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Abstract 
Normal Variance-Mean Mixture (NVMM) provides a general framework for 
deriving models with desirable properties for modelling financial market va-
riables such as exchange rates, equity prices, and interest rates measured over 
short time intervals, i.e. daily or weekly. Such data sets are characterized by 
non-normality and are usually skewed, fat-tailed and exhibit excess kurtosis. 
The Generalised Hyperbolic distribution (GHD) introduced by Barndorff- 
Nielsen (1977) which act as Normal variance-mean mixtures with Genera-
lised Inverse Gaussian (GIG) mixing distribution nest a number of special 
and limiting case distributions. The Normal Inverse Gaussian (NIG) distribu-
tion is obtained when the Inverse Gaussian is the mixing distribution, i.e., the 

index parameter of the GIG is 
1
2

− . The NIG is very popular because of its 

analytical tractability. In the mixing mechanism, the mixing distribution cha-
racterizes the prior information of the random variable of the conditional 
distribution. Therefore, considering finite mixture models is one way of ex-
tending the work. The GIG is a three parameter distribution denoted by  

( ), ,GIG λ δ γ  and nest several special and limiting cases. When 
1
2

λ = − , we 

have 1 , ,
2

GIG δ γ − 
 

 which is called an Inverse Gaussian (IG) distribution. 

When 
1
2

λ = , 
3
2

λ = − , 
3
2

λ = , we have 1 , ,
2

GIG δ γ 
 
 

, 3 , ,
2

GIG δ γ − 
 

 

and 3 , ,
2

GIG δ γ 
 
 

 distributions respectively. These distributions are related 

to 1 , ,
2

GIG δ γ − 
 

 and are called weighted inverse Gaussian distributions. In 
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this work, we consider a finite mixture of 1 , ,
2

GIG δ γ 
 
 

 and 3 , ,
2

GIG δ γ 
 
 

 

and show that the mixture is also a weighted Inverse Gaussian distribution 
and use it to construct a NVMM. Due to the complexity of the likelihood, di-
rect maximization is difficult. An EM type algorithm is provided for the 
Maximum Likelihood estimation of the parameters of the proposed model. 
We adopt an iterative scheme which is not based on explicit solution to the 
normal equations. This subtle approach reduces the computational difficulty 
of solving the complicated quantities involved directly to designing an itera-
tive scheme based on a representation of the normal equation. The algorithm 
is easily programmable and we obtained a monotonic convergence for the 
data sets used. 
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1. Introduction 

Normal Inverse Gaussian (NIG) distribution introduced by Barndorff-Nielsen 
[1] is the popular normal variance-mean mixture, with an inverse Gaussian mix-
ing distribution that has been used to handle non-normal distributed data. 

Efforts have been done and are still going on to identify alternatives to the 
NIG distributions: Aas and Haff [2] [3] considered Skew Student’s t distribution 
as an alternative. Corlu and Corlu [4] used Generalized Lambda distribution, a 
generalization of Tukey’s Lambda as an alternative. 

Finite mixtures are more flexible (robust) than single mixing distributions; a 
result that has been stated a lot in statistical literature. 

Very few studies have used finite mixtures as mixing distributions. Hence an 
attempt has been done here in this paper of ours. This idea is motivated by the 
fact that finite mixtures are more flexible than single distributions. Nadarajah, 
Zhang and Chan [5] have stated that finite mixtures of normal distributions are 
flexible than single normal distribution; finite mixtures of stable distributions 
are flexible than a single stable distribution; finite mixtures of student’s t distri-
butions are flexible than single student’s distribution. 

The second motivation is that very few studies on continuous mixtures have 
used finite mixtures as mixing distributions; with the exception of Lindley [6] 
distribution and its generalization in Poisson mixtures (e.g., Sankaran [7]; 
Mahmoudi and Zakerzadeh [8]). Lindley distribution and its generalizations are 
basically finite gamma mixtures. 

GIG is a three parameter distribution denoted by ( ), ,GIG λ δ γ . When  

1
2

λ = − , the mixing distribution is 1 , ,
2

GIG δ γ − 
 

 which is Inverse Gaussian 

and the mixture is Normal Inverse Gaussian (NIG). In our present work, we con-
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sider two other special cases: 1 , ,
2

GIG δ γ 
 
 

 and 3 , ,
2

GIG δ γ 
 
 

. A finite mix-

ture of these cases is shown to be a weighted Inverse Gaussian distribution. The 
concept of weighted distribution was introduced by Fisher [9] and elaborated by 

Patil and Rao [10]. The reciprocal Inverse Gaussian, i.e., 1 , ,
2

GIG δ γ 
 
 

 and the 

finite mixture of 1 , ,
2

GIG δ γ − 
 

 and 1 , ,
2

GIG δ γ 
 
 

 are shown to be weighted 

inverse Gaussian distribution by Gupta and Kundu [11]. 
The finite mixture model is used as a mixing distribution in Normal Variance 

Mean mixture to construct the proposed model. The maximum likelihood pa-
rameter estimates of the mixture are obtained via the Expectation-Maximization 
(EM) algorithm. For data analysis we have used three datasets: s&p500 index, 
Range Resource Corporation (RRC) and Shares of Chevron Corporation (CVX). 
We consider log returns for the period 3/01/2000 to 1/07/2013 with 702 observa-
tions for each dataset. 

2. Weighted Inverse Gaussian Distribution 

Consider a random variable Z with a probability distribution ( )f z . Let ( )w Z  
be a random function of Z. We can construct a new probability distribution 

( ) ( )
( )

( ) ,
w z

g z f z x
E w Z

= −∞ < < ∞
  

                (1) 

which is a weighted distribution of ( )f z . The concept of weighted distribution 
was introduced by Fisher [9] and elaborated by Patil and Rao [10]. 

In this work we consider weighted distribution for the Inverse Gaussian (IG) 
distribution. 

Now, suppose ( ),Z IG γ δ  the Inverse Gaussian distribution with para-
meters γ  and δ  and probability density function given by 

( ) ( )
3 2

22 1exp exp
22

f z z z
z

δ δδγ γ
−   

= − +     π
            (2) 

Let 

( )
2

1
Zw Z Z
δγ

= +
+  

( )
( )2

3

1
E w Z

δ γ

γ

+
=  

 

( ) ( ) ( )
3 2

2 11
zg z z f zγ
δγδ γ

 
∴ = + ++  

                (3) 

which is also a finite mixture of 1 , ,
2

GIG δ γ 
 
 

 and 3 , ,
2

GIG δ γ 
 
 

. That is 
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( ) ( )1 3, , 1 , ,
2 2

g z pGIG p GIGδ γ δ γ   = + −   
     

with 
2

2 1
p γ

γ
=

+  
The mean and variance for the weighted distribution are 

[ ] ( )
( )( )

22 2 2

2 2

1 3 3
1 1

E Z
γ δγ δ γ δγ

γ δγ γ

+ + + +
=

+ +
                (4) 

( )
( )( ) ( )( )( )( )

( ) ( )
( )( )

( ) ( )

2 2 2 3 3 2 2 2

224 2

222 2 2

224 2

3 3 1 6 15 15 1 1

1 1

1 3 3

1 1

var Z

δ γ δγ δγ γ δ γ δ γ δγ δγ γ

γ δγ γ

γ δγ δ γ δγ

γ δγ γ

+ + + + + + + + +
=

+ +

+ + + +
−

+ +

(5) 

3. Normal Variance-Mean Mixture 

A stochastic representation of a Normal Variance-Mean mixture is given by 

X Z ZYµ β= + +  
where 

( )0,1Y N  
which gives the hierarchical representation 

( ),X Z z N z zµ β= +                     (6) 

being the conditional pdf and g(z) the mixing distribution. 

Construction of the Mixed Model 

Suppose the mixing distribution follows formula (3) and noting that 

( )
( ) ( )

3 2

2 11
w z ZZ

E w Z
γ

δγδ γ
 

= + +  +   
                (7) 

the mixed model becomes 

( ) ( ) ( )
( )

( )

( )

( )

( )

( )
( )

( )

2
2

2
2

22

2

1
22

0

1
3 2

22
2 0

3 1 1
20 1

2 0

e e e d
2

e e e d
2 11

e e e d
12 1

x
z

zx

x
z

zx

x
z

zx

w z
f x z z

E w Z

zz z z

zz z

δ φ
αδγ

β µ

δ φ
αδγ

β µ

δ φα
δγ

αβ µ

δ

δ γ
δγδ γ

γ
δγγ

 
 − +
 ∞− −  

 
 − +
 ∞− −  

 
 − +−  ∞− −  

=
  

 
= + ++  

 
= + ++

π

 

π

π

∫

∫

∫
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( )
( )

( ) ( )( ) ( )
( ) ( )( )

( )

( )( ) ( ) ( )( ) ( ) ( )( ){ }

3

0 12

3

0 12

e e
11

e e 1
1 1

x

x

x
f x K x K x

K x x K x

β µδγ

β µδγ

δ φγ αδ φ αδ φ
α δγγ

γ α δγ αδ φ δ φ αδ φ
α δγ γ

−

−

  = + 
++   

= + +
π + +

π
 (8) 

With the following properties 

( ) ( )
( )( )

22 2 2

2 2

1 3 3
1 1

E X
γ δγ δ γ δγ

µ β
γ δγ γ

+ + + +
= +

+ +
             (9) 

( )
( )

( )( )
( )( ) ( )( )( )( )

( ) ( )
( )( )

( ) ( )

22 2 2

2 2

2 2 2 3 3 2 2 2
2

224 2

222 2 2

224 2

1 3 3
1 1

3 3 1 6 15 15 1 1

1 1

1 3 3

1 1

var X

γ δγ δ γ δγ

γ δγ γ

δ γ δγ δγ γ δ γ δ γ δγ δγ γ
β

γ δγ γ

γ δγ δ γ δγ

γ δγ γ

+ + + +
=

+ +

+ + + + + + + + +
−

+ +

+ + + +
−

+ +

 

(10) 

Note 
( )Kλ ω  denotes modified Bessel function of the third kind with index λ  

evaluated at ω . 

( )
1 1

1 2
0

1 e d
2

x
xK x xλ

λ ω
 − + ∞ −  = ∫                   (11) 

with the following properties 

a) ( ) ( )1 1
2 2

e
2

K K ωω ω
ω

−

−
= =

π
        (12) 

b) ( ) ( )3 3
2 2

1e 1
2

K K ωω ω
ω ω

−

−

 = = + 
 

π
       (13) 

c) ( ) ( )5 5 2
2 2

3 3e 1
2

K K ωω ω
ω ω ω

−

−

 = = + + 
 

π
      (14) 

d) ( ) ( )7 7 2 3
2 2

6 15 15e 1
2

K K ωω ω
ω ω ω ω

−

−

 = = + + +


π



    (15) 

e) ( ) ( )9 9 2 3 4
2 2

10 45 105 105e 1
2

K K ωω ω
ω ω ω ω ω

−

−

 = = + + + +


π



   (16) 

f) ( ) ( )11 11 2 3 4 5
2 2

15 105 420 945 945e 1
2

K K ωω ω
ω ω ω ω ω ω

−

−

 = = + + + + + 
 

π
  (17) 

which are necessary in deriving the properties and estimates of the proposed 
models. For more definition and properties (see Abramowitz and Stegun [12]). 
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4. Parameter Estimation 

Given a random sample of size n from our proposed model the log-likelihood 
function is given by 

( )

( ) ( )( )( ){
( ) ( )( ) ( ) ( )( ) }

( )( )( )
( ) ( )( ) ( ) ( )( )

1

2

1

0 1

2

1

0 1
1

log log

3log log 1 1

log 1

3 log log 1 1

log 1

n

i
i

n

i
i

n

i
i

n

i

l L f x

x

K x x K x

n n x n n

K x x K x

γ δγ β µ α γ δγ

α δγ αδ φ δ φ αδ φ

γ δγ β βµ α γ δγ

α δγ αδ φ δ φ αδ φ

=

=

=

=

= =

= + + − − + +

 + + +  

= + + − − + +

 + + 

π

π

+
 

∑

∑

∑

∑

    (18) 

The derivatives of the log-likelihood function involve the Bessel function and 
the parameters are difficult to separate. Direct maximization is not an easy. In 
this work we adopt the Expectation-Maximization (EM) algorithm. The EM- 
algorithm, introduced by Dempster et al. [13], is a powerful technique for max-
imum likelihood estimation for data containing missing values or data that can 
be considered as containing missing values. 

Karlis [14] considered the mixing operation responsible for producing miss-
ing values. He applied the algorithm in estimating the parameters for the Nor-
mal Inverse Gaussian. The iterative scheme was based on explicit solution to the 
normal equations. In our present work the iterative scheme is based on a repre-
sentation of the normal equation. This subtle approach overcomes the computa-
tional difficulty of solving the complicated quantities numerically. 

Assume that the true data are made of an observed part X and unobserved 
part Z. This then ensures the log likelihood of the complete data ( ),i ix z  for 

1,2,3, ,i n= �  factorizes into two parts, i.e., 

( ) ( )

( ) ( )

1 1

1 1

log log log

log log

n n

i i i
i i

n n

i i i
i i

L f x z g z

f x z g z

= =

= =

= +

= +

∏ ∏

∑ ∑
 

where 

( )1
1
log

n

i i
i

l f x z
=

= ∑
 

and 

( )2
1
log

n

i
i

l g z
=

= ∑
 

4.1. M-Step for Conditional Distribution 

Since the conditional distribution for the six models is normal distribution as 
presented in formula (6), we have 
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( ) ( )2

1
1 1

1log 2 log
2 2 2

n n
i i

i
i i i

x znl z
z

µ β

= =

− −
= − π − −∑ ∑

 

Therefore 

( )1
1

ˆˆ0 0
n

i i
i

l x zµ β
β =

∂
= ⇒ − − =

∂ ∑
 

i.e., 
1 1

ˆˆ 0
n n

i i
i i

x n zµ β
= =

− − =∑ ∑  

ˆˆ x zµ β∴ = −  

where 1
n i
i

x
x

n=
= ∑  and 1

n i
i

z
z

n=
= ∑ . 

Similarly, 

1
1 1

1 ˆˆ0 0
n n

i

i ii i

x
l n

z z
µ β

µ = =

∂
= ⇒ − − =

∂ ∑ ∑
 

1 1 1

1 1ˆ ˆ 0
n n n

i

i i ii i i

x
x z n

z z z
β β

= = =

∴ − + − =∑ ∑ ∑
 

1 1

1

1

ˆ
1

n ni
i i

i i

n
i

i

x x
z z

n z
z

β
= =

=

−
∴ =

−

∑ ∑

∑
 

4.2. M-Step for the Mixing Distribution 

( ) ( ) ( )

( )

2
2

2 2

1 1 1 1

3 log log 2 log 1 log 1
2

1 1log log 1
2 2 2

n n n n

i i i
i i i i i

nl n n n n

z z z
z

γ δγ γ δγ

γ δδγ
= = = =

= + − − + − +

 − + + +

π

− − ∑ ∑ ∑ ∑
     (19) 

Maximizing with respect to δ  and γ  we have the following representation 

( ) 2
1 1

3 2 2 1 0
1 11

n n

i
i i i

n n n z n
z

δγ γ δ
γ δ δγγ = =

  +
− + + + =  + + ++   

∑ ∑        (20) 

2

1 1

1 1 0
1 1

n n

i ii i

n
z z

δγ γ δ
δγ δγ= =

+ − =
+ + +∑ ∑                (21) 

There is need to estimate the values for iZ , 1

iZ
 and 2

iZ  using the posterior 

expectations as follows: 
Posterior Expectation 

( )

( )

( )

22

2

22

2

2 22
0

2 22
0

e d
1

e d
1

x
z

z

x
z

z

zz z z z
E Z X

zz z z

δ φα

α

δ φα

α

δγ

δγ

 
 − +
 ∞ −  

 
 − +
 ∞ −  

 
+ + =

 
+ + 

∫

∫
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( )

( )

( ) ( )( ) ( ) ( )( )

( )( ) ( )
( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

22

2

22

2

2 1 21 1
0

1 1 20 1
0

2
2

1

0 1

2

1 2

0 1

e d
1

e d
1

1

1
1

1

1

x
z

z

x
z

z

zz z

zz z

K xx x
K x

x
K x K x

x
x K x K x

K x x K x

δ φα

α

δ φα

α

δγ

δγ

αδ φδ φ δ φ
αδ φ

α α δγ

δ φ
αδ φ αδ φ

α δγ

δ φ δγ
δ φ δγ αδ φ αδ φ

α
α δγ αδ φ δ φ αδ φ

 
 − +−  ∞ −  

 
 − +−  ∞ −  

 
+ + =

 
+ + 

 
 +

+  =

+
+

+
+ +

=
+ +

∫

∫

( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2

2
0 1

1 1

1

x K x x K x

K x x K x

αδ φ δγ αδ φ δφ δγ αδ φ

α δγ αδ φ αδ φ αδ φ

+ + +
=

+ +

   (22) 

Similarly, 
( )

( )

( )

( )

22

2

22

2

22

2

22

2

2 21 2
0

2 22
0

0 1 21 1
0

1 1 20 1
0

e d
11

e d
1

1 e d
2 1

1 e d
2 1

x
z

z

x
z

z

x
z

z

x
z

z

zz z z z
E X

Z
zz z z

zz z

zz z

δ φα

α

δ φα

α

δ φα

α

δ φα

α

δγ

δγ

δγ

δγ

 
 − +
 ∞ − −  

 
 − +
 ∞ −  

 
 − +−  ∞ − −  

 
 − +−  ∞ −  

 
+ +   = 

 
 

+ + 

 
+ + =

 
+ + 

∫

∫

∫

∫

( ) ( )( ) ( )( )

( )( ) ( )
( ) ( )( )

1
0

1

0 1

1

1

K xx
K x

x
K x K x

αδ φδ φ
αδ φ

α δγ

δ φ
αδ φ αδ φ

α δγ

−
 
  +

+  =

+
+

 

( )
( )

( )( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
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Similarly 
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Now let ( )i i is E Z X= , 1
i i
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Therefore the k-th iterations are: 
( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1

1 2

2

0 1

1 1

1

k
i

k k k k k k k k k k k k k k k

k k k k k k k k k k k k

s

x K x x K x

K x x K x

α δ φ δ γ α δ φ δ φ δ γ α δ φ

α δ γ α δ φ α δ φ α δ φ

+

+ + +
=

+ +

 

( )
( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

1 0
1

2

0 1

1k k k k k k k k k k k k

k
i

k k k k k k k k k k k

K x x K x
w

x K x x K x

α δ γ α δ φ α δ φ α δ φ

α δ φ α δ φ δ φ α δ φ

+
+ +

=
+

 

( )
( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

32

2 3
1

3 2

0 1

1

1

k k k k k k k k k k k k k

k
i

k k k k k k k k k k k k

x K x x K x
v

K x x K x

α δ γ δ φ α δ φ δ φ α δ φ

α δ γ α δ φ α δ φ α δ φ

+
+ +

=
+ +

 

These can be used to obtain the ( )1k + -th values as follows 
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( ) ( ) ( )1 1 1ˆˆ k k kx sµ β+ + += −                     (28) 

( ) ( )( ) ( )( )2 21 1 1ˆˆ ˆk k kα β γ+ + += +                   (29) 

The ( )1k + -th iteration of the log-likelihood function becomes 
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5. Application 

Let ( tP ) denote the price process of a security at time t, in particular of a stock. 
In order to allow comparison of investments in different securities we shall in-
vestigate the rates of return defined by 

1log logt t tX P P−= −  
In this section we consider three datasets for data analysis: Range Resource 

Corporation (RRC), Shares of Chevron Corporation (CVX) and s&p500 index. 
The period 3/01/2000 to 1/07/2013 with 702 observations for each data set is 
considered. The histogram for the weekly log-returns in Figures 1-3 for s&p 500, 
RRC and CVX show that the data is negatively skewed and exhibiting heavy tails. 
The Q-Q plot shows that the normal distribution is not a good fit for the data 
especially at the tails. This is typical the other data sets. 

Table 1 provides descriptive statistics of the data sets for the return series in 
consideration. We observe that the excess kurtosis that indicates the leptokurtic 
behaviour of the returns. The log-returns has a distributions with relatively heavier 

 

 
Figure 1. Histogram and Q-Q plot for s&p500 weekly log-returns. 
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Table 1. Summary statistics for RRC weekly log-returns. 

dataset Minimum Standard.dev skewness exc.kurtosis Maximum Mean N 

RRC −14.4465 2.824736 −0.1886714 2.768252 13.9830 0.2333 702 

CVX −13.76112 1.480436 −1.297339 11.10113 6.71410 0.08711 702 

s&p500 −8.722261 1.157893 −0.7851156 6.408709 4.931805 0.006697 702 

 

 
Figure 2. Histogram and Q-Q plot for RRC weekly log-returns. 

 
tails than the normal distribution. We observe skewness for the data sets which 
indicates that the two tails of the returns behave slightly differently. 

We use Karlis [14] formulation to obtain the initial values for the EM algo-
rithm. For this dataset, the values obtained are in Table 2. 

The stopping criterion is when 
( ) ( )

( )

1k k

k

l l tol
l

−−
<                        (31) 

where tol is the tolerance level. Table 3 below shows the NIG maximum likelih-
ood parameter estimates using the EM-algorithm at 310tol −= . 

We now wish to obtain the maximum likelihood parameter estimates for the pro-
posed model via the EM algorithm. Tables 3-5 illustrate monotonic convergence 
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Figure 3. Histogram and Q-Q plot for CVX weekly log-returns. 
 

Table 2. NIG method of moment estimates for the data sets. 

dataset α̂  β̂  δ̂  µ̂  
RRC 0.3722511 −0.02456226 2.950864 0.4284473 

CVX 0.4190067 −0.1054991 0.8324058 0.3036691 

s&p500 0.6556607 −0.1257455 0.8310044 0.1690855 
 

Table 3. Maximum likelihood estimates of the proposed model for RRC data set. 

Parameter Starting Values EM ( 410tol −= ) EM ( 610tol −= ) EM ( 810tol −= ) 

α̂  0.3722511 0.6090961 0.60882855 0.6088255 

β̂  
−0.02456226 −0.03574201 −0.03559926 −0.03559527 

δ̂  2.950864 1.33822 1.33576 1.335739 

µ̂  0.4284473 0.5176707 0.516677 0.5166471 

Log-likelihood  −1697.415 −1697.81 −1697.814 

No. iteration  32 50 67 

AIC  3402.83 3403.62 3403.628 
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at different levels. The log-likelihood and AIC for each data sets are also provided. 
Figures 4-6 show how the proposed models fit the data sets. It is clear that the 

proposed model is a good fit compared to the normal distribution and hence a 
good alternative to the Normal Inverse Gaussian distribution. 

Remark: 
Expressing the proposed model in terms of its components we have 

( )
2

2 2

1 1 3, , , , , , , ,
2 21 1

f x GHD GHDγ α δ β µ α δ β µ
γ γ

   = × + ×   + +   
   (32) 

The finite mixture therefore is flexible in determining between  
1 , , , ,
2

GHD α δ β µ 
 
 

 and 3 , , , ,
2

GHD α δ β µ 
 
 

 depending on the nature of the 

data. Table 6 below gives different values of weights for the three data sets con-
sidered based on the maximum likelihood estimates. 

 
Table 4. Maximum likelihood estimates of the proposed model for CVX data set. 

Parameter Starting Values EM ( 410tol −= ) EM ( 610tol −= ) EM ( 810tol −= ) 

α̂  0.4190067 1.368124 1.394767 1.395091 

β̂  −0.1054991 −0.2778858 −0.297205 −0.2974406 

δ̂  0.8324058 1.452515 1.480648 1.480994 

µ̂  0.3036691 0.6180421 0.6452299 0.6455598 

Log-likelihood  −1224.464 −1223.515 −1223.504 

No. iteration  30 77 126 

AIC  2456.928 2455.030 2455.008 
 

Table 5. Maximum likelihood estimates of the proposed model for s&p500 index. 

Parameter Starting Values EM ( 410tol −= ) EM ( 510tol −= ) EM ( 810tol −= ) 

α̂  0.6556607 2.172327 2.32012 2.727979 

β̂  −0.1257455 −0.2766788 −0.3220001 −0.4674433 

δ̂  0.8310044 2.026605 2.190487 2.627292 

µ̂  0.1690855 0.3394356 0.3866598 0.5386185 

Log-likelihood  −1061.985 −1061.673 −1063.643 

No. iteration  31 43 510 

AIC  2131.970 2131.346 2135.286 

 
Table 6. Estimates for proposition p of the data sets. 

dataset p̂  
RRC 0.26975 

CVX 0.65008 

s&p500 0.878395 
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Figure 4. Fitting Proposed Model to RRC weekly returns. 

 

 
Figure 5. Fitting proposed model to CVX weekly returns. 
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Figure 6. Fitting proposed model to s&p500 index weekly returns. 

6. Conclusions 

Two special cases of the Generalized Inverse Gaussian with indexes 
1
2

 and 
3
2

  

have been used to construct a finite mixture model. The model has been used as 
a mixing distribution for Normal Variance-Mean mixture to a Normal Weighted 
Inverse Gaussian Model. The mean and variance of the proposed model have 
been obtained. 

Three data sets: Range Resource Corporation (RRC), Shares of Chevron Cor-
poration (CVX) and s&p500 index for the period 3/01/2000 to 1/07/2013 with 
702 observations have been used for data analysis. An iterative scheme has been 
presented for parameter estimation by the EM algorithm. The iterative scheme 
demonstrates a monotonic convergence. The method of moment estimates for 
NIG worked well for the three data sets. The model fits the data sets well. Hence 
the model is a good alternative to NIG. 
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