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Abstract 
Decision-theoretic interval estimation requires the use of loss functions that, 
typically, take into account the size and the coverage of the sets. We here con-
sider the class of monotone loss functions that, under quite general condi-
tions, guarantee Bayesian optimality of highest posterior probability sets. We 
focus on three specific families of monotone losses, namely the linear, the 
exponential and the rational losses whose difference consists in the way the 
sizes of the sets are penalized. Within the standard yet important set-up of a 
normal model we propose: 1) an optimality analysis, to compare the solutions 
yielded by the alternative classes of losses; 2) a regret analysis, to evaluate the 
additional loss of standard non-optimal intervals of fixed credibility. The ar-
ticle uses an application to a clinical trial as an illustrative example. 
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1. Introduction 

Together with point estimation and testing, set estimation is the most popu-
lar method for inference on the unknown parameter of a statistical model. In 
the decision-theoretic framework, set estimation has traditionally received less 
attention than the other two problems, both from a frequentist and a Bayesian 
point of view. Set estimators are in fact typically derived using non-decisional 
approaches. For instance, frequentist intervals are found using pivotal quantities 
or inverting acceptance regions of tests; Bayesian intervals, such as equal tails or 
highest posterior density sets, are obtained by exploiting some features of the 
posterior distribution of the parameter, with no explicit connections with a deci-
sion-theoretic context. Probably this is the consequence of the difficulty in choos-
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ing a satisfactory loss function for this decision problem. 
In the few studies on this topic, loss functions typically take into account two 

aspects of the candidate set estimators, i.e. their size (aptly penalized by a specif-
ic coefficient) and their ability to contain the true value of the parameter. The 
most widespread loss function is the so-called linear loss, which is a linear func-
tion of the size of the set (see Expression (2) of Section 1). Despite its simplicity, 
this function has been found to produce optimal sets (both frequentist and 
Bayesian) with paradoxical flaws even in a very standard problem such as set es-
timation of the normal mean with unknown variance: see [1] and [2]. In order to 
address these inconveniences, the Authors have then proposed to consider other 
losses that are increasing but non-linear functions of the sizes of the sets under 
evaluation. Among these, the exponential and the rational losses (see Expres-
sions (3) of Section 2). 

The analysis contained in the present article is closely related to that in [1] and 
[2]. Our contribution is intended to fill the following three gaps. 1) The ap-
proach of [1] and [2] is mainly theoretical. In the present article we explore the 
features of optimal actions and posterior expected losses induced by three dif-
ferent loss functions (linear, exponential and rational) in several numerical ex-
amples. Specifically, we assess the sensitivity of optimal actions with respect to 
both the choice of the loss function and of the prior distribution (informative vs 
non-informative priors). 2) As a second contribution, we propose a regret analy-
sis: we evaluate the additional losses of standard highest posterior density sets of 
fixed posterior probability with respect to optimal sets under the three losses. 3) 
As far as we know, a formal decision-theoretic approach set estimation under 
different loss functions has never been applied to any real experimental context. 
We here provide an application to clinical trial data.  

As we said, the literature on the subject is scant. In addition to the already 
mentioned motivating articles [1] and [2], general introductions to Bayesian de-
cision-theoretic set estimation can be found, for instance, in [3] [4] [5] [6] [7]. 
An objective Bayesian decisional approach is proposed in [8]. The use of post-
erior regret for interval estimation has been lately considered in [9]. Evaluation 
of additional posterior loss of non-optimal actions for point estimation and 
testing has been examined by [10] and [11]. Considerations on the conflict be-
tween optimal and non-optimal Bayesian actions can be found in [12]. 

This article moves from a preliminary study in [13] for the Poisson model and 
is organized as follows. In Section 2 we introduce the basic elements of the Baye-
sian decision-theoretic approach to set estimation. Section 3 is about optimality 
analysis for interval estimation of a normal mean with known and unknown va-
riance. Using both simulations and clinical trial data we discuss the effect of the 
values of the penalizing constant for the length of intervals and the impact of 
prior choices on features of optimal sets (length, posterior probability and post-
erior expected loss) using the three losses. In Section 4 we change perspective: 
from the search of optimal sets (whose length and credibility is not fixed in ad-
vance) we switch to a regret analysis that aims at evaluating the additional cost 
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of using intervals with fixed credibility levels rather than optimal sets. Using the 
clinical trial example again, we examine the effects of the following quantities on 
the posterior regret associated with the exponential and rational losses: the value 
of the penalizing constant, the sample size, the credibility level. Finally, Section 5 
summarizes the main points come to light in the article. All elaborations are 
performed using the software R [14]: code is available upon request. 

2. Methodology  

Given a parametric model, ( )| ,nf θ θ⋅ ∈Θ , let ( )π θ  denote the prior distribu-
tion of θ , nx  an observed sample of size n and ( )| nπ θ x  the corresponding 
posterior distribution. For simplicity, suppose that 1Θ ⊆   and that ( )π θ  is a 
probability density function. Assuming to be interested in set estimation of θ  
from a decision theoretic perspective (see [3] and [7]), let   be a class of sub-
sets of Θ  and ( ),Cθ  the loss function for a generic set C∈ . This ap-
proach prescribes one to select a set C   that minimizes the posterior expected 
loss ( ), nCρ x  as C varies in  , i.e.:  

( ) ( ) ( ) ( )arg min , , where , , | d .n n nC
C C C Cρ ρ θ π θ θ

Θ∈
= = ∫ 


x x x  

The most widely used family of losses for set estimation is defined by setting  

 ( ) ( ) ( ), ,CC L Cθ θ= +                        (1) 

where the size ( )⋅  is an increasing function of ( )L C —the Lebesgue measure 
of C—and ( )C ⋅  is the indicator function of the set \C C= Θ . The resulting 
posterior expected loss of C∈  is  

 ( ) ( ) ( ), 1 | ,n nC L C Cρ = + −   x x  

which embodies a compromise between the size of C and its posterior probabili-
ty of containing θ , denoted as ( )| nC x . One important property of the class 
of monotone functions (see, for instance, [2]) is that, if θ  is an absolutely con-
tinuous random variable (as we assume here), optimal actions are highest post-
erior density (HPD) sets defined as ( ){ }: | , 0nC h hθ π θ= ∈Θ ≥ ≥ x . More 
specifically, we here assume that HPD sets are intervals ,C L U =  

   . 
Let ( )C U L= −  be the length of a generic interval C. The simplest form of 

loss (1) for C is obtained by selecting  

 ( ) ( ) , 0,C a C a= >  

                     (2) 

as size function, which yields the class of linear loss functions, ( ) ( )Ca C θ+  , 
where a is a penalizing constant for interval lengths. Casella, Hwang and Robert 
in [1] and [2] show that, in the case of unbounded parameter space, optimal sets 
under the linear loss function may be dominated by unreasonable sets. For in-
stance, in the case of the normal model ( )2N ,θ σ  with unknown variance, the 
standard Student’s t-interval for θ  is dominated by a set that is empty as the 
sample variance is sufficiently large. They also show that (under mild conditions) 
these kinds of problems are avoided if both the components of (1) assume values 
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in [ ]0,1  or, more specifically, if ( )⋅  is a nonlinear and increasing function 
that ranges monotonically in the unit interval such that ( )( )lim 0C C→∅ =   
and ( )( )lim 1C C→Θ =  . To resolve this paradox the Authors propose the fol-
lowing two nonlinear functions  

 ( )
( )

( ) ( )
( )

2

21 e and , 0
1

a C

e r

a C
C C a

a C
−

= − = <       +
 

 
 


     (3) 

that result in the classes of exponential and rational loss functions. The posterior 
expected losses corresponding to the three size functions under examination in 
this article are then given by:  

 ( ) ( ) ( ), 1 | , , , .j n j nC C C j e rρ = + − =    x x           (4) 

Note that whereas ( ), 0nCρ ≥


x , for all C, i.e. it is unbounded above, the values 
of ( ),e nCρ x  and ( ),r nCρ x  are upper bounded. As an example, Figure 1 
shows ( ),j nCρ x , , ,j e r=   as a function of ( )C : shaded areas represent 
the contributions of ( )j C     (dotted lines) and of ( )1 | nC− x  (solid lines) 
respectively. 

Posterior expected losses jρ  allow us to follow two different decisional ap-
proaches:  

(i) Optimality analysis, i.e. determination and comparison of optimal intervals  

 ( )arg min , , , ;j j nC
C C j e rρ

∈
= = 


x  

(ii) Regret analysis, i.e. evaluation of standard intervals of given credibility 
level γ , denoted by Cγ , in terms of their additional expected loss (or expected 
regret) with respect to jC  , quantified by  

 ( ) ( ) ( ), , , , .j j n j j nC C C j e rγ γρ ρ∆ = − = x x            (5) 

Note for any arbitrary choice of [ ]0,1γ ∈ , ( ) 0j Cγ∆ ≥ .  
Approaches (i) and (ii) will be now specialized to the normal model in Sec-

tions 3 and 4 respectively. 

3. Optimality Analysis  

Let us assume that ( )2| ~ N ,iX θ θ σ , with 2σ  known, and that  

( )2
0 0~ N , nθ µ σ . These assumptions imply that ( )2| ~ N ,n nθ µ σx  where 

( )0 0 nn nx nµ µ= +  and 0n n n= + . In this case the class of HPD sets—which 
are also equal tails (ET) intervals—is , 0kC k n kµ σ= ± > , and  

 ( ) ( ) ( ) ( ), 1 ,j k n j kC x C k kρ  = + − Φ −Φ −             (6) 

where ( )Φ ⋅  is the standard normal cdf and ( )j kC    , for , ,j e r=  , are 
obtained by setting ( ) 2kC k nσ=  in (2) and (3). The non-informative case 
is simply obtained by setting 0 0n = , which yields standard confidence intervals 

, 0nx k n kσ± > . Note that the minimizers jk   can be determined as follows:  

(i) ( ) ( ) 1
2 ln 2 if 2

0 otherwise

a n a nk σ σ
−− <= 



π π


 ;  
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Figure 1. Posterior expected losses ( ),j nCρ x , ( )j C     (dotted lines) and  

( )1 | nC−  x  (solid lines), , ,j e r=  , as functions of ( )C .  

 

(ii) rk   satisfies the equation 2
2

r

r

ak
k a

φ   = 
 + 




, where 

2
a na
σ

=  and 

( )φ ⋅  denotes the density function of a standard normal random variable;  

(iii) ek   is determined numerically.  
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For the unknown variance case let us assume that ( )2 2
0 0| ~ N , nθ σ µ σ  and 

that ( )2 2
0 0 0~ Inv-Ga 2, rate 2σ ν ν σ=  or, equivalently, an inverse chi-square 

r.v. of parameters ( )2
0 0, rateν σ= . In this case standard conjugate analysis yields 

that ( )2| ~ ,n t nνθ µ σx , where 0 nν ν= + , µ  is unchanged w.r.t. the known  

variance case, ( ) ( )22 2 2 0
0 0 0

0

1 n n
n n

n S x
n n

νσ ν σ µ= + − + −
+

, 2
nS  is the sample vari-  

ance and 0n n n= +  (see Lesaffre and Lawson (2012), p. 86-87). HPD sets are 
then , 0kC k n kµ σ= ± > , and  

 ( ) ( ) ( ) ( ), 1 ,j k n j kC C k n k nν νρ µ σ µ σ  = + − + − −     x   (7) 

where ( )ν ⋅  is the cdf of the t random variable with ν  degrees of freedom, 
location µ  and scale nσ  and ( )j kC    , for , ,j e r=  , are obtained by 
setting ( ) 2kL C k nσ=  in (2) and (3). Note that the non-informative case is 
retrieved for 0 0 0n ν= = , i.e. using a flat prior for 2|θ σ  and ( )2 21π σ σ= . 
In this case HPD sets are k n nC x kS n= ±  (see Lesaffre and Lawson (2012) p. 
88). The minimizers jk   of (7) depend on the data and can be determined nu-
merically, for , ,j e r=  , or according to results similar to (i)-(iii). For instance,  

it can be checked that rk   satisfies the equation 2
2

r

r

ak
k a

νϕ   = 
 + 




, where 

2
a na
σ

=  and ( )νϕ ⋅  denotes the density function of a tν  random variable  

with ν  degrees of freedom, location µ  and scale nσ . For futher details 
see [2]. 

3.1. Numerical Examples 

For each loss function and for selected values of a we determine the optimal sets 
using the following procedure. We first consider a grid of values for k and deter-
mine the corresponding ET/HPD sets kC  and their expected loss ( ),j k nCρ x . 
Then we select jk   as the minimizer of ( ),j k nCρ x , for , ,j e r=  . Figure 2 
shows the plots of ( ),j k nCρ x  as functions of k for Normal posteriors in the 
known variance case, under an informative prior ( 0 5n = , left panels) and a 
non-informative prior ( 0 0n = , right panels). For each value of a the optimal jk   
is circled. According to the definition of the different size functions in (2) and 
(3), the impact of the penalizing coefficient a on interval lengths is not directly 
comparable. However, in general, as expected, the larger a the smaller jk  , 

, ,j e r=  . Among the three losses, ( ),k nCρ


x  is the most sensitive with re-
spect to the values of a, which results in the largest range of values for k



 . Note 
also that the optimal values rk   are the largest, yielding optimal intervals with 
posterior probability rγ

  larger than 0.94 with smaller variability than those of 
the linear and of the exponential loss. For all the explored a values, the exponen-
tial loss function provides optimal sets with intermediate levels of length and 
posterior probability, and overall smaller values of the posterior expected loss. 
As expected, for each value of a, the curves jρ  as functions of k are slightly but  
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Figure 2. Posterior expected losses ( ),j nCρ x , , ,j e r=  , as functions of k for different values of a for Normal posteriors under 

an informative prior with 0 5n =  (left column) and a non-informative prior with 0 0n =  (right column). For each jρ ,  

, ,j e r=  , circles denote jk  .  

 
uniformly higher for the non-informative case (right panels). Interestingly, even 
though a selected jk   can be surprisingly smaller in the non-informative case, 
the corresponding value of jρ

  is always greater than in the informative case, 
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due to the larger posterior variance of θ . For instance, under the exponential 
loss function with 1a = , ek   and eρ

  are equal to 1.54 and 0.335 in the non- 
informative case and 1.70 and 0.264 in the informative case (see Table 1). The 
above comments are consistent with the numerical values of jk  , j

 , jγ
  and 

jρ
  reported in Table 1 for the Normal model with known variance, both for 

the informative and the non-informative case. 
Table 2 reports jk  , j

 , jγ
  and jρ

  for the unknown variance case as-
suming 2

0 1σ = , (i) 0 00, 100n ν= =  and (ii) 0 00, 0n ν= = . Notice that the 
values of Table 2 side (i) are very close to those of Table 1 side (ii), since 

0 100ν =  yields a prior for 2σ  highly concentrated on the variance parameter 
that is assumed to be known in the former case. As regards the comparison be-
tween the informative and the non-informative case, considerations similar to 
those made for the known variance case also apply to Table 2 [compare (i) and 
(ii)]. 

3.2. Application to Clinical Data  

In this section we consider an application from [15], in which an experimental 
drug (t), indicated for the treatment of iron deficiency anemia in adult patients 
with cronic kidney disease, is compared to a control treatment (c). The prima-
ry endpoint is the mean change in hemoglobin from baseline to day 35. Let 

t cθ θ θ= −  be the difference between the expected changes in hemoglobin under 
the two treatments. Let ( )2~ N ,nX nθ σ  be the difference between the sample 
mean changes in hemoglobin ( )1

nX  and ( )0
nX  under the two treatments, where  

 
Table 1. Length, posterior probability, posterior expected loss for 

jk
C   and values of jk   under the three loss functions for se-

lected values of a, for the Normal model with known variance 2 1σ =  assuming (i) an informative prior for θ  (e.g. 0 5n = ) and 
(ii) a non-informative prior for θ  (e.g. 0 0n = ). 

Loss a 
(i) 0 5n =  (ii) 0 0n =  

j
  jγ

  jρ
  jk   j

  jγ
  jρ

  jk   

linear 1.0 0.480 0.648 0.833 0.930 0.430 0.503 0.927 0.680 

 0.5 0.775 0.866 0.521 1.500 0.860 0.826 0.604 1.360 

 0.2 1.043 0.957 0.252 2.020 1.214 0.945 0.298 1.920 

 0.1 1.208 0.981 0.140 2.340 1.423 0.976 0.167 2.250 

rational 1.0 0.981 0.943 0.553 1.900 1.202 0.943 0.603 1.900 

 0.5 1.028 0.953 0.719 1.990 1.297 0.960 0.762 2.050 

 0.2 1.203 0.980 0.877 2.330 1.537 0.985 0.900 2.430 

 0.1 1.368 0.992 0.940 2.650 1.733 0.994 0.952 2.740 

exponential 1.0 0.733 0.844 0.391 1.420 0.791 0.789 0.480 1.250 

 0.5 0.878 0.911 0.264 1.700 0.974 0.876 0.335 1.540 

 0.2 1.059 0.960 0.146 2.050 1.202 0.943 0.192 1.900 

 0.1 1.188 0.979 0.090 2.300 1.360 0.968 0.120 2.150 
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Table 2. Length, posterior probability, posterior expected loss for 
jk

C   and values of jk   under the three loss functions for se-

lected values of a, for the Normal model with unknown variance, assuming 2
0 1σ = , (i) 0 00, 100n ν= =  and (ii) 0 00, 0n ν= = . 

Loss a 
(i) 0 00, 100n ν= =  (ii) 0 00, 0n ν= =  

j
  jγ

  jρ
  jk   j

  jγ
  jρ

  jk   

linear 1.0 0.428 0.502 0.926 0.680 0.420 0.500 0.920 0.700 

 0.5 0.856 0.823 0.605 1.360 0.828 0.802 0.612 1.380 

 0.2 1.215 0.944 0.299 1.930 1.206 0.928 0.313 2.010 

 0.1 1.429 0.975 0.168 2.270 1.464 0.965 0.181 2.440 

rational 1.0 1.202 0.941 0.605 1.910 1.194 0.925 0.619 1.990 

 0.5 1.297 0.958 0.764 2.060 1.308 0.946 0.778 2.180 

 0.2 1.542 0.984 0.901 2.450 1.650 0.980 0.912 2.750 

 0.1 1.750 0.994 0.952 2.780 1.800 0.987 0.961 3.000 

exponential 1.0 0.787 0.786 0.480 1.250 0.762 0.767 0.485 1.270 

 0.5 0.976 0.876 0.336 1.550 0.948 0.855 0.346 1.580 

 0.2 1.202 0.941 0.193 1.910 1.194 0.925 0.207 1.990 

 0.1 1.366 0.968 0.121 2.170 1.380 0.956 0.135 2.300 

 
2 2 2

t t c cn n nσ σ σ= +  and t cn n n= + , with in  the size of the arm ,i t c= . In 
the example 62tn = , 64cn = , 0.87

tnx =  and 0.71
cnx = . Here, we assume that 

tσ  and cσ  are known and equal to the sample standard deviations reported in 
the original example, i.e. 1.14 and 1 respectively. Using the non-informative 
prior ( ) constπ θ =  for θ , the 95% credible interval is ( )0.215,0.535− . 

Table 3 shows the optimal intervals under the three loss functions for 1a =  
with different choices of the prior parameters: (A) 0 00, 100nµ = =  (no differ-
ence between treatment effects); (B) 0 00.16, 100nµ = =  (prior information 
perfectly matching sample data); (C) 0 00.32, 100nµ = =  (optimistic prior mean); 
(D) 0 0n =  (non-informative). 

As 0µ  increases [from (A) to (C)], intervals bounds are shifted towards larger 
values, but the selected jk   is the same for each given loss function, thus yield-
ing the same values of j

 , jγ
  and jρ

 , , ,j e r=  . In the non-informative 
case (D), the values of jρ

  and j
  are uniformly greater than in the previous 

cases, due to the larger posterior variance. The rational loss always yields the 
widest optimal intervals, with posterior probability close to the conventional lev-
el 95%. 

Figure 3 shows the behavior of j
 , jγ

 , jρ
  and jk   as functions of the 

coefficient a. As a increases, j
  and jγ

  tend to decrease and the correspond-
ing values of jρ

  tend to increase. As expected the linear loss (solid line) is the 
most sensitive to changes of the values of a. Due to remark (i) of Section 3, 

k
C



  
is non trivial ( 0k >



 ) for values of ( ) 1
2a nσ

−
< π , that is equal to 2.08 in 

this example. This motivates the presence of the cusp in the three plots. Note 
that in the second panel the curve representing rγ

  shows values always very  
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Figure 3. Length, posterior probability and posterior expected loss of the optimal set C   
as functions of a, under the linear (solid line), rational (dashed line) and exponential loss 
(dotted line), for the Normal model with known variance assuming 0 0n =  (non-infor- 
mative).  
 
close to 0.95; whereas eγ

  progressively reduces as a increases. Finally, inspec-
tion of the values of jρ

  allows an overall look at the sensitivity to a of the three 
losses (see third panel). Although a direct comparison of the absolute values of 

jρ
  is not meaningful, due to the different role of a in the three loss functions,  

https://doi.org/10.4236/ojs.2023.132010


F. De Santis, S. Gubbiotti 
 

 

DOI: 10.4236/ojs.2023.132010 205 Open Journal of Statistics 
 

Table 3. Bounds, length, posterior probability, posterior expected loss for optimal sets 
jk

C   and values of jk   under the three 

loss functions with 1a = , for the Normal model with known variance, assuming four alternative priors: (A) 0 00, 10nµ = =  (no 
difference between treatment effects); (B) 0 00.16, 10nµ = =  (prior information perfectly matching sample data); (C)  

0 00.32, 10nµ = =  (optimistic prior mean); (D) 0 0n =  (non-informative). 

Loss Prior 0µ  0n  j
  jU   jL  jγ

  jρ
  jk   

linear (A) 0 100 −0.115 0.293 0.408 0.847 0.561 1.430 

 (B) 0.16 100 −0.044 0.364 0.408 0.847 0.561 1.430 

 (C) 0.32 100 0.027 0.435 0.408 0.847 0.561 1.430 

 (D) - 0 −0.071 0.391 0.463 0.774 0.689 1.210 

rational (A) 0 100 −0.191 0.369 0.560 0.950 0.409 1.960 

 (B) 0.16 100 −0.120 0.440 0.560 0.950 0.409 1.960 

 (C) 0.32 100 −0.049 0.511 0.560 0.950 0.409 1.960 

 (D) - 0 −0.207 0.527 0.734 0.945 0.478 1.920 

exponential (A) 0 100 −0.181 0.359 0.540 0.941 0.194 1.890 

 (B) 0.16 100 −0.110 0.430 0.540 0.941 0.194 1.890 

 (C) 0.32 100 −0.039 0.501 0.540 0.941 0.194 1.890 

 (D) - 0 −0.159 0.479 0.639 0.905 0.280 1.670 

 
the rate of increase of the three curves shows a greater degree of robustness of 
the exponential loss. 

4. Regret Analysis  

As discussed at the end of Section 2 one typically uses the suboptimal sets Cγ  
that guarantee minimal length in the class of fixed γ -credibility level intervals.  
For the normal model with known variance 1

2

C z nγ
γµ σ+= ± . In this section  

we are interested in evaluating ( )j Cγ∆ , the additional expected loss of sets Cγ  
given by Equation (5). Our goal is to quantify the cost of using the more prag-
matic interval Cγ  instead of the optimal set 

jk
C   under a given loss function. 

Here the comparison is restricted to the exponential and rational loss functions, 
due to the drawbacks of the linear loss previously discussed. The values of ( )j Cγ∆   

are computed noting that ( ) 1
2

, 2 1j n jC z nγ
γρ σ γ+

 
= + − 

 
x  and determin-

ing the values of ( ),
j

j nk
Cρ  x  numerically as discussed in the previous section.  

We explore the behaviour of ( )j Cγ∆  with respect to a, n and γ  for the ap-
plication of Section 3.2. Moreover, we compare two alternative prior assump-
tions, i.e. the non-informative case (with 0 0n = ) and an informative case (with 

0 100n = ). Note under the non-informative prior the γ -credible interval coincides  
with the frequentist γ -confidence interval 1

2
nx z nγ σ+± . 
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Application to Clinical Data (Continued) 

Figures 4-6 show the values of ( )j Cγ∆ , ,j e r= , as functions of a, n and γ  
respectively. Solid lines correspond to a prior sample size 0 100n = , dashed lines 
to the non-informative case ( 0 0n = ). 

1) Effect of a (Figure 4) 
a) As a varies the curves j∆  have a minimum in ja , which represents the 

value of the penalizing coefficient such that Cγ  are the closest to the optimal 
sets 

jk
C  . Note that 0j∆ =  when the value ja  is such that Cγ  is optimal 

under the loss function j.  
b) In all panels but the last one (see next item), ja  is smaller for 0 0n =  than  

 

 

Figure 4. Additional expected loss ( )j Cγ∆  with 0.80γ =  (top panels) and 0.95γ =  (bottom panels) as function of a, under 

the exponential (left column) and the rational loss (right column), for the Normal model with known variance assuming 0 100n =  
(solid line) and 0 0n =  (dashed line) with 126n = .  
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Figure 5. Additional expected loss ( )j Cγ∆  with 0.80γ =  (top panels) and 0.95γ =  (bottom panels) as functions of n, under 

the exponential (left column) and the rational loss (right column) with 1a = , for the Normal model with known variance as-
suming 0 100n =  (solid line) and 0 0n =  (dashed line).  

 
for 0 100n = . This means that, since the non-informative prior yields larger sets, 
the degree of penalization of interval length has to be smaller than it can be for 
larger values of 0n .  

c) Under the rational loss function, for 0.95γ =  (last panel) r∆  is substan-
tially negligible for a large range of values of a. This is consistent with what we 
observed in the previous section (see for instance Figure 3 second panel) since 
the optimal sets under the rational loss have credibility approximately equal to 
0.95 for several values of a.  

d) According to the choice of a either the standard confidence interval or the 
Bayesian credible interval can be preferred in terms of additional expected loss.  
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Figure 6. Additional expected loss ( )j Cγ∆  as function of γ , under the exponential (left column) and the rational loss (right 

column) with 1a =  (top panels) 2a =  (center panels) and 5a =  (bottom panels) for the normal model with known variance 
assuming 0 100n =  (solid line) and 0 0n =  (dashed line).  

 
2) Effect of n (Figure 5) 
a) The range of r∆  is much smaller than that of e∆ . Values of j∆  are par-

ticularly small when 0.95γ =  (bottom panels).  
b) In all the plots the solid and dashed curves j∆  as functions of n have a 

minimum point jn . This means that there exist a value of the sample size such 
that Cγ  is optimal. Such a value jn  is smaller for 0 100n =  than for 0 0n =  
since the informative prior implies shorter γ -credible sets than the non-infor- 
mative one.  

c) For values larger than jn  the curves j∆  increase. In particular the higher 
steepness of solid curves is due to the shorter length of intervals under the in-
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formative prior for each given sample size. Moreover, solid and dashed curves 
eventually tend to coincide because the effect of 0n  becomes more and more 
negligible with respect to larger and larger values of n.  

d) For 0.8γ =  (top panels) there are not values of n such that 0j∆ = , i.e. 
sets Cγ  are never optimal.  

3) Effect of γ  (Figure 6) 
a) In all panels the maximum value of j∆  is obtained for 0γ =  (when Cγ  

reduces to µ ).  
b) For increasing values of γ  the curves j∆  decrease and reach their min-

imum at jγ
 , i.e. j∆  increases with jγ γ−  .  

c) The smaller the value of γ  the larger the discrepancy between the lengths 
of 

jk
C   and Cγ  and this discrepancy is stronger for informative priors that 

yield shorter intervals with respect to non-informative priors. The opposite is 
observed for large values of γ  when the exponential loss is used; whereas the 
rational loss seems to be more insensitive to the prior at least for values of 

0.5γ > .  
d) Depending on the chosen value for γ , either the standard confidence in-

terval or the Bayesian credible interval can have the smallest regret. However, for 
large values of γ —typically chosen in the practice—regret is smaller for the in-
formative Bayesian interval.  

5. Conclusions  

We can now attempt to summarize some indications drawn from the numerical 
example and the clinical data application of Sections 3 and 4. 

As regards the optimality analysis the main points are the following.  
1) As shown by Table 1 and Table 2, the value of the penalizing coefficient a 

is critical: there are no general guidelines for its choice that is, however, highly 
influential in determining optimal intervals. This is also true in general in deci-
sional analysis, for instance in testing problems when generalized 0 - 1 losses are 
used. 

2) Non-informative distributions imply larger values of j  and, as a conse-
quence, of jρ  than those obtained with informative priors, as one can argue by 
looking at Table 3. 

3) Figure 2 and Figure 3 allow us to sketch a comparison among the beha-
viour with respect to a of the posterior expected losses induced by the three loss 
functions: the linear loss is the most sensitive; the rational loss yields larger sets 
and values of rγ

  close to 0.95; the values of eρ  are the most robust with re-
spect to a. 

In the regret analysis of Section 4 we have explored the impact of a, n and γ . 
Here are the main comments. 

1) The value ja , that minimizes the additional loss of Cγ , quantifies the de-
gree of penalization such that Cγ  is as close as possible to be optimal. In this 
sense it can be useful to support the interpretation and the choice of a. 
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2) As shown in Figure 4, according to the choice of a either the standard con-
fidence interval or the Bayesian credible interval can be preferred in terms of ad-
ditional expected loss. 

3) Figure 5 suggests that, as n varies, the range of r∆  is smaller than that of 

e∆ . Furthermore it hints that it is possible to find values of n such that Cγ  is 
optimal and sample size beyond which the weight of the prior on j∆  becomes 
more and more negligible. 

4) In terms of additional expected loss, it is not granted that the Bayesian 
credible interval has to be preferred with respect to the standard confidence in-
terval: it depends on the chosen value for γ . Nevertheless, in the practice large 
values of γ  are typically fixed. According to Figure 6 for large values of γ  the 
informative Bayesian interval have (slightly) smaller regret than confidence in-
tervals. 

As pointed out in [2] “it is difficult to treat the set estimation problem in a de-
cision-theoretic way” because of some limitations related to the available loss 
functions and the difficulty of selecting an appropriate loss function. Neverthe-
less the possibility of balancing size and credibility is still appealing. In this paper 
we have explored the features of some loss functions that are alternative to the 
linear loss function and that produce sensible sets for normal models. Bearing in 
mind that the distribution of the data plays an important role, we hope to extend 
the present analysis to other models, in the spirit of [13]. 
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