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Abstract 
Purpose: To formulate and demonstrate methods for regression modeling of 
probabilities and dispersions for individual-patient longitudinal outcomes tak-
ing on discrete numeric values. Methods: Three alternatives for modeling of 
outcome probabilities are considered. Multinomial probabilities are based on 
different intercepts and slopes for probabilities of different outcome values. 
Ordinal probabilities are based on different intercepts and the same slope for 
probabilities of different outcome values. Censored Poisson probabilities are 
based on the same intercept and slope for probabilities of different outcome 
values. Parameters are estimated with extended linear mixed modeling max-
imizing a likelihood-like function based on the multivariate normal density 
that accounts for within-patient correlation. Formulas are provided for gra-
dient vectors and Hessian matrices for estimating model parameters. The li-
kelihood-like function is also used to compute cross-validation scores for al-
ternative models and to control an adaptive modeling process for identifying 
possibly nonlinear functional relationships in predictors for probabilities and 
dispersions. Example analyses are provided of daily pain ratings for a cancer 
patient over a period of 97 days. Results: The censored Poisson approach is 
preferable for modeling these data, and presumably other data sets of this 
kind, because it generates a competitive model with fewer parameters in less 
time than the other two approaches. The generated probabilities for this 
model are distinctly nonlinear in time while the dispersions are distinctly non-
constant over time, demonstrating the need for adaptive modeling of such 
data. The analyses also address the dependence of these daily pain ratings on 
time and the daily numbers of pain flares. Probabilities and dispersions change 
differently over time for different numbers of pain flares. Conclusions: 
Adaptive modeling of daily pain ratings for individual cancer patients is an 
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effective way to identify nonlinear relationships in time as well as in other 
predictors such as the number of pain flares. 
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1. Introduction 

Pain ratings are often coded as integer values from 0 - 10 with larger values in-
dicating more pain [1] [2] [3]. These are collected by health care professionals 
from all kinds of patients, but are especially important for cancer patients [4]. 
Pain ratings collected from individual patients over multiple time points require 
modeling methods that account for within-patient correlation. These methods 
need to allow for outcomes with an arbitrary finite number of discrete numeric 
values since individual-patient responses can often be limited to a subset of the 
maximum range of 0 - 10. As an example, Figure 1 provides a plot of daily pain 
ratings for Cancer Patient 1. This patient provided pain ratings for 86 different 
days over a period of length 97 days (and so with 11 missing daily pain ratings). 
Observed pain ratings varied from 1 - 9 with all of these 9 ratings occurring at 
least one time. The plot suggests that mean pain ratings tended to increase over 
time with larger variability early on than later in time. Estimation of relation-
ships like this requires regression methods for estimating probabilities, means, 
variances, and dispersions for observed outcome (dependent, response, y) values 
as possibly nonlinear functions of time and of other available predictors. 

 

 
Figure 1. Example pain ratings over time for Cancer Patient 1. 
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Generalized estimating equations (GEE) methods [5] are a possible choice for 
modeling such correlated pain ratings. Since pain ratings are polytomous out-
comes, one could use the extensions of GEE developed by Lipsitz et al. [6] and 
Miller et al. [7] to handle categorical outcomes. However, these extensions in-
volve recoding each pain rating as the vector of indicator variables for the pain 
rating taking on its possible values (except for one value treated as a reference 
category). In the case of Cancer Patient 1 with 9 possible outcome values, pain 
ratings at each time would be recorded as a vector of 8 indicator variables with 
its own 8 × 8 correlation matrix. There would be 86·85/2 = 3655 pairs of such 
vectors measured at different times, each of whose 8 × 8 correlation matrices 
would need estimation. Even for simple correlation structures like exchangeable 
or autoregressive, there would still be a large number 8·8 = 64 of correlation pa-
rameters. Moreover, one would need to store the overall correlation matrix of 
size (8·86)2 = 473,334 entries. Consequently, recoding correlated polytomous 
outcomes seems only feasible when the outcome has a small number of possible 
values and is measured at a small number of times. An approach is needed that 
treats each polytomous outcome measured at one time as univariate so that the 
size of the associated correlation matrix depends only on the number of mea-
surement times and not also on the number of possible outcome values. 

Likelihoods for correlated outcomes can be computationally complex except 
for limited cases. For this reason, Liang and Zeger [5] formulated GEE methods 
to avoid having to compute a likelihood by directly specifying estimating equa-
tions for mean parameters. Variances are treated as functions of the means as in 
generalized linear modeling [8] [9] while dispersions are treated as constant. 
Correlation parameters are estimated using residuals. Prentice and Zhao [10] 
extend the GEE estimating equations for mean parameters to also include ana-
logous estimating equations for covariance parameters. These GEE approaches 
are not based on a likelihood function so that model selection criteria such as 
penalized likelihood criteria [11] and likelihood cross-validation scores [12] are 
not readily computed 

Knafl and Ding [12] define a likelihood-like function L using the multivariate 
normal density computed using residuals and covariance matrices for categorical 
outcomes and point out that the GEE estimating equations for mean parameters 
correspond to differentiating the residual terms of L in the mean parameters 
while holding the covariances fixed in those parameters (see also [13]). Similar 
to Prentice and Zhao [10], they propose a partial extension of GEE that adds es-
timating equations for dispersion parameters to the GEE estimating equations 
for mean parameters, but they still estimate correlation parameters from resi-
duals. Knafl and Meghani [14] consider modeling of individual-patient corre-
lated count outcomes and compare the partial extension of GEE having some es-
timating equations based on differentiating L to extended linear mixed modeling 
(ELMM) based on maximizing the function L in all parameters including those 
for the means, dispersions, and correlations. ELMM generates estimating equa-
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tions for all parameters as for Prentice and Zhao [10], but the estimating equa-
tions for mean parameters are not the same as for GEE (except in the special 
case of continuous outcomes treated as normally distributed). 

Knafl and Meghani [14] compare the partial extension of GEE to ELMM for 
modeling individual-patient count outcomes and conclude that ELMM is pre-
ferable since it generates competitive models in less time. For that reason, only 
ELMM is considered here for modeling correlated discrete outcomes. They con-
sider three correlation structures including independent correlations all equal to 
0, exchangeable correlations all equal to a constant, and spatial autoregressive 
order 1 correlations computed as power transforms of a constant autocorrelation 
parameter. Exchangeable correlations are not selected in their example analyses, 
and so are not considered in what follows. Only spatial autoregressive order 1 
(AR1) correlations based on the autocorrelation parameter ρ are considered in 
what follows. Independent correlations correspond to the special case with 

0ρ = . 
Knafl and Ding [12] formulate and demonstrate an adaptive regression mod-

eling process for identifying nonlinear relationships, controlled by likelihood 
cross-validation scores for comparing alternative models. These methods extend 
readily to modeling of discrete outcomes and are used in example analyses. 

The objective of the paper is to formulate methods for analyzing discrete out-
comes collected longitudinally from individual patients and to demonstrate 
these methods using analyses of longitudinal data on the daily pain ratings for a 
single cancer patient as a function of time and the number of daily pain flares. 
This is achieved in two parts. Section 2 addresses such methods including mul-
tinomial, ordinal, and censored Poisson probabilities as well as likelihood-like 
cross-validation, adaptive regression methods, and the research study whose da-
ta are used in example analyses. Section 3 presents the results of example adap-
tive analyses of these data including among other issues which is the preferable 
type of probabilities to use, how means and dispersions for the pain ratings 
change additively with the number of pain flares, and how the number of pain 
flares moderates the effect of time on means and dispersions. 

2. Methods 

Let ( )t iy  denote discrete outcomes with a finite number of possible numeric 
values uv  for 0 u K≤ ≤  and observed at N possibly non-consecutive, integer 
time points  

( ) ( ){ }:1t i T t i i N∈ = ≤ ≤
 

and provided by one individual patient. Let 

( ) ( )( ), P ut i u t ip y v= =
 

denote associated probabilities for 0 u K≤ ≤  and ( )t i T∈ . The means of these 
discrete outcomes satisfy 
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( ) ( ) ( ),0E ut i t i t i uu
Ky v pµ
=

⋅= = ∑  
and the variances satisfy 

( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
2 2 2 2 2

, ,0 0Var E .u ut i t i t i u t i u t i t i t
K

iu
K

uy v p v p yµ µ µ
= =

⋅ ⋅= − = − = −∑ ∑
 

These variances are not a direct function ( )( )t iV µ  of the means ( )t iµ  as in 
generalized linear modeling [8] [9], but they are similar since they can be consi-
dered a function ( )( )t iV p  of the ( )1 1K + ×  vector ( )t ip  of probabilities 

( ),t i up  for the outcome ( )t iy . Define the residuals as ( ) ( ) ( )t i t i t ie y µ= − . Combine 
the outcomes ( )t iy , the means ( )t iµ , and the residuals ( )t ie  into the N × 1 vec-
tors y , µ , and = −e y µ , respectively. 

Let ( ),t i jx  denote predictor values over times ( )t i T∈  and over predictors 
indexed by 1 j J≤ ≤  for use in modeling probabilities. Combine these into the 

1J ×  vectors ( )t ix  with transposes denoted by ( )
T
t ix  for ( )t i T∈ . As formu-

lated later, these are combined with a column vector β  of coefficient parame-
ters to estimate probabilities. Three alternatives are considered including multi-
nomial probabilities (Section 2.1), ordinal probabilities (Section 2.2), and cen-
sored Poisson probabilities (Section 2.3). The size of the parameter vector β  
varies for these three alternatives. 

Let ( ),t i jx′  denote predictor values over times ( )t i T∈  and over predictors 
indexed by 1 j J ′≤ ≤  for predicting dispersions. Combine these into the 1J ′×  
vectors ( )t i′x  for ( )t i T∈ . Let ′β  denote the associated 1J ′×  vector of coef-
ficient parameters. Let ( )t iϕ  denote dispersion values over times ( )t i T∈  sa-
tisfying 

( ) ( )
Tlog .t i t iϕ ′= ⋅ ′x β

 
When ( ),1 1t ix′ =  for ( )t i T∈ , the first entry 1β ′  of ′β  is an intercept para-
meter. The constant dispersion model corresponds to ( ),1 1t ix′ =  for ( )t i T∈  
with 1J ′ =  Define the extended variances as 

( ) ( ) ( )( )2 Vart i t i t iyσ ϕ ⋅=
 

and the extended standard deviations as 

( ) ( ) ( )( )( )1 2
Vart i t i t iyσ ϕ= ⋅

 

for ( )t i T∈ . These generate standardized residuals 

( ) ( ) ( )t i t i t istde e σ=
 

for ( )t i T∈ . Combine the extended standard deviations and the standardized 
residuals into the N × 1 vectors σ  and =stde e σ , respectively. 

Let ( )ρR  denote the N × N AR1 correlation matrix for the vector y . The 
diagonal entries of ( )ρR  are all equal to 1 while the off-diagonal entries satisfy 

( ) ( )
( ) ( )

,
t i t i

t i t ir ρ ′−
′ =  

where ( ) ( )t i t i′−  denotes the absolute value of the difference ( ) ( )t i t i′−  for 
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( ) ( ),t i t i T′ ∈  with 1 i i N′≤ ≠ ≤ . The entries ( ) ( ),t i t ir ′  are well-defined for 
1 1ρ− < <  because ( )t i  have been assumed to be integers. These are spatial 

AR1 correlations that account for actual distance between observed times as 
opposed to non-spatial AR1 correlations with ( )t i i=  for 1 i N≤ ≤  as usually 
used in GEE implementations. The N × N covariance matrix Σ  for the vector 
σ  satisfies 

( ) ( ) ( )ρ= ⋅ ⋅DIAG R DIAGσ σΣ  

where ( )DIAG σ  denotes the N × N diagonal matrix with diagonal entries 

( )t iσ . 
Let 

ρ

 
 ′=  
 
 

β
θ β

 

be the column vector of the probability, dispersion, and correlation parameters. 
Use the multivariate normal likelihood to define the likelihood-like function 
( );L T θ  satisfying 

( ) ( ) ( ) ( )( )T 1; log ; 2 log 2 log 2 2T L T N−= = − ⋅ ⋅ − − ⋅ ⋅ πe e� θ θ Σ Σ
 

where Σ  is the determinant of the covariance matrix Σ . Note that 

( ) ( ) ( )( )1 1log log log log Var ,N
t ii

N
t ii yρ ϕ

= =
= + +∑ ∑RΣ

 

( ) ( )( )Texp ,t i t iϕ ′ ′= ⋅x β
 

and 

( )T 1 T 1 .ρ− −⋅ ⋅ = ⋅ ⋅e e stde R stdeΣ  

This formulation has been restricted to address data for each individual pa-
tient taking a person-centered approach to modeling longitudinal data [15] [16], 
which is possible because substantial amounts of outcome measurements are 
available for each patient. This formulation readily generalizes to handle the 
combined longitudinal data for multiple patients as considered in the GEE con-
text. In that case, as pointed out by Knafl and Ding [12], the GEE estimating eq-
uations can be generated by differentiating the residual terms of ( );T� θ  while 
holding the covariance matrix terms fixed. This motivates using the ELMM ap-
proach for estimating θ  based on estimating equations generated by max-
imizing ( );T� θ . Moreover, the likelihood-like function ( );L T θ  can be used 
to generate model selection criteria. Pan [17] has formulated the quasi-likelihood 
information criterion (QIC) for GEE model selection. However, the QIC score 
does not fully account for the correlation structure while model selection criteria 
based on ( );L T θ  fully account for the correlation structure. 

The likelihood-like function ( );L T θ  can be maximized to generate esti-
mates ( )Tθ  by solving for a zero gradient, that is, 
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( ) ( ) ( )
( )
( )

;T

g ρ

 
∂  ′= = = ∂  

 

g
g g

�
0

β
θ

θ β
θ

 
where 0  is the zero vector, 

( ) ( );T∂
=

∂
g

� θ
β

β  
is the partial derivative vector for the probability parameters, 

( ) ( );T∂
′ =

′∂
g

� θ
β

β  
is the partial derivative vector for the dispersion parameters, and 

( ) ( );T
g ρ

ρ
∂

=
∂
� θ

 
is the partial derivative for the correlation parameter. The Hessian matrix ( )H θ  
has nine component submatrices: 

( ) ( )∂
=

∂
g

H
β

β
β  

for the probability parameters, 

( ) ( )g ′∂
′ =

′∂
H

β
β

β  

for the dispersion parameters, 

( ) ( )g
H

ρ
ρ

ρ
∂

=
∂  

for the correlation parameter, 

( ) ( )
,

∂
′ =

′∂
g

H
β

β β
β  

and its transpose ( ) ( )T, ,′ ′=H Hβ β β β , 

( ) ( )
,ρ

ρ
∂

=
∂

g
H

β
β

 

and its transpose ( ) ( )T, ,ρ ρ=H Hβ β , and 

( ) ( )
,ρ

ρ
′∂

′ =
∂

g
H

β
β

 
and its transpose ( ) ( )T, ,ρ ρ′ ′=H Hβ β . Iteratively solve ( ) =g θ 0  using 
Newton's method, that is, given the current value sθ  for θ , the next value is 
given by 

( ) ( )1
1 .s s s s

−
+ = − ⋅H gθ θ θ θ  

The solution to the estimating equations for observations indexed by T is de-
noted as 
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( )
( )
( )
( )

.
T

T T
Tρ

 
 ′=  
 
 

β
θ β

 
The partial derivative vector ( )g β  varies with the probability type as do 
( )H β , ( ), ′H β β , and ( ),ρH β . Formulas are provided for these quantities 

in Sections 2.1-2.3 for multinomial probabilities, ordinal probabilities, and cen-
sored Poisson probabilities, respectively. Formulas for partial derivatives com-
mon to all three probability types are provided in what follows. Details on com-
putation of derivatives are not provided for brevity; they are available on request 
from the first author. 

The partial derivative vector ( )′g β  has J ′  entries satisfying 

( ) ( ) ( )
T 1

,1 2j j t i
N

jig xρ−
=

′ ′= ⋅ ⋅ −∑stdex R stdeβ
 

where j′stdex  is the N × 1 vector with entries 

( ) ( ) ( ), , 2t i j t i j t istdex x stde⋅′ =
 

for 1 j J ′≤ ≤  and ( )t i T∈ . The derivative ( )g ρ  satisfies 

( ) ( ) ( )1
T log

2 2g
ρρ

ρ
ρρ

− ∂∂
= − ⋅ ⋅ −

∂∂

RR
stde stde

 

where 

( ) ( ) ( ) ( )
1

1 1 ,
ρ ρ

ρ ρ
ρ ρ

−
− −∂ ∂

= − ⋅ ⋅
∂ ∂

R R
R R

 

( )
( ) ( )1log

trace .
ρ ρ

ρ
ρ ρ

−
∂ ∂ 

= ⋅ 
∂ ∂ 

R R
R

 

For spatial AR1 correlations, 
( )ρ
ρ

∂
∂

R
 is the N × N matrix with diagonal entries 

all equal to 0 and off-diagonal entries equaling 

( ) ( ) ( ) ( ) ( ) ( ), 1t i t i t i t ir
t i t i ρ

ρ
′ ′− −∂

′= − ⋅
∂  

for 1 i i N′≤ ≠ ≤ . 
( )′H β  has entries 

( ) ( ) ( )T 1 T 1
, ,j j j j j jH ρ ρ− −

′′ ′′ ′ ′= − ⋅ ⋅ − ⋅ ⋅stdexx R stde stdex R stdexβ  

where ,j j′′′stdexx  is the N × 1 vector with entries 

( ) ( ) ( ) ( ), , , , 4t i j j t i j t i j t istdexx x x stde′ ′′′ ′ ′= ⋅ ⋅
 

for 1 ,j j J′ ′≤ ≤  and ( )t i T∈ . ( )H ρ  satisfies 

( ) ( ) ( )22 1
T

22

log
2 2H

ρρ
ρ

ρρ

− ∂∂
= − ⋅ ⋅ −

∂∂

RR
stde stde

 
where 

https://doi.org/10.4236/ojs.2022.124029


G. J. Knafl, S. H. Meghani 
 

 

DOI: 10.4236/ojs.2022.124029 464 Open Journal of Statistics 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 1
1 1 1

2

2
1 1

2

2

,

ρ ρ ρ
ρ ρ ρ

ρ ρρ

ρ
ρ ρ

ρ

−
− − −

− −

∂ ∂ ∂
= ⋅ ⋅ ⋅ ⋅ ⋅

∂ ∂∂

∂
− ⋅ ⋅

∂

R R R
R R R

R
R R

 

( )
( ) ( ) ( ) ( )

( ) ( )

2
1 1

2

2
1

2

log
trace

trace .

ρ ρ ρ
ρ ρ

ρ ρρ

ρ
ρ

ρ

− −

−

∂ ∂ ∂ 
= − ⋅ ⋅ ⋅ 

∂ ∂∂  
 ∂

+ ⋅  ∂ 

R R R
R R

R
R

 
Formulas for first and second derivatives of ( )1 ρ−R  and ( )log ρR  are 

adapted from formulas in [18]. For spatial AR1 correlations, ( )2

2

ρ
ρ

∂

∂

R
 is the 

N×N matrix with diagonal entries all equal to 0 and off-diagonal entries 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
2

, 2
2 1t i t i t i t ir

t i t i t i t i ρ
ρ

′ ′− −∂
′ ′= − − ⋅ − ⋅

∂  
for 1 i i N′≤ ≠ ≤ . ( ),ρ′H β  has entries 

( ) ( )1
T,j jH

ρ
ρ

ρ

−∂
′ ′= ⋅ ⋅

∂
R

stdex stdeβ
 

for 1 j J ′≤ ≤ . 
The covariance matrix for the estimate ( )Tθ  satisfies 

( )( ) ( )( )1 .T T−= −Hθ θΣ
 

Square roots of the diagonal entries of ( )( )TθΣ  can be used to generate 𝑧𝑧 
tests of zero individual model parameters. These are useful for fixed models of 
theoretical importance. However, these tests for parameters of adaptively gener-
ated models are usually significant as a consequence of the model selection 
process, and so are not reported in example analyses of Section 3. 

The likelihood-like function ( );L T θ  can be used to compute likelihood-like 
cross-validation (LCV) scores (Section 2.4) for evaluating and comparing alter-
native models. These scores can be used to control the adaptive modeling 
process (Section 2.5) for identifying power transforms of the probability predic-
tors and of the dispersion predictors for use in nonlinear modeling of discrete 
outcomes. 

2.1. Multinomial Probabilities 

The probabilities ( ),t i up  are modeled multinomially using generalized logits 
with the smallest value 0v  as the reference category (but any other value can be 
used instead), that is, 

( )( ) ( )

( )
( )

, T
,

,0

log t i u
ut i u t i

t i

p
h p

p
= = ⋅x β

 
for K J × 1 vectors uβ  of coefficient parameters ,u jβ  for 1 u K≤ ≤  and 
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1 j J≤ ≤ . Combine the vectors uβ  over 1 u K≤ ≤  into the composite 
( ) 1K J⋅ ×  vector β . Altogether, there are K∙J coefficient parameters for mod-
eling the probabilities. Setting ( ),1 1t ix =  for ( )t i T∈  generates K intercept pa-
rameters. For ( )t i T∈ , the multinomial probabilities satisfy 

( )
( )( )

( )( )
T

, T
1

exp

1 exp

ut i
t i u K

ut iu

x
p

′′=

⋅
=

+ ⋅∑ x

β

β
 

for 1 u K≤ ≤  and 

( )
( )( ),0 T

1

1 .
1 exp

t i K
ut iu

p
′′=

=
+ ⋅∑ x β

 

Their partial derivatives ( ),

,

t i u

w j

p

β

∂

∂
 satisfy 

( )
( ) ( ) ( )( ),

, , ,
,

1 , ,t i u
t i j t i w t i w

w j

p
x p p w u

β

∂
= ⋅ ⋅ − =

∂  

( )
( ) ( ) ( )

,
, , ,

,

, ,t i u
t i j t i u t i w

w j

p
x p p w u

β

∂
= − ⋅ ⋅ ≠

∂  
and 

( )
( ) ( ) ( )

,0
, ,0 ,

,

,t i
t i j t i t i w

w j

p
x p p

β

∂
= − ⋅ ⋅

∂  
for 1 ,u w K≤ ≤ , 1 j J≤ ≤ , and ( )t i T∈ . 

The derivative vector ( )g β  has K∙J entries ( ),w jg β  for 1 w K≤ ≤  and 
1 j J≤ ≤  satisfying 

( ) ( ) ( )
T 1

, , , ,1 2w j w j t i w
N

jig Wρ−
=

= ⋅ ⋅ −∑stdex R stdeβ
 

where 

( )

( )( )

( )( )
,

, ,

Var

,
Var

t i

w j
t i w j

t i

y

W
y

β

∂

∂
=

 

( )( )
( ) ( ) ( ) ( ) ( )( )( )2 2

, ,
,

Var
E 2 ,

t i
w wt i j t i w t i t i t i

w j

y
x p v y vµ µ

β

∂
= ⋅ ⋅ − − ⋅ ⋅ −

∂  

and ,w jstdex  is the N × 1 vector with entries 

( )
( )

( ) ( ) ( ), , , ,
,

,2t i
t i w j t i t i t i w j

w j

stdex stde W
µ

σ
β

∂
=
∂

⋅+
 

( )
( ) ( ) ( )( ), ,

,

,t i
wt i j t i w t i

w j

x p v
µ

µ
β

∂
= ⋅ ⋅ −

∂  

for 1 w K≤ ≤ , 1 j J≤ ≤ , and ( )t i T∈ . 
( )H β  has entries 
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( ) ( ) ( )

( )

T 1 T 1
, , , , , , , ,

, , , ,1 2

w j w j w j w j w j w j

t i w j w
N

ji

H

W

ρ ρ− −
′ ′ ′ ′ ′ ′

′ ′=

= − ⋅ ⋅ − ⋅ ⋅

−∑
stdexx R stde stdex R stdexβ

 
where 

( )
( )

( )( )

( )( )

( )( ) ( )( )

( )( )

2

, , , , , ,
, , , , 2

,

Var Var Var

,
Var Var

t i t i t i

t i w j w j w j w j w j
t i w j w j

w j t i t i

y y y
W

W
y y

β β β β
β

′ ′ ′ ′
′ ′

′ ′

∂ ∂ ∂
⋅

∂ ∂ ∂ ∂ ∂
= = −

∂
 

( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( ) ( )( )( )

2

, ,

2 2
, , , ,

2 2 2
, , ,

Var

1 E 2

E 2 2 , ,

t i

w j w j

w wt i j t i j t i w t i w t i t i t i

w w wt i j t i j t i w t i t i t i

y

x x p p v y v

x x p y v v v w w

β β

µ µ

µ µ

′ ′

′

′

∂

∂ ∂

= ⋅ ⋅ ⋅ − ⋅ − − ⋅ ⋅ −

′+ ⋅ ⋅ ⋅ − + ⋅ ⋅ − ⋅ − =
 

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( )( )

2

, ,

2 2
, , , , ,

2 2
, , ,

Var

E 2

E 2 2 , ,

t i

w j w j

w wt i j t i j t i w t i w t i t i t i t i j

w w wt i j t i w t i w t i t i t i

y

x x p p v y v x

x p p y v v v w w

β β

µ µ

µ µ

′ ′

′ ′

′ ′ ′′ ′

∂

∂ ∂

= − ⋅ ⋅ ⋅ ⋅ − − ⋅ ⋅ − +

′⋅ ⋅ ⋅ ⋅ − + ⋅ ⋅ − ⋅ − ≠

 

while , , ,w j w j′ ′stdexx  is the N × 1 vector with entries 

( )

( )

( )

( ) ( )

( )
( )

( )

( )
( )

2

, , , ,, ,
, , , , , ,

,

, , , ,

2 2

,
2

t i

t i t i w j t i w jw j w j
t i w j w j t i w j

w jt i t i

t i w j w j
t i

W W
stdexx stdex

W
stde

µ
µβ β

σ β σ
′ ′′ ′

′ ′ ′ ′

′ ′

∂

∂∂ ∂
= − + ⋅ + ⋅

∂ ⋅

− ⋅
 

( )
( ) ( ) ( ) ( )( ) ( )( )

2

, , , ,
, ,

1 2 , ,t i
wt i j t i j t i w t i w t i

w j w j

x x p p v w w
µ

µ
β β ′

′ ′

∂
′= ⋅ ⋅ ⋅ − ⋅ ⋅ − =

∂ ∂  

( )
( ) ( ) ( ) ( ) ( )( )

2

, , , ,
, ,

2 , ,t i
w wt i j t i j t i w t i w t i

w j w j

x x p p v v w w
µ

µ
β β ′′ ′

′ ′

∂
′= − ⋅ ⋅ ⋅ ⋅ + − ⋅ ≠

∂ ∂  
for 1 ,w w K′≤ ≤ , 1 ,j j J′≤ ≤ , and ( )t i T∈ . ( ), ′H β β  has entries 

( ) ( ) ( )T 1 T 1
, , , , ,,w j j w j j w j jH ρ ρ− −

′ ′ ′′ ′ ′= − ⋅ ⋅ − ⋅ ⋅stdexx R stde stdex R stdexβ β  
where , ,w j j′′stdexx  is the N × 1 vector with entries 

( ) ( ) ( ), , , , , , 2t i w j j t i w j t i jstdexx stdex x′ ′′ ′= ⋅
 

for 1 j J≤ ≤ , 1 j J′ ′≤ ≤ , and ( )t i T∈ . ( ),ρH β  has entries 

( ) ( )1
T

, ,,w j w jH
ρ

ρ
ρ

−∂
=

∂
⋅ ⋅

R
stdex stdeβ

 
for 1 w K≤ ≤  and 1 j J≤ ≤ . 

2.2. Ordinal Probabilities 

For ( )t i T∈ , define cumulative probabilities 
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( ) ( )( ), P ,0 ,ut i u t ip y v u K≤ = ≤ ≤ <
 

( ) ( )( ), P 1Kt i K t ip y v≤ = ≤ =
 

where the values uv  are assumed to be in increasing order for 0 u K≤ ≤ . The 
link function is cumulative logits with logits computed for lower sets of values 
relative to higher sets of values (but this can be reversed). Formally, for predictor 
values ( ),t i jx , 1 j J≤ ≤ , the cumulative probabilities ( ),t i up ≤  for 0 u K≤ <  
and ( )t i T∈  are modeled ordinally as 

( )( ) ( )( ) ( )

( )
( )

, T
, ,

,

logit log
1

t i u
u Kt i u t i u t i

t i u

p
h p p

p
α≤

≤ ≤
≤

= = = + ⋅
−

x β
 

for K intercept parameters uα  and a single J × 1 vector Kβ  of slope parameters 

,K jβ  for 1 j J≤ ≤ . Combine the intercept parameters uα  over 0 u K≤ <  into 
the K × 1 vector α . Altogether, there are K + J coefficient parameters for mod-
eling the probabilities, which are combined over 0 u K≤ <  and 1 j J≤ ≤  into 
the ( ) 1K J+ ×  vector 

.
K

 
=  
 

α
β

β  
A zero-intercept model corresponds to setting 0 0α = , but uα  for 0 u K< <  
are nonzero. The cumulative probabilities satisfy 

( )
( )( )
( )( )

T

, T

exp

1 exp

u Kt i
t i u

u Kt i

p
α

α
≤

+ ⋅
=

+ + ⋅

x

x

β

β
 

for 0 u K≤ <  and ( )t i T∈ . The cumulative probabilities are differenced to 
compute probabilities 

( ) ( )( ), P ,ut i u t ip y v= =
 

that is, for ( )t i T∈ , define ( ), 1 0t ip ≤− =  and then 

( ) ( ) ( ), , , 1t i u t i u t i up p p≤ ≤ −= −
 

for 0 u K≤ ≤ . For 0 ,u w K≤ < , 1 j J≤ ≤ , and ( )t i T∈ , the partial deriva-
tives of ( ),t i up  satisfy 

( )
( ) ( )( ),

, ,1 , ,t i u
t i w t i w

w

p
p p w u

α
≤

≤ ≤

∂
= ⋅ − =

∂  

( ), 0, ,t i u

w

p
w u

α
≤∂

= ≠
∂  

( )
( ) ( ) ( )( ),

, , ,
,

1 .t i u
t i j t i u t i u

K j

p
x p p

β
≤

≤ ≤

∂
= ⋅ ⋅ −

∂  
The derivative vector ( )g β  has K + J entries ( )wg β  for 0 w K≤ <  and 
( ),K jg β  for 1 j J≤ ≤  satisfying 

( ) ( ) ( )
T 1

,1 2w w
N

t i wig Wρ−
=

= ⋅ ⋅ −∑stdex R stdeβ
 

https://doi.org/10.4236/ojs.2022.124029


G. J. Knafl, S. H. Meghani 
 

 

DOI: 10.4236/ojs.2022.124029 468 Open Journal of Statistics 
 

( ) ( ) ( )
T 1

, , , ,1 2K j K j t i K
N

jig Wρ−
=

= ⋅ ⋅ −∑stdex R stdeβ
 

where 

( )

( )( )

( )( ),

Var

,
Var

t i

w
t i w

t i

y

W
y

α

∂

∂
=

 

( )( )
( ) ( )( ) ( ) ( )( )1 1, ,

Var
1 2 ,

t i
w w w wt i w t i w t i

w

y
p p v v v v µ

α + +≤ ≤

∂
= ⋅ − ⋅ − ⋅ + − ⋅

∂  

( )

( )( )

( )( )
,

, ,

Var

,
Var

t i

K j
t i K j

t i

y

W
y

β

∂

∂
=

 

( )( )
( ) ( ) ( )( )( ( )

( )( ))

1
1, , ,0

,

1

Var
1

2 ,

t i K
u ut i j t i u t i uu

K j

u u t i

y
x p p v v

v v

β

µ

−
+≤ ≤=

+

∂
= ⋅ ⋅ − ⋅ −

∂

⋅ + − ⋅

∑

 

while wstdex  and ,K jstdex  are the N × 1 vectors with entries 

( )
( )

( ) ( ) ( ), , 2 ,t i
t i w t i t i t i w

w

stdex stde W
µ

σ
α

∂
= + ⋅
∂  

( )
( ) ( )( ) ( )1, ,1 ,t i

w wt i w t i w
w

p p v v
µ

α +≤ ≤

∂
= ⋅ − ⋅ −

∂  

( )
( )

( ) ( ) ( ), , , ,
,

2 ,t i
t i K j t i t i t i K j

K j

stdex stde W
µ

σ
β

∂
= + ⋅
∂  

( )
( ) ( ) ( )( ) ( )( )1

1, , ,0
,

1 ,t i K
u ut i j t i u t i uu

K j

x p p v v
µ

β
−

−≤ ≤=

∂
= ⋅ ⋅ − ⋅ −

∂ ∑
 

for 0 w K≤ < , 1 j J≤ ≤ , and ( )t i T∈ . ( )H β  has entries 

( ) ( ) ( )

( )

T 1 T 1
, ,

, ,1 2,

w w w w w w

t i
N

w wi

H

W

ρ ρ− −
′ ′ ′

′=

= − ⋅ ⋅ − ⋅ ⋅

−∑
stdexx R stde stdex R stdexβ

 

( ) ( ) ( )

( )

T 1 T 1
, , , , ,

, , ,1 2,

w K j w K j w K j

N
t i w K ji

H

W

ρ ρ− −

=

= − ⋅ ⋅ − ⋅ ⋅

−∑
stdexx R stde stdex R stdexβ

 

( ) ( ) ( )

( )

T 1 T 1
, , , , ,

, , ,1 2,

K j w K j w K j w

N
t i K j wi

H

W

ρ ρ− −
′ ′ ′

′=

= − ⋅ ⋅ − ⋅ ⋅

−∑
stdexx R stde stdex R stdexβ

 

( ) ( ) ( )

( )

T 1 T 1
, , , , , ,

, , ,1 2,

K j j K j j K j K j

N
t i K j ji

H

W

ρ ρ− −
′ ′ ′

′=

= − ⋅ ⋅ − ⋅ ⋅

−∑
stdexx R stde stdex R stdexβ

 

where 

https://doi.org/10.4236/ojs.2022.124029


G. J. Knafl, S. H. Meghani 
 

 

DOI: 10.4236/ojs.2022.124029 469 Open Journal of Statistics 
 

( )
( )

( )( )

( )( )

( )( ) ( )( )

( )( )

2
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, , 2

Var Var Var

,
Var Var

t i t i t i

t i w w w w w
t i w w

w t i t i

y y y
W

W
y y

α α α α
α

′ ′
′

′

∂ ∂ ∂
⋅∂ ∂ ∂ ∂ ∂

= = −
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2

1 1, , ,
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1 1 2 2
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t i

w w
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α α

µ

′
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∂

∂ ∂
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y
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′

′ ′+ +

∂
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⋅ ⋅
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⋅ ⋅
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∂ ∂ ∂ ∂ ∂
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K
w w u ut i t i u t i uu

y

x p p v v p

v v p p v v

β α

µ

+≤ ≤ ≤

−
+ +≤ ≤=
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while ,w w′stdexx , , ,w K jstdexx , , ,K j w′stdexx , and , ,K j j′stdexx  are the N × 1 vec-
tors with respective entries 

( )

( )

( )

( ) ( )

( )
( )

( )

( )
( )

2

, ,
, , ,

, ,

2 2

,
2

t i
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t i w w
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W W
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µ
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σ α σ
′′

′ ′
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∂
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= − + ⋅ + ⋅
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′

∂
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2
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w w
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µ
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∂
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∂ ∂  

( )

( )
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( ) ( )
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( )
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( )
( )

2

, , ,,
, , , , ,

, , ,
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,
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W
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( ) ( ) ( ) ( )( )(
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2
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, , , ,0
, ,
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p v v
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−

′ ≤ ≤=
′

+≤

∂
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∂ ∂

⋅ − ⋅ ⋅ −

∑

 

for 0 ,w w K′≤ <  and 1 ,j j J′≤ ≤ . ( ), ′H β β  has entries 

( ) ( ) ( )T 1 T 1
, ,, ,w j w j w jH ρ ρ− −
′ ′ ′′ ′ ′= − ⋅ ⋅ − ⋅ ⋅stdexx R stde stdex R stdexβ β  

( ) ( ) ( )T 1 T 1
, , , , ,, ,K j j K j j K j jH ρ ρ− −

′ ′ ′′ ′ ′= − ⋅ ⋅ − ⋅ ⋅stdexx R stde stdex R stdexβ β  
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where ,w j′′stdexx  and , ,k j j′′stdexx  are the N × 1 vectors with respective entries 

( ) ( ) ( ), , , , 2 ,t i w j t i w t i jstdexx stdex x′ ′′ ′= ⋅
 

( ) ( ) ( ), , , , , , 2 ,t i K j j t i K j t i jstdexx stdex x′ ′′ ′= ⋅
 

for 0 w K≤ < , 1 j J≤ ≤ , 1 j J′ ′≤ ≤ , and ( )t i T∈ . ( ),ρH β  has entries 

( ) ( )1
T, ,w wH

ρ
ρ

ρ

−∂
= ⋅ ⋅

∂
R

stdex stdeβ
 

( ) ( )1
T

, ,, ,K j K jH
ρ

ρ
ρ

−∂
= ⋅ ⋅

∂
R

stdex stdeβ
 

for 0 w K≤ <  and 1 j J≤ ≤ . 

2.3. Censored Poisson Probabilities 

The censored Poisson probabilities 

( ) ( )( ), P ut i u t ip y v= =
 

are modeled as follows 

( ) ( )( ) ( )
, exp ,0 ,

!

u
t i

t i u t ip u K
u

λ
λ= − ⋅ ≤ <

 

( ) ( ), ,01 ,K
t i K t i uup p

=
= −∑  

( ) ( )
Tlog ,t i t iλ = ⋅x β

 
using the natural log link function for modeling ( )t iλ , for ( )t i T∈ . There are J 
coefficient parameters for modeling the probabilities. Setting ( ), 1t i jx =  for 
( )t i T∈  generates an intercept parameter. 
In the special case when uv  are consecutive integers, that is, uv c u= +  for 

an integer 0c ≥  and 0 u K≤ < , truncated Poisson probabilities [19] could be 
used instead with 

( ) ( )( ) ( )

( ), exp ,0 ,
!

c u
t i

t i u t ip u K
c u S

λ
λ

+

= − ⋅ ≤ ≤
+ ⋅  

where the normalizing constant S satisfies 

( )

( )0 .
!

c u
t iK

uS
c u

λ +

=
=

+∑
 

These are not considered any further. 

The first partial derivatives ( )t i
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for 1 j r≤ ≤  and ( )t i T∈ . The associated second partial derivatives satisfy 
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for 1 ,j j r′≤ ≤  and ( )t i T∈ . 
The derivative vector ( )g β  has J entries ( )jg β  for 1 j J≤ ≤  satisfying 
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and jstdex  is the N × 1 vector with entries 
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while ,j j′stdexx  is the N × 1 vector with entries 
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for 1 ,j j J′≤ ≤  and ( )t i T∈ . ( ), ′H β β  has entries 
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for 1 j J≤ ≤ . 

2.4. Likelihood-Like Cross-Validation 

In k-fold cross-validation [20], observations are partitioned into k disjoint subsets 
called folds. Parameter estimates computed using the data from the other folds are 
used to predict fold observations. In k-fold likelihood-like cross-validation (LCV), 
these deleted fold predictions are scored using the associated likelihood-like 
function L. The times ( )t i T∈  are randomly partitioned into k disjoint folds 
( )T f  for 1 f k≤ ≤ . The same initial seed is used for randomization with all 

models under consideration to generate compatible LCV scores. Denote the de-
leted estimate of θ  using the data with times in the complement ( )\T T f  of 
the fold ( )T f  as ( )( )\T T fθ . For 1 f k≤ ≤ , denote the union of all folds 
( )T f ′  for 1 f f′≤ ≤  as ( )T f+ . ( )0T +  is the empty fold satisfying 

( )( )0 1L T + = . The LCV score is 
1

1LCV LCVk N
ff ==∏  

where LCVf  is the conditional likelihood-like term for the data in fold ( )T f  
conditioned on the data in the union ( )1T f+ −  of the prior folds using the de-
leted estimate ( )( )\T T fθ  of the parameter vector θ . Formally, 

( ) ( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( )

; \
LCV | 1 ; \ .

1 ; \f

L T f T T f
L T f T f T T f

L T f T T f

+
+

+
= − =

−

θ
θ

θ
 

Larger LCV scores indicate better models. 

2.5. Adaptive ELMM 

Knafl and Ding [12] formulate adaptive regression methods for searching through 
alternative models for means and dispersions in a variety of contexts. These me-
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thods use adaptive fractional polynomial models [21]. A short overview is pro-
vided here (for details, see Chapter 20, [12]). Adaptive regression methods ge-
neralize to ELMM modeling of discrete outcomes and are used in the example 
analyses of individual-patient pain ratings (Section 3). Model selection is a 
two-phase heuristic process. First, the model is expanded (or grown) by adding 
power transforms of predictors for means and dispersions. Then, the model is 
contracted (or pruned) to a parsimonious set of power transforms by removing 
transforms from the current model one at a time and adjusting the powers of the 
remaining transforms. LCV scores are used to evaluate and compare alternative 
models. Tolerance parameters control the adaptive modeling process. These to-
lerance parameters indicate how much of a reduction in the LCV score can be 
tolerated at given stages of the process. Predictors having arbitrary values raised 
to arbitrary powers can generate floating point overflow problems. To counter 
this problem, power transformed predictor values are upper bounded to be no 
larger than 1012. 

The adaptive modeling process can optionally generate geometric combina-
tions, that is, products of power transforms of multiple predictors generalizing 
standard interactions, possibly with the geometric combinations also power 
transformed, for example, ( )1 2

pp px x
″′⋅ . This provides for an assessment of non-

linear moderation, generalizing the standard linear form of moderation [22]. 
A wide variety of example analyses are provided in [12] demonstrating the 

usefulness of adaptive regression methods. However, adaptive modeling of dis-
crete outcomes has not been previously addressed. 

A SAS® (SAS Institute, Inc., Cary, NC) macro has been developed for con-
ducting adaptive analyses. This macro as well as data and code used to generate 
the results of the example analyses along with SAS output for those analyses are 
available from the first author. 

2.6. On-Going Study of Cancer Pain 

The data analyzed in the example analyses have been collected as part of an 
on-going study of daily pain and opioid usage for cancer patients. This study is 
collecting a variety of measures including intensive longitudinal individual-patient 
data using Ecological Momentary Assessment (EMA) [23] as implemented in the 
mEMA app [24]. Each patient is providing data on numbers of pain flares, that is, 
sudden increases in pain, and of opioids taken on each day. Methods for analyzing 
such individual-patient longitudinal count outcomes using Poisson regression 
modeling are addressed in Knafl and Meghani [14]. Each patient is also provid-
ing data on ratings of worst pain and least pain on a scale of 0 - 10 for each day 
(as also used in the Brief Pain Inventory [4]). Methods for analyzing such indi-
vidual-patient longitudinal pain rating data using discrete regression modeling 
are addressed above. The pain ratings for Cancer Patient 1 plotted in Figure 1 
are daily worst pain ratings and are used in the analyses of Section 3. This 
on-going study received Institutional Review Board approval. All participants 
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provided written informed consent. 

3. Results of Example Analyses 

Table 1 contains results for adaptive models for probabilities and dispersions of 
pain ratings for Cancer Patient 1 over time (as plotted in Figure 1) computed 
using ELMM and the spatial AR1 correlation structure. LCV scores are based on 
k = 5 folds with fold sizes ranging from 13 to 20 measurements. Multinomial 
and ordinal probabilities are based on a single power transform of time while 
censored Poisson probabilities are based on two power transforms of time. All 
three probability types have zero intercept terms, meaning that eight intercepts 
are zero for the multinomial probabilities, the first intercept is zero for the or-
dinal probabilities, and the one intercept is zero for the censored Poisson proba-
bilities. All three models have dispersions based on a single transform of time 
with zero intercept terms. The multinomial model has nine parameters (eight 
slopes for the probability time transform and one slope for the dispersion trans-
form), the ordinal model also has nine parameters (seven intercept parameters 
for the probabilities, one slope for the probability time transform, and one slope 
for the dispersion transform), the censored Poisson model has three parameters 
(one slope for each of two probability time transforms and one slope for the dis-
persion transform). 

The multinomial model has the best (largest) LCV score 0.23083 while the or-
dinal model has the worst (smallest) LCV score 0.22635. The censored Poisson 
model has the intermediate LCV score 0.22935, but it is not much smaller than 
the LCV score for the multinomial model and is based on one-third the number 
of parameters. Furthermore, the censored model requires only 5.2 minutes of 
clock time compared to 25.9 or about 5.0 times more for the ordinal model and 
42.7 minutes or about 8.2 times more for the multinomial model. Consequently, 
censored Poisson probabilities are preferable to the other two approaches for 
modeling the pain ratings of Cancer Patient 1 because they generate a competitive 
LCV score, are more parsimonious, and require less time to compute. For this 
reason, only censored Poisson probabilities are considered in subsequent analyses 
of the pain ratings of Cancer Patient 1. 

 
Table 1. Comparison of Probability Types for Analyzing Daily Pain Ratings of Cancer 
Patient 1a. 

Probability  
Type 

Model Transformsb 5-Fold  
LCV Score 

Number of 
Parameters 

Clock Time  
(Minutes) Probabilities Dispersions 

multinomial time1.7999 time2.5009 0.23083 9 42.7 

ordinal time1.3089 time5.1 0.22635 9 25.9 

censored Poisson time0.2, time−1 time7.8 0.22935 3 5.2 

LCV—likelihood cross-validation. aComputed using adaptive extended linear mixed 
modeling and spatial autoregressive order 1 correlations. bAll models have zero intercept 
terms. 
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3.1. Assessment of the Number of Folds 

It is possible that a larger number k of folds is more appropriate to use in ana-
lyzing the pain ratings of Cancer Patient 1. However, adaptive models for cen-
sored Poisson probabilities and dispersions using 10 and 15 folds have smaller 
LCV scores 0.22706 and 0.22378, respectively. Consequently, only k = 5 folds are 
used to compute LCV scores in subsequent analyses. 

3.2. Independent versus Autoregressive Correlations 

The adaptive model for censored Poisson probabilities and dispersions assuming 
independent correlations has LCV score 0.22349, smaller than the LCV score for 
the associated model of Table 1, indicating that the spatial AR1 correlation 
structure is the more appropriate choice. Consequently, only spatial AR1 corre-
lations are considered in subsequent analyses of the pain ratings of Cancer Pa-
tient 1. 

3.3. Assessment of Constant Dispersions 

The adaptive model for censored Poisson probabilities using spatial AR1 corre-
lations and assuming constant dispersions has LCV score 0.19309 smaller than 
the LCV score for the associated model of Table 1. Thus, dispersions for the 
pain ratings of Cancer Patient 1 are reasonably considered to be non-constant. 

3.4. Assessing Linearity in Time 

Using censored Poisson probabilities based on untransformed time, that is, li-
near in time, with an intercept, the adaptive model in time for the dispersions 
using spatial AR1 correlations has LCV score 0.20959 smaller than the LCV 
score for the associated model of Table 1. Thus, the censored Poisson probabili-
ties for the pain ratings of Cancer Patient 1 are reasonably treated as nonlinear 
in time. 

3.5. Adaptive Model in Time 

Results of the above analyses indicate that the censored Poisson model of Table 
1 provides an appropriate assessment of the dependence on time of the proba-
bilities and dispersions of the pain ratings of Cancer Patient 1. The probabilities 
for this model are based on 0.2time  and 1time−  without an intercept while the 
dispersions are based on 7.8time  without an intercept. The estimated autocor-
relation is 0.39 so that correlations decrease quickly with increased days apart, 
for example, the correlation is less than 0.01 for outcomes 5 or more days apart. 
Figure 2 contains the plot of estimated mean pain ratings over time, which de-
crease from 7.8 at day 1 quickly to 4.6 by day 6 and then increase to 7.1 by day 
97. Figure 3 contains the plot of estimated dispersions for pain ratings over 
time, which decrease from 1 over days 1 - 15 to 0.19 at day 35, and remain con-
stant after that (due to upper bounding the dispersion transform). 

Estimated probabilities over time for pain ratings 1 - 5 are plotted in Figure 4  
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Figure 2. Estimated means of pain ratings over time for Cancer Patient 1. 

 

 
Figure 3. Estimated dispersions of pain ratings over time for Cancer Patient 1. 

 
and for pain ratings 6 - 9 in Figure 5. Estimated probabilities for pain ratings 1 - 
5 increase quickly early on and decrease after that. Estimated probabilities for 
pain ratings 6 - 9 decrease quickly early on and increase after that with some 
small decreases late in time for pain ratings 6 - 7. Estimated probabilities are all  

https://doi.org/10.4236/ojs.2022.124029


G. J. Knafl, S. H. Meghani 
 

 

DOI: 10.4236/ojs.2022.124029 478 Open Journal of Statistics 
 

 
Figure 4. Estimated probabilities of pain ratings 1 - 5 over time for Cancer Patient 1. 

 

 
Figure 5. Estimated probabilities of pain ratings 6 - 9 over time for Cancer Patient 1. 

 
smaller than 0.25 for pain ratings 1 - 8. The estimated probability of the highest 
observed pain rating of 9 is 0.51 on day 1, decreases quickly to 0.03 by day 6, and 
then increases to 0.33 by day 97. Estimated probabilities over time for a high 
pain rating of 6 or more are plotted in Figure 6. The estimated probability of a  
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Figure 6. Estimated probabilities of a high pain rating of 6 or more over time for Cancer 
Patient 1. 

 
high pain rating of 6 or more starts at 0.89 on day 1, decreases to 0.30 by day 6, 
and then increases to 0.78 by day 97. 

3.6. Adaptive Additive Model in Time and the Number of Pain 
Flares 

Numbers of pain flares for Cancer Patient 1 vary from 0-4 with none missing for 
the N = 86 time points. By default, the adaptive modeling process generates ad-
ditive models in multiple predictors. When applied to the pain ratings as a func-
tion of the number x of pain flares as well as of time, the generated additive 
model has probabilities based on a zero intercept, 0.8x , and 0.21time ; disper-
sions based on a zero intercept and 1.7time ; estimated autocorrelation 0.37; and 
LCV score 0.28173. Since this LCV score is larger than the LCV score 0.22935 
for the model based on only time, the number of pain flares is reasonably consi-
dered to have an additive effect on the censored Poisson probabilities, but not on 
the dispersions. 

Estimated means under this additive model are plotted in Figure 7, which in-
crease nonlinearly over time at higher levels for higher numbers of pain flares. 
Figure 8 displays the plot of estimated dispersions for the additive model, which 
decrease nonlinearly from 1 at day 1 to 0.02 by day 97. Plots for estimated prob-
abilities are not provided because that requires two plots similar to Figure 4 and 
Figure 5 for each of the five observed numbers of pain flares. 
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Figure 7. Estimated means of pain ratings over time and changing additively with the 
number of pain flares for Cancer Patient 1. 

 

 
Figure 8. Estimated dispersions for pain ratings over time under the additive model for 
Cancer Patient 1. 

3.7. Adaptive Moderation of the Effect to Time by the Number of 
Pain Flares 

Optionally, the adaptive modeling process can generate moderation models al-
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lowing for additive effects of multiple predictors together with geometric com-
binations based on those predictors. When applied to the pain ratings as a func-
tion of the number x of pain flares as well as of time, the generated moderation 
model has probabilities based on a zero intercept, 2.7x , 0.22time , and the four 
geometric combinations ( )1.54 0.3time x−⋅ , ( )0.75 1,.1timex− ⋅ , ( )1.61.4 1,.1timex ⋅ , 
and ( )1.26 0.7timex ⋅ ; dispersions based on a zero intercept, 2time , and the one 
geometric combination ( )0.52.5 timex− ⋅ ; estimated autocorrelation 0.32; and the 
LCV score is 0.29730. Since this LCV score is larger than the LCV score 0.28173 
for the additive model, the number of pain flares is reasonably considered to 
moderate the effect of time on the censored Poisson probabilities as well as on 
the dispersions. 

Estimated means under this moderation model are plotted in Figure 9. For 0 - 
3 pain flares, estimated means increase nonlinearly over time with some mild 
decreases late in time in some cases and follow somewhat different patterns. On 
the other hand, estimated means for 4 pain flares decrease nonlinearly over time. 
Figure 10 displays the plot of estimated dispersions for the moderation model. 
Estimated dispersions decrease nonlinearly over time following somewhat dif-
ferent patterns at increasingly higher levels for 1 - 4 pain flares, but at the highest 
level at 0 pain flares. Plots for estimated probabilities are not provided because 
that requires two plots similar to Figure 4 and Figure 5 for each the five ob-
served numbers of pain flares. However, Figure 11 provides the plot for esti-
mated probabilities of a high pain rating of 6 or more. Similar to the means of 
Figure 9, estimated probabilities for 0 - 3 pain flares increase nonlinearly over  

 

 
Figure 9. Estimated means of pain ratings over time moderated by the number of pain 
flares for Cancer Patient 1. 
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Figure 10. Estimated dispersions for pain ratings over time moderated by the number of 
pain flares for Cancer Patient 1. 

 

 
Figure 11. Estimated probabilities of a high pain rating of 6 or more over time moderated 
by the number of pain flares for Cancer Patient 1. 

 
time with some mild decreases late in time in some cases and following some-
what different patterns while estimated probabilities for 4 pain flares decrease 
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nonlinearly over time from a high level at day 1 to essentially zero from around 
day 40 and later. 

4. Summary 

Formulations are provided for methods to use in regression modeling of indi-
vidual-patient longitudinal discrete outcomes allowing for nonlinearity in pre-
dictors for probabilities and dispersions for such outcomes along with temporal 
correlation using spatial autoregression order 1. Three approaches are considered 
for modeling probabilities of outcome values. The multinomial approach is based 
on generalized logits with separate intercept and slope parameters for modeling 
probabilities for outcome values. The ordinal approach is based on cumulative 
logits with separate intercept parameters and the same slope parameter for mod-
eling cumulative probabilities for outcome values. The censored Poisson approach 
is based on the log link function with the same intercept and slope parameters 
for modeling standard Poisson probabilities for all but the largest outcome value, 
whose value is set so that the probabilities sum to one. 

Extended linear mixed modeling is used to estimate model parameters for the 
three probability types. A likelihood-like function L is defined using the multi-
variate normal density evaluated using residuals and covariances for discrete 
outcomes. The function L is maximized by solving estimating equations corres-
ponding to setting the gradient vector equal to zero. Formulations are provided 
for computing gradient vectors and Hessian matrices for use in estimating mod-
els of each probability type. The function L is used to compute likelihood-like 
cross-validation (LCV) scores for comparing alternative models. These LCV 
scores are used to control an adaptive modeling process for heuristic search 
through power transforms of available predictors of outcome probabilities and 
dispersions. 

These methods are used in example adaptive analyses of the longitudinal indi-
vidual-patient cancer pain ratings of Figure 1. Table 1 contains results for gen-
erated models of these pain ratings in time using each of the three probability 
types. The censored Poisson approach is preferable over the other two approaches 
for modeling these data because the associated model has a competitive LCV 
score, is more parsimonious based on fewer parameters (three compared to nine 
for each of the other two approaches), and is computed in much less time. This 
is likely to hold for modeling of other longitudinal discrete outcomes collected 
for individual patients, not just discrete outcomes based on pain ratings, and 
even of longitudinal discrete outcomes for multiple patients. The censored Pois-
son model for the example data has estimated probabilities that are nonlinear in 
time (Figures 4-6) generating associated means (Figure 2) and dispersions 
(Figure 3) that are also nonlinear in time. 

Models are also generated assessing the additive effect of the number of pain 
flares on means and dispersions (Figure 7 and Figure 8) as well as moderation 
of the effect of time by the number of pain flares (Figures 9-11). There is an ad-
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ditive effect compared to the model based on only time, but a more substantive 
moderation effect. These models demonstrate the need to account for nonlinear 
additive and moderation effects for individual-patient longitudinal discrete out-
comes. 

Future research is needed to assess the use of ELMM for modeling correlated 
discrete outcomes for multiple patients in combination. Future research is also 
needed to compare ELMM to generalized linear mixed modeling. 
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