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Abstract 
In the area of time series modelling, several applications are encountered in 
real-life that involve analysis of count time series data. The distribution cha-
racteristics and dependence structure are the major issues that arise while 
specifying a modelling strategy to handle the analysis of those kinds of data. 
Owing to the numerous applications there is a need to develop models that 
can capture these features. However, accounting for both aspects simulta-
neously presents complexities while specifying a modeling strategy. In this 
paper, an alternative statistical model able to deal with issues of discreteness, 
overdispersion, serial correlation over time is proposed. In particular, we 
adopt a branching mechanism to develop a first-order stationary negative 
binomial autoregressive model. Inference is based on maximum likelihood 
estimation and a simulation study is conducted to evaluate the performance 
of the proposed approach. As an illustration, the model is applied to a 
real-life dataset in crime analysis. 
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1. Introduction 

In the area of time series modelling, several applications in real-life involve 
analysis of count time series data, which motivated researchers to develop mod-
els that can handle count data in term of time series. Such applications include 
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monthly polio counts (see e.g. [1] [2]), traffic accident counts (see e.g. [3] [4]), 
daily asthma presentation at a hospital (see e.g. [2]), crime counts analysis (see 
e.g. [5] [6]), stock market application (see e.g. [7] [8]), sandstorm counts (see 
e.g. [9]), among others in the fields like demography, economic, meteorology, 
sociology, epidemiology, finance, and education. Facing such kind of data, Pois-
son and Binomial marginal distributions are some of the most used to develop 
serial dependence models. An important number of counts time series data are 
characterized by overdispersion, under-dispersion, equi-dispersion and excess of 
zeros. Handling this issues [10] discussed modelling time series of counts with 
overdispersion and [11] modelled an INAR (1) process for count time series 
with equi-dispersion, under-dispersion and over-dispersion. Beyond that, sever-
al strategical approaches of serial dependence models have been proposed in-
cluding autoregressive AR (1) (see e.g. in [12]), Integer-valued autoregressive 
(INAR (1)) (see e.g. in [13]), Hidden Markov Model (HMM) (see e.g. in [14] 
[15]), Generalized Linear Model (GLM) (see e.g. in [16]), thinning-based models 
(see e.g. in [17]) and others in order to contribute in this area. Although many 
autoregressive models has been proposed, for example [18] discussed the Auto-
regressive Conditional Poisson (ACP) models able to handle overdispersion but 
also the Integer Autoregressive modeling framework is the popular approach 
used to preserve the discrete nature of data, which has been exploited by various 
authors both in a univariate and multivariate setting. Among them we have 
Bayesian INAR models, New Geometric INAR models, Zero truncated Poisson 
INAR models, Zero-modified geometric INAR, etc. [19] introduced a process of 
new stationary first-order integer-valued autoregressive with geometric marginal 
distributions based on negative binomial thinning. Conditional least squares, 
Yule-Walker and maximum likelihood methods are used to estimate the para-
meters. [20] investigated negative binomial time series models based on the bi-
nomial thinning and two other expectation thinning operations, and showed 
how they differ in conditional variance or heteroscedasticity. [16] discussed the 
approach based on generalized linear models and the class of integer autoregres-
sive processes, which provides a natural extension to the traditional ARMA me-
thodology. [21] proposed a new autoregressive time series of counts model with 
Poisson-negative binomial (PNB) distribution, which is the convolution of 
Poisson and Negative binomial random variables. They also introduced the 
Geometric PNB and the Geometric semi PNB distributions. [11] presented with 
Bernoulli-geometric marginals based on a new type of generalized thinning op-
erator, a first-order non-negative integer-valued autoregressive model for sta-
tionary count data process. The maximum likelihood method is used for esti-
mating the model parameters. Few years ago, threshold negative binomial auto-
regressive model considered as an observation-driven model for time series of 
counts which allows for overdispersion and negative serial dependence in the 
observation, is studied by [22]. However, in this paper, we develop a new ap-
proach motivated by an offspring generating process which in turn leads to a 
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flexible Negative Binomial modeling approach based on the branching process 
which is a recursive dependence mechanism instead of thinning process, to 
avoid scalar multiplication in the autoregressive model. The obtained model can 
be able to deal with overdispersed counts time series data and its serial depen-
dence. So far, it is applied to a real-life dataset. 

The rest of the paper is organized as follows; Section 2 outlines the approach 
adopted in developing the stationary first order branching negative binomial 
(bNB) autoregressive model as well the procedure for inference, Section 3 pro-
vides the results for the simulation of stationary bNB autoregressive model, Sec-
tion 4 presents the results from the application of the model to real-life data. Fi-
nally, Section 5 concludes the work then followed by acknowledgement. 

2. Methods and Materials 

In this section, the adopted modelling approach for this study is discussed. Spe-
cific attention is given to the negative binomial distribution which is able to 
capture overdispersion, a common feature in count observations. Further, the 
specific autoregressive mechanism for the serial dependence is also demonstrat-
ed. In particular, we consider a branching mechanism, a concept derived from 
the field of demography and epidemiology whereby a finite number of elements 
is consider as the starting stage of the process. With the passage of time, each 
element can either vanish with probability op  or produce k new elements with 
probability kp , where 1,2,k =  . Each of these k elements behaves in the same 
way as their parents do. Let nX  represent the population size following n such 
incidents. The process { }, 0nX n ≥  is a branching process, which is a Markov 
chain. Many problems in science and engineering are modelled with branching 
processes, including population expansion, pandemic spread, and nuclear fission 
are all issues that must be addressed. 

Overall, the idea is adopted to propose model for stationary time series of 
count data and consider real data examples. The software package R is used in 
this work for implementing simulation study and application.  

2.1. Model Specification 

The classical equation for an AR (1) process { }nX  is 

1n n nX X Eα −= +                         (1) 

where { }nE  is a sequence of independent and identically distributed random 
variables. Thus if { }nX  is a positive random variable then ( )0,1α ∈ . Since the 
output of the Equation (1) does not guaranty the issue of non-negative integer 
values. Therefore, to vanish this issue, some researchers mentioned in Section 1 
have used the thinning process with Equation (1) to become 

1n n nX X Eα −= ∗ +                        (2) 

The operator ∗  is defined as ( )
0

N X
iiX Wα

=
∗ = ∑  where iW  are i.i.d random 

variable following a discrete law and for each fixed non-negative integer-value x 
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of X, ( )N x  is a binomial random variable with parameters x and λ . The nE  
are i.i.d negative binomial random variable, see [12]. 

The negative binomial distribution ( ),NB m π  is usually parametrized with 
pmf 

( ) ( )
( ) ( ) { }01 , 0,1, 2,

!
xmm x

p x x
m x

π π
Γ +

= − ∈ =
Γ

 
           (3) 

For any 0λ >  there is one process tY  with ( ),NB m π  marginal distribu-
tions that is stationary, Markov, time-reversible, has infinitely-divisible marginal 
distribution and with correlation ( ) ( )1,Co xr e pr i iY Y λ− = − , (see theorem in [23]). 

As an alternative to thinning process (Equation (2)), we define an observation 
driven model tY  with a Negative Binomial marginal distribution which is the 
recursive scheme from 1tY −  to tY  using the branching mechanism, where the 
Binomial law is involved to obtain model defined as follows 

1t t tY N E−= +                          (4) 

where 

1 1 1~ , and ~ ,
1 1t t t tN Bin Y E NB m N− − −

   
+   − + − +   

ρπ π
ρ ρπ ρ ρπ  

We denote the obtained model as ( ), ,bNB m π ρ . 
In terms of the branching process 1tN −  arises from 1tY −  according to the 

binomial law (Bin) with probability 
1

ρπ
ρ ρρ− +

. The dependence parameter ρ  

determines how many off springs are generated from the parent 1tY −  which in 
turn specifies the dependence in the autoregressive process tY  and 1tY − . 

The error component tE  has a Negative Binomial distribution which ensures 
the marginal distribution of the arising process is Negative Binomial. 

The distribution of the two components is given bellow; 

( )
1

1
1 1

1 1

tk Y k
t

t

Y
P N k

k
ρπ ρπ
ρ ρπ ρ ρπ

− −
−

−
    

= = −    − + − +    
        (5) 

( ) ( ) ( )1
1 1

1

1
1

tm N
t

t

r

m N r
P E r

r
π
ρ ρπ

π
ρ ρπ

−+
− + + −  

= =   − +  

 
× − − + 

          (6) 

2.2. Model Estimation 

The process, tY  has both marginal and dependence parameters ,m π  and ρ . 
These parameters are estimated via Maximum Likelihood Estimation. 

2.2.1. Likelihood Function 
Let { }0 1 nT t t t= < < <  be an increasing set of times and  

{ }0 1, , , ny y y y= ⊂   an arbitrary set of non-negative integers. Then the joint 
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pmf for ( )~ , ,Y bNB m π ρ  is the product of the marginal and the conditionals. 

[ ] ( ) ( )1
1

| , , |
n

o t t
t

P Y y m p y P y yπ ρ −
=

= = ∏               (7) 

Where 0m > , [ ]0,1π ∈ , and [ ]0,1ρ ∈ . Using marginal and conditionals 
probabilities, we can explicitly define Equation (7). 

Conditional or transition probability mass function (pmf) 

( ) [ ]

( ) ( )

( ) ( ) ( )
( )

1 1 1

1

1

1 1

1

1

1 1 1

1

0 1

1

1 1

| |

1
1 1

1 1 1
1 1

! 1 1
1

t t t

t

tt

t t t

t t

t

t t t t t t

N y N
t

N t

Em N
t t

t

y y ym
t t

m y y

N

p y y P Y y Y y

y
N

m N E
E

y m y

ρπ ρ
ρ ρπ ρ ρπ

ρ ππ
ρ ρπ ρ π

π π ρ

ρ ρπ

− − −

−

−

− −

−

−

− − −

−∞
−

= −

+
−

+
− −

+ +

= = =

    −
=     − + − +    

+ + − − −   
×     − + − +    

Γ + − −
=

− +

×

∑

( ) ( ) ( ) ( ) ( )
( )
( )

( ) ( )
( )

( )

1

1

1

2

2
0 1 1 1 1 1

2 1 1

1
! ! ! 1 1

1 1
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! 1

t

t t t

t t

N

t t t t t t

y y ym
t

t tm y y
t
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F y y m z
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ρπ
ρ π
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−

−

−

∞

= − − − − −

+

−+ +

 
 

− − Γ + − −  

Γ + − −
= − −

Γ − +

∑

  (8) 

where 
( ) ( )

2

21 1
z ρπ

ρ π
=

− −
 and ( )2 1 , ; ;F a b c k  is Gauss’ hypergeometric func-

tion with parameters , ,a b c  and k. 
Marginal distribution 
The marginal distribution for oy  is: 

( ) ( )
( ) ( )1

!
oyo m

o
o

m y
p y

m y
π π

Γ +
= −

Γ
                  (9) 

Hence, by using conditional probabilities (Equation (8)) and marginal distri-
bution (Equation (7)) in equation (Equation (7)), the likelihood is as follow 

[ ]
( )
( ) ( ) ( )

( )
( ) ( )
( )

( )

( )
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where 
0

n

t
t

y y+
=

= ∑
 
and oy  stand for the initial values of the branching process. 
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2.2.2. Log-Likelihood Function 
We derived Equation (11) by taking the natural logarithm of Equation (10), and 
it follows; 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

2 1 1
0 1

log , , |

log 1 log log , ; ;

1 log log 1 2 log 1

2 log 1

n n

t t t
t t

o n

o n

L m Y y

m y n m F y y m z

n m y y y y

nm y y y

π ρ

π

π ρ

ρ ρπ

−
= =

+ +

+

=

= Γ + + + + − −

− + Γ + − + − − −

− + − − − +

∑ ∑
    (11) 

3. Simulation Study 

Monte Carlo experiments have been conducted several times to evaluate the 
performance of the Branching Negative Binomial estimators for the parameters. 
The experiment entails generating n time series of size N from the models and 
then estimating the parameter vector ( ), ,mθ π ρ= . For each combination (θ, 
N), we compute the mean, bias, and the mean-squared error (MSE) given by, 

( ) ( ) ( ) ( )2

1 1 1

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ, and
n n n

i i i
i i i

Bias MSE
n n n= = =

= = − = −∑ ∑ ∑θ θ θ θ θ θ θ θ
 

where îθ  is the estimated parameter vector values from the ith simulated series. 
Using the software package R, we generate by Monte Carlo replicates n = 1000 

random samples of length N = 250, 500 and 1000 from bNB, then calculate the 
mean, bias and mean-squared error of the estimator. Table 1 shows the simula-
tion results for the model. From that, it’s clear that with the estimation of the 
parameter m for a sample size of N = 250 and the performance seems to improve 
with increasing sample size. It’s observed that the bias and MSE reduce as the 
sample size increases which confirms that the parameter vector θ  can be con-
sistently estimated by likelihood function. Feature work. 

3.1. Simulated Data 

The following, Figures 1-4 display the time series plot and their corresponding 
autocorrelation functions of simulated data by varying each one of the parame-
ters. When parameters m increase, the range of the entries (observations) in-
creases (Figure 2) while it decreases when parameter π  increases (Figure 3). 
When parameter ρ  increases, the dependence of data becomes strong which is 
shown in Figure 4. For Figures 1-3 cases, the huge difference is only the time 
series plot while ACF and PACF are almost the same, which implies that the au-
toregressive model is order one. 

3.2. Simulation Results 

Figures 5-8 provide graphical inspection of the results from the simulation ex-
periment. They depict the effect of different levels of temporal dependence and 
sample size on the performance of the developed model. The results are consis-
tent with those reported in Table 1. Overall, the performance of the model is 
better when the dependence is increased and increasing the sample size im-
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proves the performance (median estimates are closer to the true values). 

4. Application to Real-Life Data 

In this section, the Branching Negative Binomial model is applied to New South 
Wales (NSW) dataset police reports provided by the NSW Bureau of Crime Sta-
tistics and Research, see http://www.bocsar.nsw.gov.au/. The entire dataset is 
organized by offence type, month and Local Government Area (LGA). In partic-
ular, we study the monthly number of Domestic violence related assault reported 
in the city of Kempsey, Australia, over the period January 1995 to Jun 2022. Ta-
ble 2 shows the summary statistics of the dataset, the sample mean and variance 
are 17.78 and 39.93837 respectively, which indicates that we are facing to an 
overdispersed data. Figure 5 depicts the time series plot and the corresponding 
autocorrelation functions (ACF and PACF). 

Figure 9 displays the visualization of real-data considered for the application 
of the branching Negative Binomial autoregressive model. The time series plot  

 
Table 1. Summary statistics for the estimator for different parameter values ( ), ,mθ π ρ=  and different sample sizes N. These 

statistics are obtained from 1000 Monte Carlo replications of the developed model. 

  m π ρ m π ρ m π ρ 

N True value 9 0.7 0.5 9 0.7 0.9 9 0.8 0.6 

250 Mean 8.625 0.688 0.806 9.066 0.690 0.631 8.931 0.794 0.827 

 Bias 0.375 0.012 −0.306 −0.066 0.010 0.269 0.068 0.006 −0.227 

 MSE 0.546 0.0005 0.126 0.360 0.001 0.089 0.366 0.001 0.228 

500 Mean 8.691 0.690 0.702 8.955 0.692 0.732 9.054 0.797 0.709 

 Bias 0.308 0.009 −0.202 0.044 0.007 0.168 −0.054 0.002 −0.109 

 MSE 0.468 0.0004 0.066 0.313 0.001 0.046 0.022 0.0002 0.057 

1000 Mean 8.756 0.693 0.655 9.013 0.691 0.817 9.035 0.799 0.653 

 Bias 0.244 0.007 −0.155 −0.013 0.004 0.083 −0.035 0.001 −0.053 

 MSE 0.090 0.0001 0.037 0.034 0.0003 0.031 0.004 0.000 0.045 

N True value 7 0.4 0.5 10 0.4 0.5 15 0.7 0.5 

250 Mean 6.531 0.374 0.733 10.116 0.403 0.635 14.995 0.699 0.719 

 Bias 0.469 0.026 −0.233 −0.116 −0.003 −0.135 0.0053 0.001 −0.219 

 MSE 2.570 0.006 0.785 0.587 0.0003 0.030 0.0001 0.0001 0.065 

500 Mean 6.662 0.380 0.678 10.068 0.402 0.566 14.997 0.699 0.652 

 Bias 0.338 0.020 −0.178 −0.068 −0.002 −0.066 0.002 0.0005 −0.152 

 MSE 1.603 0.005 0.932 0.209 0.0002 0.013 0.0001 0.00006 0.035 

1000 Mean 6.900 0.393 0.590 10.055 0.401 0.515 14.999 0.700 0.582 

 Bias 0.100 0.0072 −0.090 −0.055 −0.001 −0.015 0.0008 0.00001 −0.082 

 MSE 0.492 0.002 0.331 0.096 0.000 0.006 0.0003 0.00003 0.015 
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Figure 1. Time series and autocorrelation functions plots by varying sample sizes respec-
tively to 250, 500 and 1000. 
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Figure 2. Time series and autocorrelation functions plots by varying parameter m respec-
tively to 5, 15 and 25. 
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Figure 3. Time series and autocorrelation functions plots by varying probability respec-
tively to 0.3, 0.5 and 0.9. 
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Figure 4. Time series and autocorrelation functions plots by varying dependence para-
meter ρ  respectively to 0.3, 0.5 and 0.9. 
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Figure 5. Boxplots with results from the simulation experiment for T = 250. The red line corresponds to the true parameter val-
ues, while the black line is the median. 
 

 
Figure 6. Boxplots with results from the simulation experiment for T = 1000. 
 

of Crime count data showed that data is stationary in time range considered. 
The ACF showed that there are some serial dependences between consecutive 
observations, and through the Partial ACF, we can see that the order of the au-
toregressive model is one. Therefore, the selected data matches well to this first 
order branching Negative Binomial autoregressive model. 

By fitting the developed model to the crime count data, the estimate parame-
ters and their standard errors obtained are displayed in Table 3. 
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Figure 7. Boxplots with results from the simulation experiment for T = 250. 
 
 

 
Figure 8. Boxplots with results from the simulation experiment for T = 1000. 
 
 

Table 2. Summary statistics for the monthly number of domestic violence related assault 
reported in Kempsey from January 1995 to Jun 2022. 

Var Min 1st Quartile Median Mean 3rd Quartile Max 

39.94 2.0 14.00 17.50 17.78 22.00 38.00 
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These obtained parameters have been used in the model by fitting the crime 
data to branching Negative Binomial model, see Figure 10 which implies that 
the model fits well these crime data. 

The summary Table 4 displayed below is the data generated by the model. We  
 

Table 3. Estimate parameters obtained by fitting crime data in the model. 

parameters m π ρ 

Estimate values 28.27 0.61 0.40 

Standard error 0.9769 0.0054 0.0155 

 

 
Figure 9. Time series of monthly number of domestic violence related assault reported in Kempsey from January 1995 to Jun 2022 
and the autocorrelation functions. 
 

 
Figure 10. Time series plots of Crime data in blue and its Estimates values in red from the model. 

 
Table 4. Summary statistics of the estimate crime data obtained from the branching Neg-
ative Binomial model. 

Var Min 1st Quartile Median Mean 3rd Quartile Max 

28.04172 6.00 14.00 18.00 18.18 22.00 36.00 
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see a good coherent with the summary of the crime data in Table 2. 

5. Conclusion and Suggestions 

In this paper we introduce an autoregressive branching Negative Binomial 
(bNB) as an alternative model for time series of count data. It allows for over-
dispersion and serial dependence in count observations. The bNB simulation 
study provides a performance evaluation with maximum likelihood as the esti-
mation method of model parameters. Finally, crime count data from Kempsey, a 
city of Australia is used to display the usefulness of the developed model. Sug-
gestions for future works include extending the model to account for higher or-
der dependence, allowing for covariates and multivariate extensions. 
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