infectivity periods represent 
stochastic birth-and-death processes [19], whereupon one might anticipate that 
the statistics of the coronavirus infectivity period would be lognormal, if the in-
cubation period is lognormal. Besides this epidemiological expectation, the Prin-
ciple of Maximum entropy, discussed in more detail in Section 3, lends support 
to a lognormally distributed period of infectivity. 

2.1. Properties of the Lognormal Distribution 

The lognormal distribution, represented symbolically by ( )2,m sΛ , is a two- 
parameter distribution defined by the mean m and variance 2s  of the parent 
normal distribution, symbolically represented by ( )2,N m s . It is to be recalled 
that a random variable X is lognormal if the variable lnY X=  is normal. The 
preceding symbolism implies that the corresponding sets of variates (i.e. realiza-
tions) { }tx , { }ty  1, ,t T=  , of the variables are related by ( )lnt ty x= .  
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The pdf of a lognormal variable X 

( ) ( )( )( )2 2

2

1 exp ln 2
2

Xp x x m s
s xπ

= − − ,               (1) 

readily follows from the well known pdf of a normal variable Y 

( ) ( )( )2 2

2

1 exp 2
2

Yp y y m s
sπ

= − −                  (2) 

by the transformation ( )lny x= . The kth statistical moment of ( )2,m sΛ  is 
defined by the expectation  

( )( )( )21 2

2
0

1 exp ln 2 d
2

k k
kM X x x m s x

s

∞
−≡ = − −

π
∫         (3) 

where the quantity 0 1M =  establishes the normalization required of a proba-
bility distribution. 

Moments and statistics relevant to this paper are the lognormal mean 

2
1

1exp
2

M m sµ  ≡ = + 
 

,                   (4) 

mean square 

( )2
2 exp 2 2M m s= + ,                    (5) 

variance 

( ) ( ) ( )2 2 2 2
2 1 exp 2 exp 2 expM M m s sσ  ≡ − = −  ,         (6) 

and skewness (a measure of asymmetry about the mean) 

( )( ) ( )
3

2 2exp 2 exp 1XSk s sµ
σ
− ≡ = + − 

 
.         (7) 

The inverse expressions by which m and 2s  are obtained from µ  and 2σ  
are 

( ) ( )2 2 2 2
1 2ln lnm M Mµ µ σ= + =              (8) 

( ) ( )
2

2 2 2
2 122 ln ln 1 2lns M Mσµ σ µ

µ
 

= + = + = 
 

.      (9) 

Analyses of the lognormal distribution in greater detail are given in References 
[13] [14] [20] in conjunction with specific applications relating to the distribu-
tion of anthropometric attributes.  

The lognormal cumulative distribution function (cdf), 

( ) ( ) ( )
0

ln1d 1 erf
2 2

kq
k

X k X

q m
F q p x x k

s

  −
≡ = + =      
∫ ,      (10) 

where 1 0k≥ ≥ , leads to the quantiles kq , which in most cases must be solved 
numerically for kq . The exception is the median, ( )0.5 0.5XF q = , for which 

 ( )0.5 expq m= .                      (11) 
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The first and third quartiles, for which ( )0.25 0.25XF q =  and ( )0.75 0.75XF q = , 
are respectively 

( )0.25 exp 0.67448975q m s= −                   (12)  

( )0.75 exp 0.67448975q m s= + ,                 (13) 

and the 95% quantile, for which ( )0.95 0.95XF q = , is 

( )0.95 exp 1.64485363q m s= + .                 (14) 

It is also relevant to include the complementary cumulative distribution func-
tion (ccdf) 

( ) ( ) ( )ln1d 1 erf 1
2 2k

k
X k X

q

q m
F q p x x k

s

∞   −
≡ = − = −      
∫       (15) 

which, in the present context, would correspond to a Kaplan-Meier type survival 
curve [21]. Thus, the 95% quantile (14) is also the 5% quantile of ( )0.95 0.05XF q ≡ .  

2.2. Lognormal pdf and ccdf of COVID Period of Infectivity 

From a report of the Erasmus Medical Center (Rotterdam NL) trial [22] that the 
median time period of positive tests to a first negative test was 0.5 8q =  days 
following the onset of symptoms at day 0, and that on average 5% of people in-
fected with COVID remained infected at 0.95 15.2q =  days, there follows from 
Equation (11) the parameter 

( )0 ln 8 2.07944m = =                        (16) 

and subsequently from Equation (14) or (15) the parameter 

0 0.39022s = .                          (17) 

Empirical parameters (16) and (17), marked by a subscript 0, uniquely deter-
mine the lognormal pdf (1), cdf (10), and ccdf (15) of the infectivity period cha-
racteristic of the investigation reported in Ref. [22]. A plot of the pdf of the dis-
tribution ( )2

0 0,m sΛ  is shown in Figure 1. The mean, median, standard devia-
tion, and skewness of the curve, calculated from Equations (4), (11), (6), and (7) 
are respectively 8.6329t = , 8.0000t =

 , 3.5011tσ = , and 1.2834tSk = .  
Figure 2 shows a plot of the corresponding ccdf. Dashed horizontal black 

lines mark the 50% and 5% quantiles with associated time periods starting at the 
vertical dashed black lines. These are the two data points from [22] from which 
the lognormal parameters 0m , 0s  were determined. However, Figure 2 also 
provides a means of testing the consistency of the lognormal distribution with 
other published quantile information. In an independent investigation by the 
UMass Chan Medical School [2], researchers reported the 30% quantile at pe-
riod 10t ≥  days. As seen in the figure, the intersection of the horizontal and 
vertical dashed blue lines corresponding to a 30% infectivity at 10t ≥  days falls 
very nearly exactly on the curve in Figure 2. To this extent, therefore, the reports 
of infectivity from the two cited independent investigations appear to be mu-
tually consistent and support the lognormal hypothesis. 
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Figure 1. Lognormal probability density of period of infectivity following onset of 

COVID symptoms on day 0.  
 

 

Figure 2. Ccdf of the probability density in Figure 1. Dashed black lines mark the 50% 

and 5% quantile points from Erasmus Medical Center used to construct the lognormal 

pdf. Dashed blue lines mark the 30% quantile point reported by the UMass Chan Medical 

School. Consistency of the two sets of measurements support a lognormal distribution. 
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In judging the consistency of outcomes, it is important to be aware of signifi-
cant differences in the protocols and sample sizes of different investigations. 
Consider the following examples.  

A third independent investigation (University of Exeter UK) [23] reported 
that 26% and 28% of individuals in two cohorts tested positive at and beyond 
day 11 of a total trial period lasting at least 31 days. Time was measured from the 
onset of symptoms to the last positive test. These results appear consistent with 
the 30% quantile at 10t ≥  days depicted in Figure 2, since the standard error 
of the mean outcome (27%) of the two cohorts is 2 2.48tσ =  days, which 
exceeds 1 day. However, the tests employed were polymerase chain reaction (PCR) 
tests rather than antigen tests. PCR tests measure viral genetic material, whereas 
antigen tests detect substances that cause the body to produce an immune re-
sponse (i.e. create antibodies). Antigen tests may be less accurate than PCR tests, 
but the latter can detect residual viral genetic material and generate a positive 
result after an active infection is over [24]. That is why antigen tests are ordina-
rily used to ascertain current infectivity, apart from the other advantage of pro-
viding results rapidly. Nevertheless, infectivity measured by PCR tests also ap-
pear consistent with the lognormal distribution in Figure 2. 

A fourth independent investigation (Imperial College London) [25] reported 
that the overall median amount of time that people were infectious, as deter-
mined by PCR tests, was 5 days [26]. The sample size of this study, however, was 
particularly small. From an initial total of 57 people in the sample, the date of 
onset of symptoms was known with certainty for only 38 of whom 34 contri-
buted the following data pertinent to this paper: (a) 22 of 34—i.e. 64.7%—re- 
mained infectious at 5t ≥  days, and (b) 8 of 34—i.e. 23.5%—remained infec-
tious at 7t ≥  days. From the quantiles specified in (a) and (b), one can con-
struct the ccdf shown in Figure 3. Horizontal and vertical dashed black lines 
mark the two data points from which the lognormal parameters 

 1

1

1.7250
0.3062

m
s

=
=

                           (18) 

were determined. The mean, median, standard deviation, and skewness of the 
curve, calculated from Equations (4), (11), (6), and (7) are respectively 5.8818t = , 

5.6125t =
 , 1.8440tσ = , and 0.9713tSk = . The cdf curve in Figure 3 is not 
consistent with the cdf curve in Figure 2. However, the three sample points are 
consistent with a lognormal distribution. The horizontal and vertical dashed 
blue lines mark the lognormal predicted median at 5.61 days, which is within 1 
standard deviation (1.84 days; confidence interval of 29.1%) of the reported 
sample median (5 days).  

It should be stressed that inconsistency between two independent studies does 
not necessarily mean that either of them was flawed. Differences among trial out-
comes can arise because of different protocols (e.g. antigen vs. PCR testing), de-
mographics (a cohort with predominantly young, previously healthy participants 
vs. elderly, less healthy patients), sample size (affecting statistical uncertainties),  

https://doi.org/10.4236/ojs.2023.132013


M. P. Silverman 
 

 

DOI: 10.4236/ojs.2023.132013 241 Open Journal of Statistics 
 

 

Figure 3. Ccdf constructed from the 64.7% and 23.5% quantile points (dashed black lines) 

reported by the Imperial College group. The same report claimed a 50% quantile (median) 

of 5 days in comparison with the lognormal predicted median of 5.6 days.  
 
coronavirus variants (affecting severity of infection), among other reasons. In-
deed, daily sampling of COVID infectivity has revealed significant heterogeneity 
in infectiousness [27]. However, in the author’s attempts to find reliable statis-
tical information regarding COVID infectivity, a pervasive problem was that few 
accessible published reports contained the kind of quantitative information needed 
to construct a pdf or cdf of the infectivity period. In the following section the 
fundamentals of an ideal clinical trial is outlined that would provide the needed 
information. The analysis, based on general statistical principles rather than any 
detailed dynamical model, leads to lognormal distributions for the probability of 
infectivity throughout the period of viral shedding. 

3. Analysis of an Ideal Clinical Trial  

The reasoning supporting the proposition that coronavirus infectivity, and per-
haps the infectivity of other diseases as well, follows a lognormal distribution 
makes use of the Principle of Maximum Entropy (PME), the Central Limit Theo-
rem (CLT), and the relation between the lognormal distribution and the distri-
bution of quotients of two random variables. The analysis begins with an ex-
amination of the fundamentals of an ideal clinical trial. Although different in-
vestigations to study infectivity as a function of time may employ different pro-
cedures, they all must in some way be comparable to the archetype examined in 
this section. If this were not the case, then the data derived from the outcome of 
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such a clinical trial would be insufficient to determine the sought-for statistical 
distributions. 

Consider a clinical trial comprising G groups of patients displaying symptoms 
of COVID on day 0. The trial runs for T days. The total number of patients in 
each group is 0,gn  ( )1, ,g G=  . An antigen test is administered daily, and the 
number of patients in each group testing positive is recorded over the time pe-
riod t from day 0 to day T, as illustrated in Figure 4 in which ,t gn  ( )0, ,t T=   
is the number testing positive in group g on day t. The sample mean of positive 
tests on day t is then 

 ,
1

1 G

t t g
g

n n
G =

= ∑ .                          (19) 

The set of numbers { },t gn  are all random variables (RVs) of unknown dis-
tribution. Moreover, the information reported by a clinical trial ordinarily com-
prises just the sample means, or more likely just a subset of the sample ratios 

0tn n  from which quantiles of infectivity (such as plotted in Figure 2 and Fig-
ure 3) are deducible, rather than the entire record. However, these sample means 
and ratios are also random variables. For such numbers to be predictively useful, 
what is desired is an objective estimate of their statistical distributions on the ba-
sis of this incomplete information. From these distributions are obtained the 
probability of infectiousness (i.e. testing positive) on day t, given that symptoms 
began (or the first positive test occurred) on day 0. By “objective” is meant that 
the resulting solution is free of extraneous assumptions and is determined only 
by the information that one has.  

 

 

Figure 4. Hypothetical statistical data from an ideal clinical trial for determining the 

probability of infectivity at day t following onset of symptoms on day 0. The trial com-

prises G groups with a total of 0,gn  participants in group 1, ,g G= 
. The number of 

participants testing positive in group g on day t is ,t gn . Information made available for 

analysis is a set of all or part of the group-averaged sample means { }tn  or ratios { }0tn n .  
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3.1. Maximum Entropy Distribution 

The most objective distribution compatible with known information can be 
found by using two fundamental statistical principles: the Principle of Maximum 
Entropy (PME) and the Central Limit Theorem (CLT).  

A) The PME: 
It is beyond the scope of this paper to provide a detailed discussion of the 

meaning and scope of entropy in physics. For the present purposes, let it be suf-
ficient to say that entropy is a measure of the total number of unobserved de-
grees of freedom (e.g. particle coordinates) of a system that manifests some ma-
croscopic state (e.g. temperature, pressure, and density). The greater the entropy, 
the more probable the state. In brief, entropy is a measure of information, and 
the PME produces the most probable solution, given the information available. 
In many of the problems to which the PME has been applied, the number of 
unobserved ways the PME solution can be realized is astronomically larger than 
for any other proposed distribution [28] that satisfies the initial constraints. 

The PME was originally employed by Jaynes [29] [30], using the Shannon ex-
pression for entropy [31], to derive the fundamental principles and relations of 
equilibrium statistical mechanics. However, it can be employed to solve many 
problems outside the domain of physics. One such example, which illustrates the 
method in more detail than can be presented here, and which may prove useful 
especially in science and medicine, is to ascertain the likelihood that a submitted 
work was plagiarized [32].  

The PME is a variational procedure for finding an unknown probability dis-
tribution. Given a set of outcomes { }kx  ( )1, ,k K=   with an associated set of 
unknown probabilities { }kp , the Shannon entropy is 

 ( )1
1

, , ln
K

K k k
k

H p p p p
=

≡ −∑ .                  (20)  

Suppose all that is known about a system is the mean outcome  

1

K

k k
k

X x pµ
=

= = ∑                        (21)  

together with the normalization requirement for a set of probabilities 

1
1

K

k
k

p
=

= ∑ .                          (22) 

One then constructs the functional 

( )1 0 1
1 1 1

, , ln 1
K K K

K k k k k k
k k k

H p p p p p x pλ λ µ
= = =

   = − + − + −   
   

∑ ∑ ∑

 ,    (23) 

where 0λ  and 1λ  are Lagrange multipliers, and varies it with respect to each 

jp   

( )1, ,
0K

j

H p p
p

δ
δ

=


                     (24) 

for 1, ,j K=  .  
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Under conditions where the sought-for distribution has a finite, nonzero mean, 
and the number of possible outcomes is finite, the implementation of Equation 
(24) leads to a binomial distribution [33]. In the present context of ascertaining 
the probability that m patients out of a sample of size 0n  and mean tn  test 
positive on day t, the PME solution takes the form 

( ) ( )

0
0

0
0 0 0

!
, 1

! !

m n m
t t

t
n n n

P m n n
m n m n n

−
   

= −   −    
.          (25) 

From the binomial probability function (25), it is seen that the probability of in-
fectivity tp  on day t is  

 0t tp n n= ,                         (26) 

the ratio of the sample mean to the total sample size. For example if 0 100n =  
and 8 50n = , then an individual has a 50% chance of still being infectious at day 
8 for this particular set of trials.  

If the information available initially included a set of mean values { }tn , as 
shown in the rightmost column of Figure 4, then the PME solution, which ge-
neralizes Equation (25), would be a multinomial distribution [34] 

( ) { } { }( )1 0 1 0 0
1

, , , , , , !
!

tmT
t

T T t t
t t

p
P m m n p p P m n p n

m=

≡ = ∏       (27) 

where the probability of infectivity tp  ( )1, ,t T=   is still defined by Equation 
(26) and the partition numbers tm  satisfy the relation  

 0
1

T

t
t

m n
=

=∑ .                          (28) 

Whereas each tp  is a parameter of the PME solution, it is, in fact, the ratio of 
the means of two random variables of unknown distribution. To find the distri-
bution of this ratio, one can employ the CLT. 

Before doing so, it is useful to mention that the probability function (25) or 
(27) leads to the variance for tp   

 ( )2
0 1t t tn p pσ = − .                      (29) 

In the limit of increasing sample size 0n  and decreasing probability tp , the 
variance (29) approaches the mean 

 2
0t t tn p nσ ≈ = ,                       (30)  

which is a characteristic of a Poisson distribution. And, indeed, it can be shown 
(by means of the moment generating function) that the probability function (25) 
reduces to the Poisson probability function  

 ( ) ( )exp
!

m
t

t tP m
m
λ

λ λ= −                    (31) 

under conditions of low probability and large sample size, such that product 
yields the sample mean tλ . For purposes of illustration, the Poisson condition 
on variance will be assumed to hold such that relation (30) is valid. This is a 
convenience, not a requirement. 
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Finally, it is worth emphasizing that the PME solutions (25), (26), and (27) did 
not depend on sample size, but only on the specified known information. The 
functional form of a PME solution would be different if more information than 
sample means were known at the outset. For example, if the mean and variance 
were known information for some system whose random variable spanned the 
entire real axis, then the derived PME solution would be of Gaussian form. A 
Gaussian solution, however, would not apply in the present case, even if the va-
riance were known, because the initial information, besides relations (21) and 
(22), required only non-negative outcomes. Under such circumstances the PME 
solution for a segment of the real axis, given known mean and variance, would 
be a truncated Gaussian distribution [35] [36]. But this PME solution would also 
not apply in the present case because implicit in the initial information is the 
requirement that the pdf or cdf reach zero smoothly at the origin, whereas the 
pdf of a truncated Gaussian can be nonzero at the origin.  

By contrast, the requirements of known mean and variance, together with 
non-negativity and continuity at the origin are satisfied by the lognormal distri-
bution. Nevertheless, it is an open question whether the lognormal distribu-
tion yields the greatest entropy of any continuous distribution consistent with 
this initial information. However, even without rigorous proof of this point, 
the validity of a lognormal distribution of the COVID period of infectivity can 
be tested empirically once clinical investigations provide the necessary data. The 
constraints on PME-derived distributions are consider further in Section 4. 

B) The CLT:  
As a broadly applicable principle, the CLT states that the distribution of the 

mean of G samples from a population of finite mean µ  and variance 2σ  app-  

roaches the normal distribution 
2

,N
G
σµ

 
 
 

 in the limit of increasing sample  

size irrespective of the actual distribution of the individual samples [37] [38]. 
The CLT does not indicate how rapidly the normal distribution is approached as 
the sample size is increased. Nevertheless, the power of the CLT is that the type 
of random variables being sampled is irrelevant provided the sample size is large 
enough and the first two moments of the distribution are finite. Since the goal 
here is to find an objective estimate of the population statistics, the assumption 
of a sufficiently large sample size is justified. The significance of the CLT in the 
present context is that the probability of infectivity (26) is a random variable tZ  
whose distribution function is, for all practical purposes, that of the ratio of two 
normal RVs 

( ) ( )2 2
0 0~ , ,t t tZ N n s N n s                      (32) 

where, depending on the initially known information, the variances can either be 
assumed Poissonian  

 
2

2
0 0

t ts n G

s n G

=

=
                           (33) 
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or else taken as independently measured quantities. 
Although there are distributions, such as the Cauchy distribution [39], which 

have no finite moments and therefore do not meet the criteria for application of 
the PME or CLT, such exceptions do not occur in clinical trials with finite num-
bers of non-negative integer variables.  

3.2. Distribution of the Ratio of Two Normal Random Variables 

Following the results of the preceding section, the next step is to determine the 
distribution of a variable Z, which is the ratio of two normal RVs. Given inde-
pendent random variables X and Y with respective pdfs ( )Xp x  and ( )Yp y , 
the pdf ( )Zp z  of the quotient 

Z X Y=                           (34) 

is readily obtained by use of the Dirac delta function ( )z x yδ −  [40] 

( ) ( ) ( ) ( )d dZ X Yp z p x p y z x y x yδ
∞ ∞

−∞ −∞

= −∫ ∫             (35) 

to yield [20] 

 ( ) ( ) ( ) dZ X Yp z p zy p y y y
∞

−∞

= ∫ .                 (36) 

If X and Y are normal RVs 

( )
( )

2
1 1

2
2 2

,

,

X N m s

Y N m s

=

=
                        (37) 

substitution into Equation (36) of Gaussian pdfs (2) with the appropriate means 
and variances shown in relations (37) leads to the complicated expression [41] 

( )
( )

( )
( ) ( )

( )

22 2 2 2
1 21 2 2 1 1 2 2 1

3 2 1 22 2 22 2 2 2 2 2
2 12 1 1 2 2 1

2 2
1 2 1 2

2 22 2 2
1 22 1

1 exp erf
2 2 2

exp .

Z

m m zm s z m s m s z m sp z
s z ss z s s s s z s

s s m m
s ss z s

  −+ +  = −   +  + +   
  

+ − +   + 

π

π  

 (38) 

To the author’s knowledge, pdf (38) has not been previously associated with 
any named random variable. However, it has been shown [41] that if X and Y 
are non-negative with 1i im s   ( )1,2i = , then pdf (38) can be closely ap-
proximated by the non-Gaussian expression 

( )
( )

( )
( )

22 2
1 21 2 2 1

3 2 2 2 22 2 2
2 12 1

1 exp
2 2Z

m m zm s z m sp z
s z ss z s

 −+  ≈ −
 ++  π 

,           (39) 

which can then be transformed into a standard normal distribution ( )0,1N  
under a change of variable from z to  

 ( ) ( )1 22 2 2
2 1 2 1m z m s z sθ = − + .                   (40) 

The random variable Θ  corresponding to the variate θ  is then symbolized by 
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( )0,1NΘ = .                          (41) 

Inverting relation (40) in order to solve for z in terms of θ , one obtains an 
expression of which the logarithm is 

( ) ( )( ) ( )2 2 2 2 2 2 2 4 2 2 2
1 2 1 2 2 1 1 2 2 2ln ln lnz m m m s m s s s m sθ θ θ= + + − − − . (42) 

By means of approximations consistent with those leading to Equation (39), one 
can reduce Equation (42) to the simpler form 

 ( ) ( )ln ln sz m
m

θ ≈ +  
 

                     (43) 

in which 

 1 2m m m=                          (44) 

and 

 
2 2
1 2
2 2
1 2

s ss
m m m
= + .                       (45) 

It then follows from relations (41) and (43) that the RV 

( ) ( ) ( ) ( )( )2 2ln ~ ln 0,1 ln ,Z m s m N N m s m+ =         (46)  

is approximately normal, whereupon Z is representable as a lognormal RV 

( )( )2 2~ ln ,Z X Y m s m≡ Λ                   (47) 

with pdf 

( )
( )

( )( ) ( )( )2 2 2

2 2

exp ln 21

2
Z

z m s m
p z

zs m

−
=

π
,       (48) 

provided the foregoing conditions ( )1 1 2 21, 1m s m s   maintain.  
The consistency of the preceding analysis becomes apparent once one recog-

nizes that the mean and variance of X Y  are known to be approximately 

1 2X Y m mµ ≈                         (49) 

2 2 2
1 2

2 2 2
1 2

X Y

X Y

s s
m m

σ
µ

≈ +                        (50) 

as derived by a method of series expansion independent of the exact distribu-
tions of the numerator and denominator [42]. The method of approximation is 
sometimes referred to as Error Propagation Theory (EPT) [43]. Thus, one can 
re-express relation (46) as 

( ) ( ) ( )( )2 2ln ln ~ ln ,X Y X Y X YZ X Y N µ σ µ= .            (51) 

If Z were exactly lognormal ( )2,Z Zm sΛ , then the exact parameters Zm  and 
2
Zs  would relate to the exact mean Zµ  and variance 2

Zσ  according to rela-
tions (8) and (9), respectively. However, under the assumed condition that  

1Z Zµ σ  , these expressions reduce to 
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( ) ( )
2

1 22 2
ln ln lnZ

Z Z

Z Z

m m mµ
µ

µ σ

 
 ≡ ≈ =
 + 

           (52) 

2 2 2 2
2 1 2

2 2 2 2
1 2

ln 1 Z Z
Z

Z Z

s ss
m m

σ σ
µ µ

 
≡ + ≈ = + 

 
                (53) 

in agreement with EPT expressions (49) and (50).  
In short, the analysis in this section has established that the quotient variable 

Z reduces to a lognormal RV under the conditions likely to pertain in a clinical 
investigation to determine the probability tp  of COVID infectivity.  

3.3. Test of the Lognormality of the Ratio of Two Normal Random  
Variables 

To ascertain how well a lognormal distribution matches the distribution of the 
ratio of two normal RVs, the results of a hypothetical clinical trial were recorded 
in Table 1. The trial consisted of 10G =  groups of infected participants who 
were tested daily for a total of 11 days, as marked in column 1, following the on-
set of symptoms on day 0. Column 2 records the daily mean number of patients 
with positive tests. Column 3 records the daily standard errors, i.e. the standard 
deviation of the means in column 2. Column 4 is the EPT estimate of the proba-
bility of infectivity tp . Column 5 is the EPT estimate of the standard deviation 
of tp . Columns 6 and 7 record the parameters of the corresponding lognormal 
distribution (47), defined by Equations (52) and (53). The numbers in column 2 
most likely do not correspond to any real clinical trial. They were chosen only to 
provide a set of values of tp  more or less uniformly spanning the full range 
from 1 to close to 0 for testing how well the predicted relation Equation (47) holds.  
 
Table 1. Distributions of normal ratio (X/Y) and corresponding lognormal (Z). 

Time 
Units tn  t

t
ns
G

=  
0X Y tm n n=

 
( )tp

 

2 2 2
0

2 2
0 0

t t
X Y

s n ss
n n

= +

 

Zm  
Lognormal 

Zs  
Lognormal 

0 100 3.1623 1.00 0.04478 0 0.04478 

1 90 3.0000 0.90 0.04600 −1.1054 0.04600 

2 80 2.8284 0.80 0.04748 −0.2233 0.04748 

3 70 2.6457 0.70 0.04933 −0.3569 0.04933 

4 60 2.4495 0.60 0.05168 −0.5112 0.05168 

5 50 2.2361 0.50 0.05480 −0.6936 0.05480 

6 40 2.0000 0.40 0.05918 −0.9170 0.05918 

7 30 1.7321 0.30 0.06583 −1.2051 0.06583 

8 20 1.4142 0.20 0.07742 −1.6114 0.07742 

9 10 1.0000 0.10 0.10506 −2.3071 0.10467 

10 5 0.0707 0.05 0.00726 −3.0051 0.14425 

11 2 0.0447 0.02 0.00452 −3.9359 0.22315 
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Table 2 compares the exact (to 4 decimal places) numerically calculated first 
and second moments and the medians of the normal ratio ( X Y ) and lognor-
mal (Λ) distributions created in Table 1. As seen from columns (2, 3) and (4, 5), 
the two sets of moments are identical to 4 decimal places. Columns (6, 7) also 
show the two sets of medians to differ weakly and progressively only in the 4th 
decimal place, as tp  decreases with time t. The identity of any finite number of 
moments does not establish the identity of two distributions. Such identity could 
be established by demonstrating that two distributions have the same moment 
generating function (mgf) or characteristic function (cf), but the mgf of a log-
normal distribution does not exist, and there is no closed form expression for 
the cf.  

An alternative procedure in the present case is simply to compare the two pdfs, 
Equations (38) and (48), as shown graphically in Figure 5(a) and Figure 5(b) 
for the full set of distributions of tp  ( )0, ,11t =   displayed in Table 1. Solid 
red curves pertain to the normal ratio distribution; dashed blue curves pertain to 
the corresponding lognormal distribution. Plots for days 0 through 8 are dis-
played in Figure 5(a). For each of the 9 days (infectivity probability ranging 
from 100% to 20%) superposed plots of the two pdfs are visually indistinguisha-
ble. Plots for days 9 through 11 (infectivity probability ranging from 10% to 2%) 
are displayed in Figure 5(b). Although the cohorts comprise very few partici-
pants who test positive for these days (respective means are 10, 5, and 2), the su-
perposed plots of the two pdfs are barely distinguishable visually.  

From the preceding analysis and graphical displays it can be concluded that 
the distribution of the probability of infectivity tp  is for all practical purposes 
very well represented by a lognormal distribution.  

 
Table 2. Comparison of first and second moments and medians of normal ratio ( X Y ) 
and corresponding lognormal (Z). 

Time Units ( )1 X Y
M  ( )1M

Λ
 ( )2 X Y

M  ( )2M
Λ

 ( )1 2 X Y
M

 
( )1 2M

Λ  
0 1.0010 1.0010 1.0040 1.0040 1.0000 1.0000 

1 0.9009 0.9009 0.8133 0.8133 0.9000 0.9000 

2 0.8008 0.8008 0.6247 0.6247 0.8000 0.7999 

3 0.7007 0.7007 0.4922 0.4922 0.7000 0.6999 

4 0.6006 0.6006 0.3617 0.3617 0.6000 0.5998 

5 0.5005 0.5005 0.2513 0.2513 0.5000 0.4998 

6 0.4004 0.4004 0.1609 0.1609 0.4000 0.3997 

7 0.3003 0.3003 0.0906 0.0906 0.3000 0.2997 

8 0.2002 0.2002 0.0403 0.0403 0.2000 0.1996 

9 0.1001 0.1001 0.0101 0.0101 0.1000 0.0996 

10 0.0501 0.0501 0.0026 0.0026 0.0500 0.0495 

11 0.0200 0.0200 0.0004 0.0004 0.0200 0.0195 
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(a) 

 
(b) 

Figure 5. (a) Probability density profiles of the outcomes 0t tz n n=  ( )0, ,8t =   where 

0 100n =  and tn  = (a) 100, (b) 90, (c) 80, (d) 70, (e) 60, (f) 50, (g) 40, (h) 30, (i) 20 as 

calculated from the exact relation (38) for the ratio of two normal RVs (solid red curve) 

and from the equivalent lognormal density (48) (dashed blue curve). The two sets of 

curves are visually indistinguishable; (b) probability density profiles of the outcomes 

0t tz n n=  ( )9,10,11t =  where 0 100n =  and tn  = (j) 10, (k) 5, (l) 2 as calculated from 

the exact relation (38) for the ratio of two normal RVs (solid red curve) and from the 

equivalent lognormal density (48) (dashed blue curve). The two sets of curves match 

closely, apart from small deviations near the peaks and wings. 
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3.4. Probability Distribution of Infectivity 

Return now to the PME-derived binomial distribution (25), which can be re- 
expressed in the form 

 ( ) ( ) ( ) ( ) 00
0

0

!
, 1

! !
m n m

t t t
n

P m z n z z
m n m

−= −
−

,            (54) 

where, in view of the preceding section,  

0t t tz n n p≡ =                          (55) 

is itself a variate of the lognormal distribution (47) with range from 0 to 1 (since 
it is a probability). Thus, the distribution of the number of positive outcomes m 
at time t is obtained by integrating relation (54) over the range of tz  as follows 

( ) ( ) ( )

( )
( )

( )( )0

1

0 0
0

2
1

10
2

0
0

, , d

ln!
1 exp d

2
1 erf ! !

2 2

tt Z t t

n m t tm
t t t

tt

t

P m t n P m z n p z z

z mn
z z z

sm m n m
s

−−

=

 − = − −
     − −      

π

∫

∫
(56) 

where the parenthetical expression with error function in the denominator arises 
from normalization of tp  whose range spans only a segment (0, 1) of the posi-
tive real axis. 

There is no closed form expression for the integral (56), but numerical evalua-
tions with graphical display confirm that probability function (56) describes a 
lognormal distribution as illustrated in Figure 6 for outcomes of a hypothetical 
clinical trial with 10 cohorts of 50 patients each. Blue diamonds in the figure 
mark points of the binomial distribution (25) with arbitrarily chosen fixed proba-
bility 0.5tz =  for illustration. Red circles mark points of the compound proba-
bility function (56) with lognormal distribution of tz  with parameters  

( )ln 0.5 0.6931

10 0.2633

t

t t

m

s m

= = −

= =
                    (57) 

corresponding to a trial with 10 groups and Poissonian variance. The solid blue 
curve, which closely superposes the trajectory of red circles of the compound 
distribution is a lognormal distribution with parameters  

( ) ( )
( )

ln 25.3 3.231

0.309
t

t

m

s

Λ

Λ

= =

=
                   (58) 

obtained by visual best fit to the plot of Equation (56). The parameters (58) agree 
closely with theoretically expected lognormal parameters  

( )

( )

3.208

0.285
theory

theory

m

s

Λ

Λ

=

=
                       (59) 

obtained from relations (8) and (9) in terms of the mean and variance 
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Figure 6. Binomial probability (blue diamonds) of m successes out of 50 trials with 

probability of success 0.5z = . Probability function (red circles) of the binomial distribu-

tion compounded with a lognormal distribution of z. Lognormal probability density (sol-

id blue curve) with parameters derived from the mean and variance of the compounded 

binomial-lognormal distribution. 
 

2

25.760

56.316
t

t

µ

σ

=

=
                       (60) 

calculated directly from Equation (56) . 

3.5. Distribution of Infectivity as a Function of Time  

The PME-derived multinomial probability function (27), compounded with 
lognormal pdfs ( )

tZ tp z  of infectivity for the span of time 1, ,t T=   predicts 
the fraction of patients testing positive each day of the infectivity period. This is 
the information needed for determining quantiles and other statistics of the pe-
riod of infectivity. However complicated such a compound probability function 
may be, it is straightforward to show that the function describes a lognormal 
distribution. 

In structure, the probability function (27) comprises factors of powers of the 
lognormal variables 0t t tz n n p= = . In analogy to the CLT, by which sums of 
random variables approach a normal RV (provided certain conditions are met), 
products of powers of random variables approach a lognormal RV. Moreover, if 
the factor variables are themselves lognormal, then a product of powers of these 
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factors is exactly lognormal, as shown by the following argument.  
Consider the variable Z defined by the product of powers ic  of 1, ,i M=   

independent lognormal variables ( )2,i ia bΛ   

 ( )2

1
, i

M c

i i
i

Z a b
=

= Λ∏ .                        (61) 

The natural logarithm of Z yields the expression 

( ) ( )2 2

1 1
ln ln , ,

M M

i i i i i i
i i

Z c a b c N a b
= =

= Λ =∑ ∑               (62) 

where, by definition, lnΛ  is a normal RV. Since the superposition of indepen-
dent normal RVs is a normal RV 

( )2 2 2

1 1 1
, ,

M M M

i i i i i i i
i i i

c N a b N c a c b
= = =

 =  
 

∑ ∑ ∑ ,               (63) 

it then follows that ln Z  is a normal RV, and therefore Z itself is a lognormal 
RV 

2 2

1 1
,

M M

i i i i
i i

Z c a c b
= =

 = Λ 
 
∑ ∑ .                   (64) 

In summary, the compound multinomial distribution 

{ } { }( ) { } { }( ) ( )
1 1

0 0
10 0

, , d
t

T

t t t Z t t
t

P m t n P m z n p z z
=

∝ ∏∫ ∫         (65) 

that generalizes probability function (56) describes a multivariate lognormal dis-
tribution of infectivity throughout the trial period. 

4. Recapitulation and Constraints 

Having derived the pdfs and (c)cdfs descibing COVID infectivity in Sections 2 
and 3, it is well to examine briefly what has been achieved and what conditions 
pertain.  

In Section 2 the focus was on the period of infectivity following onset of 
symptoms. Time is the random variable here for which a lognormal distribution 
was adopted empirically on the basis of an epidemiological analogy between the 
periods of incubation and infectivity. Data from one large medical study were 
used to deduce the parameters of the lognormal distribution, and data from oth-
er independent studies provided tests of the consistency of the derived distribu-
tion function. 

Subsequently, after discussion of the PME in Section 3, it was conjectured that 
under conditions in which the initial information included only the mean and 
variance of a non-negative RV whose pdf vanished continuously at the origin, 
the PME solution would be, or would closely approximate, a lognormal distribu-
tion. To the author’s knowledge, this conjecture has never been proven or dis-
proven. However, the investigation in Section 2 raises two questions: (1) is the 
lognormal the only distribution that might describe the statistics of the period of 
infectivity? (2) If there are other such distributions, does this non-uniqueness 
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matter practically? The short answers to the questions are (1) “No” and (2) 
“Maybe not”. Here is the reasoning. 

It has been stressed that the distribution to which the PME leads in any given 
problem depends on the kind of initial information. Consider, for example the 
lognormal and gamma distributions. The PME leads to the first with pdf (1) if 
the initial information comprises the mean and variance of ln X  where X is a 
non-negative RV. However, the PME leads to the second, with pdf (of the same 
variable X ) 

 ( ) ( )
( )

1 expk

X k

x x
p x

k
θ

θ

− −
=

Γ
,                   (66) 

if the initial information comprises the mean of X and the mean of ln X  [44]. 
In pdf (66) the shape parameter k and scale parameter θ  are greater than 0. A 
plot of the gamma pdf (66) can lead to a profile similar to that of lognormal pdf 
(1) if the parameters are just right. 

In determining the parameters of the lognormal distribution in Section 2, the 
author made use of available information consisting of two quantiles of the pe-
riod of infectivity and not the constraints required for a PME solution to be ei-
ther lognormal or gamma. However, the gamma parameters 

0

0

5.5252
1.5397

k
θ

=

=
                             (67) 

determined from the same (50%, 95%) quantiles as the lognormal parameters 
(16) and (17) in Section 2, results in a pdf profile in Figure 7(a) and ccdf profile 
in Figure 7(b) that closely match the corresponding lognormal profiles. As seen 
especially in Figure 7(b), both distributions appear to provide statistically equiv-
alent cumulative probabilities of viral shedding as a function of time. Moreover, 
the entropies of the two distributions (the calculation of which lies outside the 
scope of this paper) are close. Up to this point, therefore, a lognormal or gamma 
ccdf seems to account satisfactorily for the period of COVID infectivity, and 
more data would be needed from more clinical studies to distinguish which is 
better. 

In Section 3 the focus was on the mean numbers of positive samples { }tn  in 
a proposed clinical investigation comprising a finite number of grouped partici-
pants over a limited period of time T. These are precisely the constraints for 
which the PME leads exactly to a multinomial distribution of ratios { }0t tz n n= , 
interpretable as probabilities of infectivity and shown by means of the CLT and 
some mathematical analysis to closely approximate lognormal random variables. 
It then follows that the fractions (or quantiles) of virus-shedding participants 
throughout the period T comprise a multivariate lognormal distribution. Al-
though the random variable in Section 3 was not time, a reasonably complete set 
of the numbers { }tn  would yield quantiles for the period of infectivity and 
thereby test whether the cdf (or ccdf) is consistent with a lognormal distribution, 
as predicted.  
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(a) 

 
(b) 

Figure 7. (a) Comparison of lognormal probability density (red) and gamma probability 

density (blue) of the period of COVID infectivity. The two sets of distribution parameters 

( )0 0,m s  and ( )0 0,k θ  were both determined from the same two quantiles (50%, 95%) 

upon which Figure 1 and Figure 2 are based; (b) comparison of lognormal (red) and 

gamma (blue) complementary cumulative distribution functions determined from the 

parameters shown in (a). 
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Finally, as a matter of practicality, once it has been established by clinical stu-
dies of the kind proposed in Section 3 that the probability distribution of the pe-
riod of infectivity is lognormal (or gamma or some other two-parameter distri-
bution), then all one would need are two quantiles (or the mean and variance) of 
the period as utilized in Section 2, to specify the parameters of the distribution 
uniquely. 

5. Conclusions 

Although measures to prevent and treat coronavirus have progressed significantly 
since the beginning of the pandemic, the disease is still prevalent throughout the 
world with more than 20 million current cases at the time of writing [45]. While 
COVID-related mortality is down in populations where vaccines are availa-
ble, the disease can nevertheless lead to a wide range of organ damage [46] 
and post-infection disabilities [47] [48] in surviving patients. Despite the con-
tinued seriousness of the pandemic, the general fatigue of dealing with the dis-
ease coupled with a strong desire to return to normality has resulted in the loo-
sening of public health measures nearly everywhere and at all levels of govern-
ment from municipal to national. For example, the U.S. government has decided 
to end public health emergency measures for COVID in May 2023 [49], al-
though the baseline of daily COVID hospitalizations has been over 25,000 [50], 
the daily average number of cases in the U.S. currently exceeds 30,000 [51], and 
many Americans have had multiple infections and are experiencing post-acute 
sequelae of SARS-CoV-2 infection.  

Under such prevailing circumstances, where protective measures by public 
health agencies are either being phased out or else ignored by a disaffected 
public [52], individuals concerned for their health are left to their own means 
of protecting themselves and those whom they care about. Apart from being 
vaccinated, there are basically two actions over which an individual has control. 
The first is to try to diminish the risk of infection by wearing an appropriate 
face mask (e.g. N95, KN95) whenever exposed to groups of people in close 
proximity. The second is to diminish the risk of spreading infection once one 
has shown symptoms of COVID. The latter action requires self-isolation for an 
appropriate time period, the determination of which is the focal point of this 
paper.  

It has been the objective of this paper to derive probability functions, using 
the sparse data from recent investigations, that enable medical practitioners, ep-
idemiologists, and members of the public to estimate the risk of infectivity as a 
function of time following the onset of symptoms (or first positive antigen test). 
The analysis reported here, based on empirical consistency (Section 2) and on 
general statistical principles (Section 3) rather than on any specific dynamical 
model of pathogen transmission and growth, supports the propositions that the 
period of infectivity and the probability of infectivity follow lognormal distribu-
tions. As the coronavirus evolves new variants and new information becomes 
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available, the lognormal parameters of risk curves, like those in Figures 1-3, may 
need to be updated, but the mathematical form of the distribution is expected to 
remain unchanged. 

As a final point worth commenting on, the quantitative measure of a proba-
bility is not in general something that either a lay person or even a medical pro-
fessional may know how to think about. For example, what is one to make of the 
prediction from Figure 2 that there is a 10% chance of being infectious after 
about 13 days of isolation? Is 10% a low or a significant probability? Actually, it 
can be both. From the perspective of the author, a nuclear physicist whose work 
entails consideration of the consequences of adverse events, a prudent policy is 
to examine probability in appropriate context.  

What matters is not just the probability, but the potential consequence—i.e. 
the product of a probability and a measure (or personal sense) of the associated 
loss. This product is not likely to be the same for everyone or for different cir-
cumstances. For example, a carpenter might take a 25% chance of rain as a 
threshold of whether to engage in outdoor construction that day. Accordingly, 
a 10% chance of rain is a low probability. But COVID is not rain; it is, depend-
ing on demographics, age [53], health, and immunization status, a potentially 
lethal or debilitating disease to have or to spread. And a 10% chance of trans-
mitting it to family, friends, and community may well be a risk not to be taken. 
(After all, if it were the case that 1 out of 10 commercial flights developed en-
gine trouble after takeoff, would you travel by air?) From a practical, epidemio-
logical perspective, the socially responsible action for an infected person to take 
is to remain in self-isolation until receiving 2 negative antigen tests 48 hours 
apart [54] irrespective of the number of days (beyond 5) following onset of 
symptoms. 
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Appendix—Glossary of Abbreviations 

BMI  Body Mass Index 
BMJ  British Medical Journal 
CDC  Centers for Disease Control and Prevention 
cdf   Cumulative Distribution Function 
ccdf   Complementary Cumulative Distribution Function  
cf   Characteristic Function 
CLT  Central Limit Theorem 
COVID  Corona Virus Disease 
EPT   Error Propagation Theory 
JAMA  Journal of the American Medical Society 
MC   Medical Center 
MS   Medical School 
mgf   Moment Generating Function 
PCR  Polymerase Chain Reaction 
pdf   Probability Density Function 
PME  Principle of Maximum Entropy 
RV   Random Variable 
SARS-Cov-2 Severe Acute Respiratory Syndrome Coronavirus 2 
WHO  World Health Organization 

Appendix—Glossary of Mathematical Symbols 

Upper-case letters represent random variables (RV) X, Y, Z, etc. 
Lower-case letters represent variates (realizations)  x, y, z, etc. 
Probability density function of continuous RV X  ( )Xp x   
Cumulative distribution function (cdf) of RV X  ( )XF x   
Complementary cdf of RV X      ( )XF x   
Symbolic notation of normal distribution of mean m and variance 2s  

           ( )2,N m s   
Standard normal distribution      ( )0,1N   
Symbolic notation of lognormal distribution X for which ( )2ln ,X N m s=  
              ( )2,m sΛ   
Symbolic notation of gamma distribution of shape parameter k and scale para-
meter θ           ( ),k θΓ   
Expectation value of a random variable X   X   
Statistical moment of order k      kM   
Mean of a random variable X      Xµ   
Variance of a random variable X     2

Xσ   
Skewness of a random variable X     XSk   
Probability of infectivity at day t     tp   
Mean number of positive tests at day t    tn   
Binomial probability function of m positive tests, given mean number tn  in a 
cohort of size 0n         ( )0 , tP m n n   
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Multinomial probability function of set of positive tests { }tm  given associated 
set of probabilities { }tp  in a cohort of size 0n   { } { }( )0 ,t tP m n p   
Shannon entropy, given set of probabilities { }tp   ( )1, , TH p p   
Dirac delta function (centered on 0x )    ( )0x xδ −   
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