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Abstract 
It is quite common that both categorical and continuous covariates appear in 
the data. But, most feature screening methods for ultrahigh-dimensional clas-
sification assume the covariates are continuous. And applicable feature screen-
ing method is very limited; to handle this non-trivial situation, we propose a 
model-free feature screening for ultrahigh-dimensional multi-classification 
with both categorical and continuous covariates. The proposed feature screen-
ing method will be based on Gini impurity to evaluate the prediction power 
of covariates. Under certain regularity conditions, it is proved that the pro-
posed screening procedure possesses the sure screening property and ranking 
consistency properties. We demonstrate the finite sample performance of the 
proposed procedure by simulation studies and illustrate using real data analy-
sis. 
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1. Introduction 

Ultrahigh-dimensional data are commonly available in a wide range of scientific 
research and applications. Feature screening plays an essential role in the ultra-
high-dimensional data, where Fan and Lv [1] first proposed the sure indepen-
dence screening (SIS) in the seminal paper. For linear regressions, they showed 
that the approach based on Pearson correlation learning possesses a sure 
screening property. That is, even if the number of predictors p can grow much 
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faster than the number of observations n with ( )log p O nα=  for some  
10,
2

α  ∈ 
 

, all relevant predictors can be selected with probability tending to 

one [2]. 
Lots of feature screening is the Model-based and Model-free approaches have 

been developed in recent years, see, for example, Wang [3] proposed forward 
regression for ultrahigh-dimensional data. Fan and Song [4] applied the maxi-
mum marginal likelihood estimates or the maximum marginal likelihood to ul-
trahigh-dimensional screening in generalized linear model. Fan et al. [5] further 
extend the correlation learning to marginal nonparametric learning. Zhu et al. [6] 
proposed a model-free feature screening approach for ultrahigh-dimensional 
data. Li et al. [7] proposed a robust rank correlation screening method to deal 
with ultrahigh-dimensional data based on the Kendall τ  correlation coefficient. 
Li et al. [8] applied the distance correlation to sure independence screening pro-
cedure. He et al. [9] proposed a quantile-adaptive framework for nonlinear va-
riable screening with high-dimensional heterogeneous data. Fan et al. [10] pro-
posed nonparametric independence screening selects variables by ranking a meas-
ure of the nonparametric marginal contributions of each covariate given the ex-
posure variable. Liu et al. [11] proposed a feature screening procedure for vary-
ing coefficient model based on conditional correlation coefficient. Nandy et al. 
[12] proposed a covariate information number sure independence screening, 
which used a marginal utility connected to the notion of the traditional Fisher 
information. Pouyap et al. [13] proposed a merge of the features selection me-
thods in order to define the most relevant features in the texture of the vibration 
signal images. 

To address the ultrahigh-dimensional feature screening in classification prob-
lem, Fan and Fan [14] proposed the t-test statistic for two-sample mean problem 
as a marginal utility for feature screening and establish its theoretical properties. 
Mai and Zou [15] applied the Kolmogorov filter to ultrahigh-dimensional binary 
classification. Cui et al. [16] proposed a screening procedure via used empirical 
conditional distribution functions. Lai et al. [17] proposed a feature screening 
procedure based on the expected conditional Kolmogorov filter for binary classi-
fication problem. However, the above-proposed screening methods assume that 
the types of data are continuous. For categorical covariates, Huang et al. [18] con-
structed a model-free discrete feature screening method based on the Pearson 
Chi-square statistics and showed its sure screening property fulfilling (Fan et al. 
[2]). When all the covariates are binary, Ni and Fang [19] proposed a model-free 
feature screening procedure based on information entropy theory for mul-
ti-class classification. Ni et al. [20] further proposed a feature screening procedure 
based on weighting Adjusted Pearson Chi-square for multi-class classification. 
Sheng and Wang [21] proposed a new model-free feature screening method based 
on classification accuracy of marginal classifiers for ultrahigh-dimensional classi-
fication. Anzarmou et al. [22] proposed a new model-free interaction screening 
method, termed Kendall Interaction Filter (KIF), for the classification in high- 
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dimensional settings. 
Based on the above study of classification models, in this paper, we propose a 

model-free feature screening for ultrahigh-dimensional multi-classification with 
both categorical and continuous covariates. The proposed feature screening me-
thod will be based on Gini impurity to evaluate the prediction power of cova-
riates. Gini impurity is a non-purity attribute splitting index, which was pro-
posed by Breiman et al. [23] and has been widely used in decision tree algo-
rithms such as CART and SPRINT. With regard to categorical covariate screen-
ing, we can apply the index of purity gain, which is the same as information gain 
[19]. Similar to Ni and Fang [19], continuous covariates can be sliced via stan-
dard normal quantile. The proposed feature screening procedure is based on 
purity gain, which is referred to Purity Gain sure independence screening (PG-SIS). 
Theoretically, the PG-SIS is rigorously proven to enjoy. Fan and Lv [1] proposed 
sure screening property that ensures all important features can be obtained. 
Practically, as shown by the simulation results, compared with the existing feature 
screening method, PG-SIS satisfies the sure screening property. 

This paper is organized as follows. Section 2 describes the proposed PG-SIS 
method in detail. Section 3 establishes its sure screening property. In Section 4, 
numerical simulations and an example for real data analysis are given to assess 
sure screening property of our method. Some concluding remarks are given in 
Section 5 and all the proofs are given in the Appendix. 

2. Feature Screening Procedure 

We first introduce Gini impurity and purity gain, and then propose the screen-
ing procedure based on purity gain. 

2.1. Gini Index and Purity Gain 

Suppose that Y is a categorical response with R classes { }1, , R� , and covariate 

( )1 2, , , pX X X X= �  is a vector of p dimension, where each of these compo-
nents kX  with kJ  categories. Where { }1, ,kJ J= � . To introduce the Gini 
impurity and purity gain, assuming that { }1, ,Y R∈ �  and { }1,2, ,k kX J∈ � . 
Define ( )rp P Y r= =  represents the probability function of a response varia-
ble, ( ),k j kw P X j= =  represents the probability function of covariates,  

( ), |k jr kp P Y r X j= = =  represents the probability function of response va-
riables under the condition of covariates, where 1,2, , ; 1, 2, , kr R j J= =� �  and 

1,2, ,k p= � . Let 0 log 0 0× = . Marginal Gini impurity of Y and X respectively 
is defined as  

( ) 2

1
1

R

r
r

Gini Y p
=

= −∑                       (1) 

( ) 2
,

1
1

kJ

k k j
j

Gini X w
=

= −∑                      (2) 

Conditional Gini impurity is defined as  
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( ) 2
, ,

1 1
| 1

kJ R

k k j k jr
j r

Gini Y X w p
= =

 = − 
 

∑ ∑                 (3) 

Similar to the information gain, the purity gain is defined as  

( ) ( ) ( )
2 2

, ,
1 1 1

| |

1 1
k

k k

JR R

r k j k jr
r j r

PG Y X Gini Y Gini Y X

p w p
= = =

= −

 = − − − 
 

∑ ∑ ∑
            (4) 

In the Equation (1), ( )Gini Y  is non-negative and acquires its maximum 

11
R

−  if and only if 1
1

Rp p
R

= = =�  by Jensen’s inequality [24]. And the  

( )| kGini Y X  in Equation (2) is the conditional Gini impurity of Y given kX j= . 
Further support can be given by the following proposition. 

Proposition 2.1. When kX  is a categorical covariable, we can get  
( )| 0kPG Y X ≥ , and kX  and Y are independent if and only if ( )| 0kPG Y X = . 

For continuous kX , the conditional Gini impurity can’t directly calculate, 
and purity gain by slicing X into several categories. For a fixed integer 2J ≥ , let 

( )jq  be the j/Jth percentile of X, 1, , 1j J= −� , ( )0q = −∞  and ( )Jq = +∞ . Re-
placing ,k jw  and ,k jrp  in Equation (3) respectively by  

( ) ( )(( ), 1 ,k j k j jw P X q q−
= ∈   and ( ) ( )(( ), 1| ,k jr k j jp P Y r X q q−

= = ∈  , we define 

conditional Gini impurity based on continuous covariates:  

( )

( ) ( )(( ) ( ) ( )(( )

2
, ,

1 1

2

1 1
1 1

| 1

, 1 | ,

k

k

J R

J k k j k jr
j r

J R

k kj j j j
j r

Gini Y X w p

P X q q P Y r X q q

= =

− −
= =

 = − 
 

  = ∈ − = ∈   

∑ ∑

∑ ∑
(5) 

( ) ( ) ( )

( ) ( )(( )

( ) ( )(( )

2 2
, ,

1 1 1

2
1

1 1

2

1
1

| |

1 1

1 ,

1 | ,

k

k

k k

JR R

r k j k jr
r j r

JR

r k j j
r j

R

k j j
r

PG Y X Gini Y Gini Y X

p w p

p P X q q

P Y r X q q

= = =

−
= =

−
=

= −

 = − − − 
 

= − − ∈ 

 × − = ∈  

∑ ∑ ∑

∑ ∑

∑

         (6) 

Proposition 2.2. When kX  is a continuous covariable, we can get  
( )| 0J kPG Y X ≥ , and kX  and Y are independent if and only if  
( )| 0J kPG Y X = . 

2.2. Feature Screening Procedure Based on Purity Gain 

First, we select a medium scale of simplified model which can almost fully con-
tain D, where { ( ): |D k F Y x=  functionally depends on kX  for some }Y r= , 
we use an adjusted purity gain index for each pair ( ), kY X  is as follows: 

( )2 2
, ,1 1 11 1

log

kR J R
r k j k jrr j r

k
k

p w p
e

J
= = =

− − −
=

∑ ∑ ∑
             (7) 
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where ( )rp P Y r= = , ( ),k j kw P X j= =  and ( ), |
rk j kp P Y r X j= = =  when 

kX  is categorical, kJ  represents the number of categories of kX . When kX  
is defined as a continuous covariates, kJ  represents the number of slices ap-
plied to kX , , 1k j kw J= , ( ) ( )(( ), , 1 ,| ,k jr k k j k jp P Y r X q q−

= = ∈   and ( ),k jq  
represents j/Jth percentile of kX . 

There may be more categories of covariates associated with larger purity gain 
in the original definition of Equation (4), regardless of whether the covariates 
are important, especially when the number of categories involved in each cova-
riate is different. So Ni and Fang [19] used log kJ  to construct the information 
gain ratio to solve this problem, where each category of kX  is the same. Simi-
larly, when each category of kX  is the same, for Equation (7), we apply the 
log kJ  to build an adjusted purity gain index to address the problem, which is 
also applied to continuous kX . However, each category of kX  is different, 

2
,11 kJ

k jj w
=

−∑  is defined as an adjustment factor, which is motivated by the split 

kX  into several categories via the Decision Tree algorithm. 
For sample data { }1, , ,i ip ix x y� , 1, ,i n= � , ke  can be easily estimated by  

( ) ( )2 2
, ,1 1 1

ˆ ˆ ˆ1 1
ˆ

log

kR J R
r k j k jrr j r

k
k

p w p
e

J
= = =

− − −
=

∑ ∑ ∑
             (8) 

When kX  is categorical, { }, 1

1ˆ n
k j ikiw I x j

n =
= =∑  and  

{ }
{ }

1
,

1

,
ˆ

n
i iki

k jr n
iki

I y r x j
p

I x j
=

=

= =
=

=

∑
∑

. 

When kX  is continuous,  

( ) ( )({ }, , 1 ,1

1ˆ ˆ ˆ,n
k j ik k j k jiw I x q q

n −=
= ∈ ∑  

and 

( ) ( )({ }
( ) ( )({ }

, 1 ,1
,

, 1 ,1

ˆ ˆ, ,
ˆ

ˆ ˆ,
r

n
i ik k j k ji

k j n
ik k j k ji

I y r x q q
p

I x q q

−=

−=

= ∈ =
∈ 

∑

∑
 

where ( ),ˆk jq  is the j/Jth sample normal percentile of { }, ,ik nkx x� . In either case, 

{ }1

1ˆ n
r iip I y r

n =
= =∑ . 

We suggest selecting a sub-model: { }ˆ ˆ: ,1kD k e cn k pτ−= ≥ ≤ ≤ . Where both 
c and τ  are predetermined thresholds established via Condition (C2) in Sec-
tion 3. In practice, we can choose a model: 

{ }is among the top of largesˆ ˆ: t of allk dD k e=  

where [ ]logd n n= . 

3. Feature Screening Property 

In this section, we establish the sure screening property of PG-SIS. Based on Ni 
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and Fang [19] proposed sure independence screening theories, the following 
conditions are assumed. 

Condition 1 (C1). There exist two positive constants 1c  and 2c  such that, 

1 2rc R p c R≤ ≤ , 1 2c c R+ ≤ , 1 , 2k jrc R p c R≤ ≤  and 1 , 2k k j kc J w c J≤ ≤  
for every 1 kj J≤ ≤ , 1 r R≤ ≤  and 1 k p≤ ≤ .  

Condition 2 (C2). There exist a positive constant 0c >  and 0 1 2τ≤ <  
such that min 2k D ke cn τ−

∈ ≥ .  
Condition 3 (C3). ( )R O nε= , ( )1max k

k P kJ J O n≤ ≤= = , where 0ε ≥ ,  
0κ ≥  and 2 2 2 1τ ε κ+ + < .  

Condition 4 (C4). There exist a positive constant 3c , such that  
( ) 30 |kf x Y r c< = <  for any 1 r R≤ ≤ , and x in the domain of kX , where 

( )|kf x Y r=  is the Lebesgue density function of kX  conditional on Y r= .  
Condition 5 (C5). There exist a positive constant 4c  and 0 1 2ρ≤ <  such 

that ( ) 4kf x c n ρ−≥  for any 1 k p≤ ≤  and x in the domain of kX , where 
( )kf x  is the Lebesgue density function of kX . Furthermore, ( )kf x  is conti-

nuous in the domain of kX .  
Condition 6 (C6). ( )R O nε= , ( )1max k P kJ J O nκ

≤ ≤= = , where  
2 2 2 2 1τ ε κ ρ+ + + <  and 0, 0ε κ≥ ≥ .  

Condition 7 (C7). { }liminf min maxp k D k k I ke e δ→∞ ∈ ∈− ≥ , where 0δ >  is a 
constant.  

Condition (C1) guarantees that the proportion of each class of variables can-
not be either extremely small or extremely large. Similar assumption is also 
made in condition (C1) in Huang et al. [18] and Cui et al. [16]. According to Fan 
and Lv [1] and Cui et al. [16], Condition (C2) allows the minimum true signal to 
disappear to zero in the order of n τ−  as the sample size goes to infinity. Ac-
cording to [19] Condition (C3) provides the covariates to diverge with a certain 
order and the number of classes for the response, and Condition (C6) modifies 
Condition (C3) a little bit. To ensures the sample percentiles are close to the true 
percentiles, Condition (C4) rules out the extreme case that some kX  put heavy 
mass in a small range. Condition (C5) asks for the n ρ−  as lower bound to the 
density. According to [16] and Zhu et al. [6] proposed ranking consistency prop-
erty, we need to assume the inactive covariate subset { }1, , \I p D= � , then 
Condition (C7) is established. 

Theorem 3.1. (Sure screening property) Under conditions (C1) to (C3), if 
all the covariates are categorical, we get:  

( ) ( ) ( ){ }( )1 2 2 2ˆ 1 exp logP D D O p bn nτ ε κ ε κ− + +⊆ ≥ − − + +  

Theorem 3.2. (Sure screening property) Under conditions (C4) to (C6), 
when the covariates are composed of continuous and categorical variables, we 
get: 

( ) ( ) ( ){ }( )1 2 2 2 2ˆ 1 exp logP D D O p bn nτ ε κ ρ ε κ− + + +⊆ ≥ − − + +  

where b is a positive constant. If ( )log p O nα=  and ( )1 2 2 2 2α τ ε κ ρ< − + + + , 
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PG-SIS has a sure screening property. 
Theorem 3.3. (Ranking consistency property) Under conditions (C1), (C4), 

(C5) and (C7), if ( )log 1
log
RJ O

n
=  and 

{ } ( )
4 4

1 2

max log , log
1

P n R J
o

n ρ− = , then  

{ }ˆ ˆliminf min max 0n k D k k I ke e→∞ ∈ ∈− > , a.s.  

Theorem 3.3 testifies that the proposed screening index can separate active 
and inactive covariates well in the sample level. 

4. Numerical Studies 
4.1. Simulation Results 

In this subsection, we carry out three simulation studies to demonstrate the fi-
nite sample performance of our group screen methods described in Section 2. 
We compare PG-SIS with IG-SIS [19] and APC-SIS in performance via the be-
low evaluation criteria: MMS, minimal model size, consists of all active cova-
riates, the results generally existing 5%, 25%, 50%, 75%, 95% of MMS; CP1, CP2 
and CP3 respectively represent the probability that the given model size 
[ ]logn n , [ ]2 logn n  and [ ]3 logn n cover all active covariates, while CPa in-
dicates whether the indicators of the selected model cover all active covariates. 

Model 1: categorical covariates and binary response 
We first consider the response variables of different categories. According to 

[19], we assume a model which response iy  is binary in which 2R = , and all 
the covariates are categorical. We think about two distributions for iy : 

1) Balanced, ( ) 1 2iP y r= = ; 

2) Unbalanced, 2 1 3
1r

R rp R
R
− = + − 

 with 1 1max 2minr R r r R rp p≤ ≤ ≤ ≤= . 

The true model is defined at { }1,2, , 20D = �  with 0 20d D= = . Condition 
on iy , latent variable is generated as ( ),1 ,, ,i i i pz z z= � , where ( ),  ,1i k rkz N µ , 
1 k p≤ ≤ . Then, we construct active covariates: 

1) If 0k d> , then 0rkµ = ; 
2) If 0k d≤  and 1r = , then 0.5rkµ = − ; 
3) If 0k d≤  and 2r = , then 0.5rkµ = . 
Next, we apply the quantile of the standard normal distribution to generate 

covariates. The specific approach is as follows: 

1) When k as odd number, that is , ,
2

1i k i k jx I z z 
 
 

 
 = > +
 
 

; 

2) When k as even number, that is , ,
5

1i k i k jx I z z 
 
 

 
 = > +
 
 

; 

Where αth percentile of the standard normal distribution is ( )z α . 
Thus, amongst all p covariates, the covariates of two categories and five cate-

gories account for half, respectively. Similar to [20], we consider 1000,5000p =  
and 200,400n =  in this model. 

Table 1 reports the evaluation criteria over 100 simulations for Model 1. We  
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Table 1. Simulation results for example 1. 

 MMS CP 

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 Balanced Y, n = 200, p = 1000 

PG-SIS 20.0 20.0 21.0 22.0 23.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 21.0 22.0 1.000 1.000 0.000 0.000 

 Balanced Y, n = 400, p = 1000 

PG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 

 Balanced Y, n = 200, p = 5000 

PG-SIS 22.0 24.0 25.5 27.3 32.1 0.982 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.8 21.0 23.0 28.0 0.996 1.000 0.000 0.000 

 Balanced Y, n = 400, p = 5000 

PG-SIS 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 

 Unbalanced Y, n = 200, p = 1000 

PG-SIS 20.0 20.0 21.0 22.0 23.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS 21.0 23.0 25.0 27.0 30.1 0.984 1.000 0.000 0.000 

 Unbalanced Y, n = 400, p = 1000 

PG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 

 Unbalanced Y, n = 200, p = 5000 

PG-SIS 21.0 24.0 26.0 28.0 31.0 0.975 1.000 0.995 1.000 

IG-SIS 20.0 20.0 20.5 21.0 23.1 1.000 1.000 1.000 1.000 

APC-SIS 29.0 35.0 43.0 53.0 89.1 0.914 0.983 0.000 0.000 

 Unbalanced Y, n = 400, p = 5000 

PG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS 20.0 20.0 20.0 20.0 20.0 1.000 1.000 0.000 0.000 
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can see the following: The results argue that the proposed PG-SIS works quite 
well. When the sample size n increases, PG-SIS is close to the true model size 

0 20d =  in MMS, and both increase to 1 in coverage probability. MMS in unba-
lanced response is better than in balanced response in performance via compar-
ing the response of different structures. The performances of PG-SIS and IG-SIS 
are quite close, and PG-SIS is slightly better than APC-SIS in higher coverage 
probabilities. 

Model 2: categorical covariates and multi-class response 
We consider more covariate classification, and response iy  is multi-class 

which 10R = . We think about iy  of two distributions: 
1) Balanced, ( ) 1iP y r R= = ; 

2) Unbalanced, 2 1 3
1r

R rp R
R
− = + − 

 with 1 1max 2minr R r r R rp p≤ ≤ ≤ ≤= . 

Among the 2000p =  covariates, the minimum set of active covariate set is 
{ }200 400 600 800 1000 2000, , , , , ,DX X X X X X X= �  with the number of active cova-

riates 0 10d = . Condition on iy , latent variable is generated as ( ),1 ,, ,i i i pz z z= � , 
for covariates kX , ( ), , ,i k k i k i kx f ε µ= + , where ( ), ~ 0,1i k Nε  and ( )kf ⋅  
represents a quantile function of standard normal distribution. Then, we con-
struct active covariates via defining ,i kµ : 

1) If DX X∈  and iy r= , then ( ), 1.5 0.9 r
i kµ = × − ; 

2) If DX X∉ , then , 0i kµ = ; 
Next, we apply the ( )kf ⋅  to generate covariates, and take 2000p = , 

300,400,500n =  in this model. The specific approach is as follows: 

1) For 1 400k≤ ≤ , then ( ), . ,
2

1k i k i k i k jf I z zε µ  
 
 

 
 + = > +
 
 

; 

2) For 400 800k< ≤ , then ( ), . ,
4

1k i k i k i k jf I z zε µ  
 
 

 
 + = > +
 
 

; 

3) For 800 1200k< ≤ , then ( ), . ,
6

1k i k i k i k jf I z zε µ  
 
 

 
 + = > +
 
 

; 

4) For 1200 1600k< ≤ , then ( ), . ,
8

1k i k i k i k jf I z zε µ  
 
 

 
 + = > +
 
 

; 

5) For 1600 2000k< ≤ , then ( ), , ,
10

1k i k i k i k jf I z zε µ  
 
 

 
 + = > +
 
 

; 

Thus, amongst all the p covariates, the covariates of two categories, four cate-
gories, six categories, eight categories and ten categories account for one-fifth 
each. 

Table 2 reports the evaluation criteria over 100 simulations for Model 2. We 
can see the following: Two methods in performance under Model 1 is worse 
than Model 2. When the model is more intricate, PG-SIS in performance is close 
to IG-SIS. Particularly, PG-SIS and IG-SIS have a slightly small MMS under a 
small sample size n. When the sample size n increases, PG-SIS is close to  
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Table 2. Simulation results for example 2. 

 MMS CP 

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 Balanced Y, n = 300, p = 2000 

PG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 11.0 12.0 14.0 20.0 1.000 1.000 0.000 0.000 

 Balanced Y, n = 400, p = 2000 

PG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 Balanced Y, n = 500, p = 2000 

PG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 Unbalanced Y, n = 300, p = 2000 

PG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 11.0 1.000 1.000 0.000 0.000 

 Unbalanced Y, n = 400, p = 2000 

PG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 Unbalanced Y, n = 500, p = 2000 

PG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

IG-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 1.000 1.000 

APC-SIS 10.0 10.0 10.0 10.0 10.0 1.000 1.000 0.000 0.000 

 

0 10d =  in MMS, and both increase to 1 in coverage probability. Four indexes of 
coverage probability of APC-SIS are worse than that of PG-SIS when the sample 

200n = . MMS in unbalanced response is better than in balanced response in 
performance via comparing the response of different structures. Furthermore, 
PG-SIS and IG-SIS are more robust in performance because the fluctuation 
range in MMS is small.  

Model 3: continuous and categorical covariates 
At last, among the covariates that are both continuous and categorical, we as-
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sume a more complex example, where response iy  is multi-class which 4R = . 
We think about iy  of two distributions: 

1) Balanced, ( ) 1r ip P y r R= = = ; 

2) Unbalanced, 2 1 3
1r

R rp R
R
− = + − 

 with 1 1max 2minr R r r R rp p≤ ≤ ≤ ≤= .  

In this model, we take 5000p = , 400,600,800n = . The true model is de-

fined at : , 1, , 20
20

D
k

k pX X k k
′   ′= = =    

�  with 0 20d = . Condition on iy ,  

latent variable is generated as ( ),1 ,, ,i i i pz z z= � . For covariates kX ,  

( ), , ,1 ,1i k i kz N k pµ ≤ ≤ , where ( )1 r
ik rku θ= −  when iy r=  and k D∈ . Ac-

cording to Ni and Fang [19], rkθ  is given in Table 3. , 0i kµ =  when k D∉ . 
To generate kX : 

For 
5
20

pk  ≤   
, then ,i kx j= , if ( )(, 41 4 , , 1, 2,3, 4i k jjz z z j−

∈ = ; 

For 
5 10
20 20

p pk   < ≤      
, then ,i kx j= , if ( )( 101 10 , , 1, ,10ik jjz z z j−

∈ = � ; 

For 
10
20

p k p  < ≤  
, then , ,i k i kx z= . 

Thus, amongst all the p covariates, the covariates of four categories and ten 
categories account for one-fifth, respectively, the other covariates are continuous. 
Similarly, there respectively are 5 in four categories and ten categories in the ac-
tive covariates, and the rest of active covariates are continuous accounting for 
half. For continuous covariates, we applied different slices 4,8,10kJ = . The 
corresponding approaches are defined as PG-SIS-4, IG-SIS-4, APC-SIS = 4, 
PG-SIS-8, IG-SIS-8, APC-SIS-8, PG-SIS-10, IG-SIS-10 and APC-SIS-10. Table 4 
and Table 5 show the simulation results with over 100 simulations for balanced 
and unbalanced case, respectively. We can see the following: When the sample 
size n increases, PG-SIS is close to 0 20d =  in MMS, and both increase to 1 in 
coverage probability. And coverage probability of PG-SIS is close to IG-SIS in 
five indexes. Therefore, it is proved that the PG-SIS has the characteristics of 
feature screening. MMS in unbalanced response is better than in balanced re-
sponse in performance via comparing the response of different structures. Fur-
thermore, PG-SIS and IG-SIS are robust in performance because the fluctuation 
range in MMS is small for two types of responses. When different slices are  
 
Table 3. Parameter specification of Model 3. 

rkθ  
K 

1 2 3 4 5 6 7 8 9 10 

r = 1 0.2 0.8 0.7 0.2 0.2 0.9 0.1 0.1 0.7 0.7 

r = 2 0.9 0.3 0.3 0.7 0.8 0.4 0.7 0.6 0.4 0.4 

r = 3 0.1 0.9 0.9 0.1 0.3 0.1 0.4 0.3 0.6 0.6 

r = 4 0.7 0.2 0.2 0.6 0.7 0.6 0.8 0.9 0.1 0.1 
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Table 4. Simulation results for example 3: balanced Y. 

 MMS CP 

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 Balanced Y, n = 400, p = 5000 

PG-SIS-4 27.0 34.0 38.0 47.0 68.1 0.984 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 21.0 21.1 1.000 1.000 1.000 1.000 

PG-SIS-8 22.0 24.0 27.0 29.3 35.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 21.0 21.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 21.0 22.0 1.000 1.000 1.000 1.000 

PG-SIS-10 22.0 24.0 27.0 29.0 34.1 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 21.0 22.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 21.0 21.1 1.000 1.000 1.000 1.000 

 Balanced Y, n = 600, p = 5000 

PG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

 Balanced Y, n = 800, p = 5000 

PG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 
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Table 5. Simulation results for example 3: unbalanced Y. 

 MMS CP 

Condition 5% 25% 50% 75% 95% CP1 CP2 CP3 CPa 

 Unbalanced Y, n = 400, p = 5000 

PG-SIS-4 39.2 40.0 41.0 42.0 42.8 1.000 1.000 1.000 1.000 

IG-SIS-4 20.1 20.5 21.0 21.5 21.9 1.000 1.000 1.000 1.000 

APC-SIS-4 20.2 20.8 21.5 22.3 22.9 1.000 1.000 1.000 1.000 

PG-SIS-8 25.2 26.0 27.0 28.0 28.8 1.000 1.000 1.000 1.000 

IG-SIS-8 20.2 20.8 21.5 22.3 22.9 1.000 1.000 1.000 1.000 

APC-SIS-8 20.2 21.0 22.0 23.0 23.8 1.000 1.000 1.000 1.000 

PG-SIS-10 25.2 26.0 27.0 28.0 28.8 1.000 1.000 1.000 1.000 

IG-SIS-10 20.3 21.3 22.5 23.8 24.8 1.000 1.000 1.000 1.000 

APC-SIS-10 20.2 20.8 21.5 22.3 22.9 1.000 1.000 1.000 1.000 

 Unbalanced Y, n = 600, p = 5000 

PG-SIS-4 20.0 20.0 20.0 20.0 21.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

 Unbalanced Y, n = 800, p = 5000 

PG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-4 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-8 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

PG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

IG-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 

APC-SIS-10 20.0 20.0 20.0 20.0 20.0 1.000 1.000 1.000 1.000 
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Table 6. Analysis results for real data example. 

 
screening 
method 

response 

  1 2 3 4 

classification method SVM 

G-mean (training data) 

APC-SIS 1.0000 0.9304 0.9709 0.9713 

IG-SIS 1.0000 0.9025 0.9093 1.0000 

PG-SIS 0.9853 0.9378 0.9514 0.9946 

G-mean (test data) 

APC-SIS 0.9775 0.9913 0.9564 0.9379 

IG-SIS 1.0000 0.9439 0.8736 0.9922 

PG-SIS 0.9678 0.9779 0.9173 0.9739 

F-measure (training data) 

APC-SIS 0.7673 0.5958 0.7124 0.7101 

IG-SIS 0.6924 0.3969 0.4121 0.7004 

PG-SIS 0.7307 0.6095 0.6511 0.7469 

F-measure (test data) 

APC-SIS 0.5424 0.3233 0.5333 0.4033 

IG-SIS 0.5850 0.1667 0.2167 0.5505 

PG-SIS 0.4533 0.2667 0.3967 0.5057 

classification method DT 

G-mean (training data) 

APC-SIS 0.9909 0.8898 0.9489 0.9872 

IG-SIS 0.9945 0.8743 0.9437 0.9917 

PG-SIS 0.9815 0.8902 0.9578 0.9835 

G-mean (test data) 

APC-SIS 0.9913 0.9626 0.9371 0.9774 

IG-SIS 0.9913 0.9200 0.9371 0.9862 

PG-SIS 0.9862 0.8963 0.8838 0.9609 

F-measure (training data) 

APC-SIS 0.6743 0.2915 0.5757 0.6648 

IG-SIS 0.6668 0.1792 0.5466 0.6613 

PG-SIS 0.6424 0.2807 0.5825 0.6468 

F-measure (test data) 

APC-SIS 0.5457 0.1967 0.4000 0.5367 

IG-SIS 0.5790 0.0500 0.4333 0.5471 

PG-SIS 0.4667 0.0500 0.2933 0.4333 

classification method RF 

G-mean (training data) 

APC-SIS 1.0000 0.9458 1.0000 1.0000 

IG-SIS 1.0000 0.9458 1.0000 1.0000 

PG-SIS 0.9923 0.9421 0.9782 1.0000 
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Continued 

G-mean (test data) 

APC-SIS 1.0000 0.9807 0.9540 0.9835 

IG-SIS 1.0000 0.9894 0.9523 0.9453 

PG-SIS 0.9871 0.9524 0.9384 0.9774 

F-measure (training data) 

APC-SIS 1.0000 1.0000 1.0000 1.0000 

IG-SIS 1.0000 1.0000 1.0000 1.0000 

PG-SIS 0.8603 0.7671 0.8417 0.8725 

F-measure (test data) 

APC-SIS 0.6624 0.3500 0.6300 0.6300 

IG-SIS 0.6124 0.3567 0.5733 0.4667 

PG-SIS 0.5967 0.2833 0.4933 0.5733 

 
applied in continuous covariates, PG-SIS and IG-SIS are better in five indexes of 
coverage probability and MMS in performance via comparing the response of 
different structures. Therefore, three methods are independent of the number of 
slices in performance.  

4.2. Real Data 

In this subsection, we analyse a real data set from the feature selection database 
of Arizona State University (http://featureselection.asu.edu/). The GLIOMA bi-
ological data includes 50 samples and 4434 features, which is unbalanced due to 
the response variable. Every class is 14, 7, 14, 15, and the covariates are not only 
continuous, but also multiclass. We randomly divided the data into two parts 
where 90 percent of the data represent training data and 10 percent of the data 
represents test data. The sample size of training data and test data respectively 
are 45n =  and 5n = . The dimension of both training data and test data are 

4434p = . 
We apply a ten-fold cross-validation to eliminate different training data that 

cause the model accuracy problems. To PG-SIS, IG-SIS and APC-SIS, we use 
three classification approaches, which are Support Vector Machine [25], Ran-
dom Forest (RF) and Decision Tree (DT) [26] to them via the chose active cova-
riates. 

In training data, we use the G-mean and F-measure [27] evaluation, the same 
is true for test data. PG-SIS in performance for unbalanced data is reported in 
Table 6. In all classification methods, PG-SIS is the best in performance, where 
G-mean of PG-SIS is more closed to 1 than the other two methods. In a word, 
the proposed PG-SIS performs better.  

5. Conclusions 

In the data, there are continuous and categorical covariates, and the response is 
categorical, which is very common in practice, but the applicable screening me-
thods are very limited. We propose a PG-SIS procedure based on Gini impurity 
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to effectively screen covariates. PG-SIS has a sure screening property and rank-
ing consistency property theoretically and is model free. When the numbers of 
categories of all the covariates are the same and different, PG-SIS is quite similar 
to IG-SIS in performance, which can be shown in simulation. 

The features screening reports some difficulties based on missing data. In the 
future, based on the classification model, we intend to propose a new feature 
screening to either the missing variable or the response variable can be selected. 
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Appendix 

Proof of Proposition 2.1. To prove Proposition 2.1, we need to define ( ) 2f x x= , 
proved to be close Ni and Fang [19]. By Jensen’s inequality [24],  
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The above equation holds if and only if , ,k jr k j rp p ′= , for any 1 r R≤ ≤  and 
1 j j J′≤ ≤ ≤ . That is, kX  and Y are independent.  

Proof of Proposition 2.2. From the same proof as Proposition 2.1, we can get 
( )| 0J kPG Y X ≥  holds if and only if , ,k j r k j rp p′ ′=  for any 1 r R≤ ≤  and 

1 j j J′≤ ≤ ≤ , that is ( ) ( )(( ) ( ) ( )(( )1 1| , | ,j j j jP Y r X q q P Y r X q q′ ′− −
 = ∈ = = ∈  . 

So when kX  and Y are independent, ( )| 0J kPG Y X = . On the other hand, 
when ( )| 0J kPG Y X =  for any J, we need to show that ( )|P X x Y r≤ =  does 
not depend on r for any x in the domain of X. Proposition 2.2 has been proven 
by [19], so the proof is omitted here.  

Lemma 1 (Bernstein inequality). If 1, , nZ Z�  is an independent random 
variable with a mean value of 0 and bounded supporter is [ ],M M− , then the 
inequality: 

( )
2

1 2exp
2

3

n
ii

tP Z t
Mtv

=

 
  > ≤ − 

  +    

∑  

where ( )1
n

iiv Var Z
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≥ ∑  
Lemma 2. For discrete covariates kX  and discrete response Y, we have the 

following three inequalities: 
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3) ( )
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6ˆ 2exp
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+ 
  

Proof of Lemma 2. Three inequalities are similar in the proofs, where inequa-
lity (1) and inequality (2) have been given at [27]. The following is the proof of 
inequality (3).  
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According to Bernstein inequality, the formula is held.  
Lemma 3. With regard to discrete covariates kX  and discrete response Y, for 

any 0 1ε< < , under condition (C1), we have  
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where 5c  represents a positive constant.  
Proof of Lemma 3. By ke  and ˆke  in Section 2.2, we have  
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Since log log 2 0.5J ≥ ≥ , we have  
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In a word, we have the inequality,  
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where 5c  represents a positive constant.  
Proof of Theorem 3.1. By Conditions (C1) to (C3) and Lemma 3, we can get  
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Where b is a positive constant.  
Lemma 4 (Lemma A.2 [19]). For any continuous covariate kX  satisfying 

conditions (C4) and (C5), let ( ),kF y x  be the cumulative distribution function 
of ( ), kY X  and ( )ˆ ,kF y x  be the empirical cumulative distribution function, 
we have ( )( ) ( )( )( ) { }1 2 2

6 7, ,
ˆ ˆ, , expk kk j k jP F r q F r q c c n ρε ε−− > ≤ −  for any 0ε > , 

1 r R≤ ≤  and 1 kj J≤ ≤ , where 6c  and 7c  are two positive constants.  
Lemma 5 (Lemma A.3 [19]). Under (C1), (C4) and (C5), for any 0 1ε< < , 

so for continuous kX , we have ( ) ( )
1 2 2

9 4 4
ˆ 2 expk k

nP e e O RJ c
R J

ρεε
− 

− > ≤ − 
 

, 

there exists a positive constant 9c .  

Proof of Theorem 3.2. According to Lemma 4 and Lemma 5, the proof of 
Theorem 3.2 is the same as Theorem 3.1 and hence is omitted.  

Proof of Theorem 3.3. According to Lemma 3 and 5 and under Conditions 
(C1), (C4), (C5) and (C7). The proof of Theorem 3.2 is proved by [19] and hence 
is omitted. 
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