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Abstract 

The present paper proposes a new robust estimator for Poisson regression 
models. We used the weighted maximum likelihood estimators which are re-
garded as Mallows-type estimators. We perform a Monte Carlo simulation 
study to assess the performance of a suggested estimator compared to the 
maximum likelihood estimator and some robust methods. The result shows 
that, in general, all robust methods in this paper perform better than the clas-
sical maximum likelihood estimators when the model contains outliers. The 
proposed estimators showed the best performance compared to other robust 
estimators. 
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1. Introduction 

Poisson regression model is widely used for modeling response variables that are 
counted. It is discussed by [1]. Practically, a common method used to estimate 
parameters is the maximum likelihood estimator (MLE). Unfortunately, this 
technique is high sensitivity to outliers in data, see ([2] [3]). To overcome this 
issue, many robust are an alternative to Maximum Likelihood Estimates. One of 
the first robust methods used to estimate the parameters in Poisson regression 
models is the Conditionally Unbiased Bounded Influence introduced by [4]. [5] 
discussed the M-estimator for Poisson regression model, these estimates belong 
to Mallows-type. [6] developed robust M-estimates for generalized linear models 
(GLM), these estimates are asymptotically normal and consistent. [7] proposed a 
fast and stable technique based on breakdown point of the trimmed maximum 
likelihood for generalized linear models. [8] introduced the class of M-estimators 
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based on quasi likelihood estimators proposed by [9]. [10] developed a robust 
estimator for Poisson regression model based on Mallows quasi-likelihood esti-
mator. [11] discussed the behaviour of maximum likelihood estimator in the 
present of outliers. [12] discussed a robust resistant estimator based on the mis-
classification model. [13] generalized Optimally Bounded Score Function dis-
cussed by [14] for linear models to the generalized linear model. More recently, 
[15] introduced a robust method for logistic regression models. [16] discussed 
the robust estimators for Poisson regression model with outliers. 

In this paper, we introduced a robust method for Poisson regression by using 
the weight functions proposed by [17] these weight functions are based on Mal-
low’s type estimator, moreover, to evaluate the performance of the new methods 
with (MLE), Mallows, and (CUBIF) using the Monte Carlo simulation study. In 
Section 2, we discuss the Poisson regression model and the maximum likelihood 
estimators. In Section 3, we provide robust estimators for Poisson regression. In 
Section 4, we show the results of Monte Carlo simulation study. In Section 5, we 
offer the conclusions. 

2. Poisson Regression Model and ML Estimator 

Poisson regression is proper method to model a count data. Probability mass 
function is  

( )
!

exp ; 0,1,2,
y

P Y y y
y

µ µ−

= = =                   (1) 

where: ( )E Y µ=  and ( )Var Y µ= , that is mean the Poisson regression has 
equal mean and variance. Based on a sample ( )1 2, , , ny y y , the Poisson regres-
sion model in terms of the mean of response can be written as follow: ( )iE y µ=   

( ) , 1, 2, , ,i i iy E y i nε= + =                      (2) 

where iε  are disturbance terms. The relationship between the mean of the de-
pendent variable and explanatory variable can be describe by use the log-link 
function:  

T
e ,ix

iµ β=                            (3) 

where ( )1 2, , ,i i i ipx x x x=   is the explanatory variables and ( )1 2, , , pβ β β β=   
is the parameters of regression. The popular method used to estimate parameters 
in Poisson regression models is the maximum likelihood estimation, the likelih-
ood function of the response variables ( )1 2, , , ny y y  is:  
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to (1), ( ) ( )exp
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total likelihood as follows:  
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We can define the MLE as: ( )ˆ arg maxML lβ β= . To get the estimates of 
maximum likelihood for this model, we can maximizing the likelihood function 
by differentiating it respect to β . While, maximizing the likelihood function 
has no closed form solution so may use the (Fisher Scoring) or the iteratively 
weighted least squares algorithm (IWLS) to get the maximum likelihood esti-
mates see ([1] [18]). 

In this paper, we focus on maximum weighted likelihood estimators for Pois-
son regression model, the maximum weighted likelihood estimator is: 
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3. Robust Poisson Regression 

In robust Poisson regression, Mallows-type estimator introduced by [4] can be 
applied to fit the data a count variables, this method minimizes the weighted 
log-likelihood function. [5] studied Mallows-type estimator deeply and intro-
duced a robust method for generalized linear models. We can measure the leve-
rage of observation x by used the following:  

( ) ( ) ( )( )T 1
1

2ˆˆ ˆ ,n n n nh x x xµ µ−= − Σ −                 (5) 

where ˆnµ  is the robust location estimator and ˆ
nΣ  is the robcation estimator 

Σ̂  and µ̂ , can be calculated by using minimum covariance determinate (MCD) 
method. We can get the Mallows-type estimator fust variance-covariance matrix 
of the predictor variables ( )1 2, , , nx x x . The robust scale and loor Poisson re-
gression by solution the equations:  
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where ( )( )i n iw w h x= , w is a non increasing function such that ( )w u  is 
bounded. [5] introduced choosing w depends on a constant 0c > .  
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this estimate knows as Mallows-type estimator or weighted maximum likelihood 
estimator (WMLE). 
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In this paper, we introduced a robust methods for Poisson regression model 
they are based on maximum weighted likelihood estimators. The weight of this 
method depends on the function introduced by [17]. We first calculate the initial 
scatter and location estimators of predictor ( )0Σ̂  and ( )0µ̂  respectively. then, 
compute the squared Mahalanobis distances of predictor which can be defined 
as:  

( )( ) ( )( ) ( )( )T 10 0 02 ˆˆ ˆ .i im x xµ µ
−

= − Σ −  

The weight function we introducing can be defined as follows: first weight: 

( )2
1 0.8 0.2w m= ∗ + , where 2m  indicate to squares Mahalanobis distances, 

then:  

( )( ) ( )( ) ( )( )T 10 0 0
1

ˆˆ ˆ0.8 0.2 ,i iw x xµ µ
− = ∗ − Σ − + 

 
 

second weight: ( )( )22
2 0.8 0.2w m= ∗ + , then, we can write in the form of:  

( )( ) ( )( ) ( )( )
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Then, the maximum weighted likelihood estimators for Poisson regression 
model can be gained by a solution the following form:  

( ) ( )
1

log log ! .
n

i i i i i
i

w y yµ µ
=

 − − ∑                   (7) 

For compute the maximum weighted likelihood estimators we used algorithm 
of Mallows-type introduced by [5]. 

4. Evaluation of the Robust Methods  

In order to test the performance of the above estimates, we conduced Monte 
Carlo simulation study for comparing the a new methods with the Maximum li-
kelihood estimator (MLE), Mallows type estimator for [4] and [5]. 

4.1. Monte Carlo Simulation Study  

In this subsection, we examine the perform of the new robust methods 
(WMLEw1, WMLEw2) and compare with the maximum likelihood estimate 
(MLE), Mallows-type estimator (Mallows) of [5] and the conditionally unbiased 
bounded influence (CUBI) of [4]. The simulation study includes three models. 
First model is clean model, second model is 5% of data contaminated and third 
model is 10% of data are contaminated. In the three models, we generated the 
explanatory variables ix  from standard normal distribution ( )0,1pN , and the 
victor of parameter is ( )1,2,2β , with four sample size ( )100,200,300,400n = , 
these values were chose to represent moderate and large samples. 

The response variables iy  are generated from poisson distribution with ( )ip µ  
with ( )i ihµ η= . The outliers are distributed according to Poisson distribution 
with mean ( )3IQR eX β : where IQR is the interquartile range. To examine the 
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perform of these estimators, we compute the Bias and mean squared error (MSE) 
for the three models. For all scenarios, we run 1000 repetitions. However, a good 
estimator is the one has small Bias and MSE. Therefore, we compute the bias and 
MSE for each parameter as follows: 

1000

1

1Bias ,
1000 i

i
β β

=

= −∑  

and  
2

1

1 ˆMSE .
1000

n

i
i

β β
=

= −∑  

4.2. Results from the Monte Carlo Simulation Study 

It is seen in Table 1 for clean model, the values of the Bias and MSE for maxi-
mum likelihood estimator (MLE), (Mallows) and (CUBIF) are smaller those of 
new weighted estimators (WMLE1), (WMLE2). We can conclude that the 
WMLE1 and WMLE2 estimators perform less compared to others in clean mod-
els. But when the 5% of data are contaminated in second scenario (Table 2) and 
10% of data are contaminated in third scenario (Table 3), the weighted maxi-
mum likelihood estimators (WMLE1 and WMLE2) has lower bias and (MSE) 
compered with others methods, that is mean our new methods perform better 
compered with other estimators. 
 
Table 1. Bias and MSE of estimators for clean model. 

Methods 
n = 100 n = 200 n = 300 n = 400 

Bias MSE Bias MSE Bias MSE Bias MSE 

MLE 0.1572 0.0104 0.1392 0.0231 0.1169 0.0233 0.0958 0.0201 

MALLOWS 0.1574 0.0109 0.1389 0.0240 0.0970 0.0224 0.0983 0.0192 

CUBIF 0.2027 0.0501 0.1225 0.0207 0.0917 0.0210 0.0915 0.0197 

WMLE1 0.2739 0.8159 0.3014 0.2572 0.2014 0.5790 0.2148 0.0687 

WMLE2 0.2545 0.7132 0.4142 0.3491 0.1595 0.6781 0.1810 0.0799 

 
Table 2. Bias and MSE of estimators when 5% of data are contaminated. 

Methods 
n = 100 n = 200 n = 300 n = 400 

Bias MSE Bias MSE Bias MSE Bias MSE 

MLE 0.7160 1.3112 0.6871 1.3401 0.7071 1.12289 0.7082 1.1534 

MALLOWS 0.7481 1.3032 0.6158 1.3105 0.7506 1.4283 0.6857 1.1342 

CUBIF 0.6378 1.3346 0.5229 1.2176 0.6918 1.2111 0.6014 1.1796 

WMLE1 0.2571 0.1470 0.1622 0.11645 0.2116 0.2269 0.3285 0.2027 

WMLE2 0.3294 0.1437 0.2013 0.1012 0.2135 0.3453 0.2209 .1972 
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Table 3. Bias and MSE of estimators when 10% of data are contaminated. 

Methods 
n = 100 n = 200 n = 300 n = 400 

Bias MSE Bias MSE Bias MSE Bias MSE 

MLE 0.7816 1.2201 0.6687 1.3046 0.6870 1.2101 0.6957 1.1815 

MALLOWS 0.7925 1.1978 0.5088 1.2942 0.7305 1.3028 0.7034 1.1624 

CUBIF 0.6836 1.1844 0.5829 1.2217 0.7028 1.1826 0.6314 1.2007 

WMLE1 0.3125 0.4723 0.0862 0.9165 0.9614 0.1926 0.3018 0.1852 

WMLE2 0.3092 0.3725 0.1322 0.2412 0.2113 0.2743 0.2120 0.1723 

5. Conclusion 

In this paper, we suggested new robust estimators for Poisson regression: the 
weighted maximum likelihood estimators (WMLE1 and WMLE2). To examine 
the performance of suggested estimators, we conducted a Monte Carlo simula-
tion study to compare the suggested estimators with the classical maximum like-
lihood estimator (ML), Mallows and CUBIF. The result of simulation study 
shows that in Table 1 (clean model), the maximum likelihood estimator, CUBIF 
and Mallows perform close to each other, while the proposed estimators have 
lower performance compared to other estimators. In contaminated models 
(Table 2 and Table 3), the new weighted maximum likelihood estimators 
(WMLE1 and WMLE2) performs better compared with other estimators. The ex-
tent of new estimators proposed in this paper to other generalized linear models 
would be an interesting subject to follow.  
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