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Abstract 
In recent years, functional data has been widely used in finance, medicine, bi-
ology and other fields. The current clustering analysis can solve the problems 
in finite-dimensional space, but it is difficult to be directly used for the clus-
tering of functional data. In this paper, we propose a new unsupervised clus-
tering algorithm based on adaptive weights. In the absence of initialization 
parameter, we use entropy-type penalty terms and fuzzy partition matrix to 
find the optimal number of clusters. At the same time, we introduce a meas-
ure based on adaptive weights to reflect the difference in information content 
between different clustering metrics. Simulation experiments show that the 
proposed algorithm has higher purity than some algorithms. 
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1. Introduction 

Functional data analysis (FDA), proposed by J.O. Ramsay [1], is a high-dimen- 
sional data analysis method based on the functionalization of discrete data to 
describe statistical relationships from a continuous perspective. It is characte-
rized by treating discrete data as a functional whole with an inherently uniform 
structure, rather than just an arrangement of individual observations. In recent 
years, the extension of classical multivariate statistical methods to functional da-
ta is an important part of data mining research. In the scalar environment, there 
are many mature multivariate clustering algorithms, such as Affinity Propaga-
tion clustering, hierarchical clustering, K-means clustering, DBSCAN clustering, 
Chameleon clustering, etc. Most of the multivariate cluster analysis methods 
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cannot be directly applied to functional data. The intuitive analysis idea is to 
discretize functional data based on sampling, and then use multivariate cluster-
ing model to cluster discrete data points [2] [3]. Although this can solve the 
problem that functional data is difficult to apply multivariate clustering algo-
rithms, it also violates the main idea of “taking the whole function as the analysis 
object”. Tarpey T et al. [4] proposed a clustering algorithm based on function 
principal points. The clustering results of this algorithm are affected by the 
number and location of extreme points, therefore it lacks robustness. Tokushige 
[5] extended the K-means clustering algorithm to functional data, where the 
cluster center is determined by the minimum value of the objective function. 
Antoniadis et al. [6] used wavelet analysis techniques in functional data cluster-
ing. Wang et al. [7] proposed a weighted clustering algorithm based on func-
tional principal components, which can effectively make up for the limitations of 
ordinary functional principal component clustering analysis. Delaigle et al. [8] 
proposed a weighted K-means algorithm by using the Haar base function pro-
posed by Hardle [9] and the unbalanced Haar base function proposed by Fryz-
lewicz [10]. This algorithm selects the projection function by weighting the 
K-means clustering criteria and proves that nearly perfect clustering can be 
achieved by projecting the data onto the chosen finite-dimensional space. Sharp 
and Browne [11] imposed jointly generalized hyperbolic distributions on projec-
tions of basis expansion coefficients into group specific subspaces. Parameter es-
timation is done through a multicycle ECM algorithm. Wu et al. [12] assumed 
that the distribution of the cluster members around their projections onto the 
cluster’s principal curve is an isotropic Gaussian, and that the projections of 
cluster members onto the cluster’s principal curve are uniformly distributed. The 
proposed method employe Bayesian Information Criterion to automatically and 
simultaneously find the appropriate number of features, the optimal degree of 
smoothing and the corresponding cluster members. It can be noticed that cluster 
analysis based on continuous perspective and cluster analysis of discrete data 
still have a lot in common. If infinite-dimensional functional clustering can be 
transformed into finite-dimensional clustering, then many excellent multivariate 
clustering analysis can be used in functional data clustering. 

2. Preliminaries   
2.1. K-Means  

The K-means is one of the most popular unsupervised learning algorithms that 
solve the well-known clustering problem. Let { }1, , nX x x= 

 be a data set in a 
d-dimensional Euclidean space Rd . Let { }1, , cV v v= 

 be the cluster centers. 
Let [ ]ik n c

Z z
×

= , where { }0,1ikz ∈  is binary variable, indicating if the data 
point ix  belongs to k-th cluster, 1,2, ,k c=  . The K-means objective function 
is  

 ( ) 2

1 1
,

n c

ik i k
i k

J z V z x v
= =

= −∑∑                    (1) 
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The K-means algorithm is iterated through necessary conditions for minimiz-
ing the K-means objective function ( ),J z V  with updating equations for clus-
ter centers and memberships, respectively, as  

 1

1

n

ik i
i

k n

ik
i

z x
v

z

=

=

=
∑

∑
                          (2) 

2 2

1
1 if min

0 otherwise
i k i kk c

ik

x v x v
z ≤ ≤

 − = −= 


                (3) 

where i kx v−  is the Euclidean distance between the data point ix  and the 
cluster center kv .  

2.2. Functional Principal Component Analysis  

Functional principal component analysis (FPCA) is a generalization of principal 
component analysis. Suppose ( )ix t  is a random process defined on a compact 
interval T. Let ( )tµ  be the mean function. Let ( ) ( ) ( ){ }, cov ,R s t x s x t=  be 
the covariance function. By using the spectral decomposition of the covariance 
function, we can obtain:  

( ) ( ) ( )
1

, p p p
p

R s t s tλ ϕ ϕ
∞

=

= ∑  

where pλ  is a non-negative eigenvalue of ( ),R s t  and satisfies 1 2 0λ λ≥ ≥ ≥ . 

( )p sϕ  is the corresponding eigenfunction. The eigenfunctions are regarded as a 
set of basis functions, called principal component basis functions. The principal 
component basis function combined with the Karhunen-Loeve expansion can 
represent the infinite-dimensional function data in a limited manner. Project X 
into the principal component basis function, and the principal component score 
of the function pξ  is the corresponding coefficient.  

 ( ) ( )dp pX t t t
τ

ξ ϕ= ∫                       (4) 

Applying the Karhunen-Loeve expansion, we can get  

 ( ) ( ) ( )
1

p p
p

X t t tµ ξ ϕ
∞

=

= +∑                     (5) 

3. Unsupervised Functional Data Clustering Based on  
Adaptive Weights  

Multivariate clustering analysis is difficult to directly extend to functional data 
clustering. But from the knowledge of principal component analysis in the pre-
vious section, functional data ( )X t  is equivalent to its principal component 
score ( )T

1, ,i i idξ ξ ξ=  . Since the variance contribution rates of the principal 
component scores are different, the importance of different principal compo-
nents is obviously different. It is difficult to achieve an ideal classification effect, 
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if we ignore the objective differences in the efficiency of different principal 
component scores, and use the principal component score to represent the sam-
ple function for clustering [13]. K-means cluster analysis is not completely un-
supervised learning, because it requires the number of clusters to be given first. 
Therefore, we use functional principal component analysis to map functional 
data from infinite-dimensional space to finite-dimensional space, and then use 
unsupervised functional data clustering based on adaptive weights (UFDCAW) 
to cluster ( )T

1, ,i i idξ ξ ξ=   on the finite-dimensional space. Finally, the clus-
tering result of the functional data ( )X t  is obtained. 

Let { }1, , nξ ξ ξ= 
 which is equivalent to ( ) ( ) ( ){ }1 , , nX t X t X t=   be the 

data on the d-dimensional Euclidean space Rd . Let { }1, , cV v v= 
 be the set 

of c class centers. Let { }ik n c
u u

×
=  be the degree of membership function matrix, 

where iku  is the membership degree of iξ  belonging to the k class. For any  

,i k , there is 0 1iku≤ ≤  and 
1

1
c

ik
k

u
=

=∑ . Let ( )1, , ca α α= 
 be a set of mixed 

proportions, where kα  represents the probability that data point belongs to the 

k class, and satisfies 
1

1
c

k
k
α

=

=∑ . 
1

ln
c

k k
k
α α

=

−∑  is the entropy. The objective func-

tion of unsupervised functional data clustering based on adaptive weights is  

 ( ) 2

1 1 1 1 1
, , ln ln

n c c n c
m
ik ik k k ik k

i k k i k
J u V u d n uα β α α γ α

= = = = =

= − −∑∑ ∑ ∑∑       (6) 

where ikd  is the distance from the data point iξ  to the class center kv . Con-
sidering the difference in the scoring efficiency of different principal compo-
nents, let  

( )( )2

1

d

ik p ip kp
p

d vω ξ
=

= −∑  

where 
1

d

p p p
p

ω λ λ
=

= ∑  is the adaptive weight of the p item of the principal 

component score. 
The Lagrangian function of formula (3.1) is  

 
( ) 2

1 2
1 1 1 1 1

1 2
1 1

, , , , ln ln

1 1

n c c n c
m
ik ik k k ik k

i k k i k

c c

k ik
k k

J u V r r u d n u

r r u

α β α α γ α

α

= = = = =

= =

= − −

   − − − −   
   

∑∑ ∑ ∑∑

∑ ∑



     (7) 

First, we take the partial derivative of Largrangian (3.2) with respect to iku , 
we obtain  

 ( )1 2 1 2
2

, , , ,
ln 0m

ik ik k
ik

J u V r r
mu d r

u
α

γ α−∂
= − − =

∂



            (8) 

Thus, we have  
1

212 1ln mk m
ik ik

r
u d

m
γ α − −

−+ =  
 
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From 
1

1
c

ik
k

u
=

=∑ , we can get  

 
( )

2
1

1

1
ik c

mik is
s

u
d d −

=

=

∑
                          (9) 

Then we get the update equation for the center point kv  as follows:  

 1

1

n
m
ik i

i
k n

m
ik

i

u
v

u

ξ
=

=

=
∑

∑
                           (10) 

We next take the partial derivative of the Lagrangian (3.2) with respect to kα   

 ( ) ( )1 2
1

1

, , , ,
ln 1 0

n
ik

k
ik k

J u V r r u
n r

α
β α γ

α α=

∂
= − + − − =

∂ ∑


          (11) 

then we get the updating equation for kα  as follows:  

 ( ) ( ) ( ) ( ) ( )1

1 1
ln ln

n c
t t t t tik

k k k s s
i s

u
n

βα α α α α
γ

+

= =

 = + − 
 

∑ ∑             (12) 

where t is the number of iterations of the algorithm. 

1
ln

c

s s
s
α α

=
∑  is the weighted mean of ln kα  in equation (3.7). For the k-th  

mixing proportion ( )t
kα , if ( )ln t

kα  is less than the weighted mean, then the new 
( )1t
kα
+  will be less than the ( )t

kα . That is, the smaller proportion will decrease,  

and then competition will occur. If 0kα ≤  or 1
k n

α <  for some k, they are  

considered to be illegitimate proportions. In this situation, we discard those 
clusters and then update the cluster number ( )tc  to be  

 ( ) ( ) ( ) ( ) ( )1 1 1 1 , 1, ,t t t t t
k kc c k c

n
α α+ + + 

= − < = 
 

             (13) 

where {}  denotes the cardinality of the set {} . After updating the number of 
clusters ( )1tc + , the remaining mixing proportion ( )1t

kα
+  and corresponding ( )1t

iku +  
need to be re-normalized by  

 ( )1

*

1

t
k

k c

s
s

α
α

α
+

∗
∗

=

=

∑
                         (14) 

( )1

1

t
ik

ik c

is
s

u
u

u
+

∗
∗

∗

=

=

∑
                         (15) 

We next concern about the parameter learning of γ  and β  for the two terms 
of 1 1 lnn c

ik ki k z α
= =∑ ∑  and 1 1 lnn c

ik ki k z α
= =∑ ∑ . Based on some increasingly learn-

ing rates of cluster number with 
( ) ( ) ( ) ( )100 250 500 750e ,e ,e ,e
t t t tc c c c− − − − , and 

( ) 1000e
tc− , 

it is seen that 
( ) 100e
tc−  decreases faster, but 

( ) ( ) ( )500 750 1000e ,e ,e
t t tc c c− − −  decreases 

slower [14]. We suppose that the parameter γ  should not decrease too slow or 
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too fast, and so we set the parameter γ  as  

 ( ) ( ) 250e
tt cγ −=                           (16) 

To guarantee condition ( )1

1
max 1t

kk c
α +

≤ ≤
≤ , the parameters β  are defined as  

 ( )

( ) ( )( )
( ) ( ) ( )

1

1 11

1 1

1exp
min ,

max ln

nc
t t ik

k k
t ik

c
t t t

k s sk c s

u
n

n
c

γη α α
β

α α α

+

+ ==

≤ ≤ =

  −− −  
  =

  −  
  

∑∑

∑
 (17) 

where 2 12 ddη −  =  and a    represents the largest integer that is no more 
than a and t denotes the iteration number in the algorithm. In Equation (3.12), if 

( )1t t
k kα α+ −  is large, then β  is smalll to maintain stability. Although function-

al principal component analysis expands the function data from infinite dimen-
sion to finite dimension, the dimension of the sample is still relatively high, so 
we add 2 12 ddη −  =  adjust parameter β  to Equation (3.12). 

In our setting, we use all data points as initial means with k kv ξ= , i.e. ( )0c n= , 
and we use ( )0 1k nα =  as initial mixing proportions. Thus, the proposed unsu-
pervised Learning functional data clustering based on adaptive weights can be 
summarized as Algorithm 1. 

 
Algorithm 1. Unsupervised Learning Functional Data Clustering Based on Adaptive Weights 

 

4. Theoretical Properties  

Proposition 1. Given the iterative formula ( )t
kα  that minimizes the objective  

function ( ) 2

1 1 1 1 1
, , ln ln

n c c n c
m
ik ik k k ik k

i k k i k
J u V u d n uα β α α γ α

= = = = =

= − −∑∑ ∑ ∑∑ , if there exists 

k such that ( )ln t
kα  is less than its weighted mean, then ( ) ( )1t t

k kα α+ < .  

proof.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

1

1 1 1
ln ln ln ln

n c n
t t t t t t t tik ik

k k k s s k k k
i s i

t
k

u u
n n

β βα α α α α α α α
γ γ

α

+

= = =

 = + − < + − 
 

=

∑ ∑ ∑
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That is, there exists k such that ( ) ( ) ( )

1
ln ln

c
t t t

k s s
s

α α α
=

< ∑  is satisfied, we can get 

( ) ( )1t t
k kα α+ < .                                                      □ 

Proposition 2. Given the iterative formula ( )t
kα  that minimizes the objective  

function ( ) 2

1 1 1 1 1
, , ln ln

n c c n c
m
ik ik k k ik k

i k k i k
J u V u d n uα β α α γ α

= = = = =

= − −∑∑ ∑ ∑∑ , if  

( ) ( ) ( )
11 1

1 max ln
n c

t t tik
k s sk ci s

u
n

β γ α α α
≤ ≤= =

   ≤ − −   
   

∑ ∑ , then ( )1

1
max 1t

kk c
α +

≤ ≤
≤ .  

proof.  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1 1 11 1

1 11 1

11 1

1 1

max max max ln max ln

max max ln

1 max ln
1

max

n c
t t t t tik

k k k s sk c k c k c k ci s

n c
t t tik

k s sk c k ci s

n c
t t tik

k s sn k ci s
ik

k c i

u
n

u
n

u
n

u
n

βα α α α α
γ

β α α α
γ

γ α α α

+

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤= =

≤ ≤ ≤ ≤= =

≤ ≤= =

≤ ≤ =

 = + − 
 

  < + −  
  

  − − 
 < −

∑ ∑

∑ ∑

∑ ∑
∑

( ) ( ) ( )
1 1
max ln

1

c
t t t

k s sk c s
α α α γ

≤ ≤ =

 
  

  
 
 
 

=

∑

 

Therefore, when  

( )

( ) ( )( )
( ) ( ) ( )

1

1 11

1 1

1exp
min ,

max ln

nc
t t ik

k k
t ik

c
t t t

k s sk c s

u
n

n
c

γη α α
β

α α α

+

+ ==

≤ ≤ =

  −− −  
  =

  −  
  

∑∑

∑
 

holds, ( )1

1
max 1t

kk c
α +

≤ ≤
≤  can be guaranteed.                              □ 

5. Simulation Study 

In this section, we use simulation experiments to verify the performance of the 
proposed clustering algorithm and whether it can calculate the optimal number 
of clusters c. At the same time, we compare with fuzzy C-means (FCM) and 
adaptive weighting functional clustering (AWFC). The result is evaluated using 
cluster purity. Purity is calculated using Equation (5.1):  

 ( )
11

1purity , max
K

k jj JK
C w c

N ≤ ≤=

Ω = ∩∑                (18) 

where { }1, , Kw wΩ = 
 is the cluster division, { }1, , JC c c= 

 is the real class 
division. The value range of purity is [ ]0,1 , the larger the value, the better the 
clustering performance. 

Assume that the three functional data for the simulation experiment are:  
( ) 3

1 5X t t t= + , ( ) ( )2 sin 5X t t t= + π , ( ) ( )3
3 2 5X t t t= + − , [ ]0,1t∈ . 

( )ij i ij ijY X t ε= +  is the observation value of the function data with error, and the 
error ijε  obeys a normal distribution with mean 0 and variance 0.02. In order 
to ensure that the FCM clustering algorithm is available when simulating expe-
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riments, we assume that ijt  is 100 equally spaced observation nodes on the in-
terval [ ]0,1 . The observation sample size of each function data in the simula-
tion experiment is the same, and the total sample size is 30, 300, 600, in order to 
compare the effectiveness of the clustering algorithm under different sample siz-
es. The figure shows the clustering data when 300n = . Figure 1(a) is the ob-
servation value with noise. Figure 1(b) is the function data generated using the 
B-spline basis. 

We can see that the three types of curves are increasing functions from Figure 
1(a) and Figure 1(b), but there are significant differences in their derivatives. 
Following the steps of UFDCAW, the scatter plot of functional principal com-
ponent scores of 3rd and 5th iterations for a sample size of 300 is shown in Fig-
ure 2. From Figure 2(b), we can see that the number of clusters decreases ra-
pidly from 300 to 165 after 3 iterations. The algorithm ends after five iterations 
and obtains the correct number of clusters 3c =  and three class centers. The 
purity of clustering is 0.993. 

Table 1 shows the average of the results of 100 replicate experiments using 
FCM, AWFC and UFDCAW on simulated data with sample sizes of 30, 300 and 
600, judged by the purity of the clustering results. 

The data presented in Table 1 shows that UFDCAW has higher cluster purity 
than the FCM and AWFC for sample sizes of 30, 300 and 600. The results of the 
comparison show that: 1) UFDCAW has higher cluster purity than FCM and 
can display sample distribution characteristics in low dimensional space. 2) FCM 
and AWFC required random initial class centres, therefore the cluster prurity 
will be low when algorithm selects an unsuitable class center. UFDCAW is more  
 
Table 1. Comparison of clustering algorithm results. 

 n FCM AWFC UFDCAW 

Purity 

30 0.839 0.801 1 

300 0.825 0.856 0.993 

600 0.805 0.871 0.997 

 

 
Figure 1. (a) Observation value with noise, (b) function data for a sample size of 30. 
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Figure 2. Scatter plot of the functional principal component scores of data with a sample size of 30 (a) 0t = , (b) 3t = , (c) 5t = . 

 
stable because there is no need to select the initial clustering center. 3) UFDCAW 
can be iterated to obtain the number of clusters. 

6. Conclusion  

At present, the data we collect is becoming more and more complicated. Using 
multivariate statistical models to deal with complicated data will cause problems 
such as dimensional disaster, and functional data emerges as the times require. 
Based on the former studies, we expand the K-means clustering algorithm based 
on adaptive weights. It not only reduces the influence of noise, but also can find 
the optimal number of clusters using the algorithm when the initialization pa-
rameters are missing. It is verified by simulation that the algorithm proposed in 
this paper can obtain more accurate clustering results and has a certain degree of 
feasibility. But, the algorithm is slightly more complicated, and some informa-
tion will be lost when using basis function fitting and functional principal com-
ponent analysis, which needs to be further improved. 
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