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Abstract 
A new generalized exponentiated Weibull model called Gumbel-exponentiated 
Weibull {Logistic} distribution is introduced and studied. The new distribu-
tion extends the exponentiated Weibull distribution with additional parame-
ters and bimodal densities. Some new and earlier distributions formed the 
sub-models of the proposed distribution. The mathematical properties of the 
new distribution including expressions for the hazard function, survival func-
tion, moments, order statistics, mean deviation and absolute mean deviation 
from the mean, and entropy were derived. Monte Carlo simulation study was 
carried out to assess the finite sample behavior of the parameter estimates by 
maximum likelihood estimation approach. The superiority of the new gene-
ralized exponentiated Weibull distribution over some competing distribu-
tions was proved empirically using the fitted results from three real life data-
sets. 
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1. Introduction 

Modeling and analyzing lifetime data have received tremendous attention in re-
cent years due to the changing nature of lifetime data structures. Data, which 
arise from several real-life problems, are assumed to follow specific probability 
distributions defined by a probability density function (pdf) and the shape of the 
hazard rate function (hrf) which could be monotonically increasing or decreas-
ing, increasing-decreasing-increasing, decreasing-increasing-decreasing, and bath-
tub shaped or upside-down bathtub shaped. Several lifetime distributions have 
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been used in literature to model these data sets with varying characteristics, in-
cluding the Weibull distribution, exponential, gamma, Rayleigh, Lindley, Pareto 
distributions and their generalizations. It is worthy of note that most generaliza-
tions have followed several known methods for generating new families of dis-
tribution. Some of the continuous univariate generators which have received 
great deal of attention in recent decade include: method based on differential 
equations introduced by [1], method of generation based on transformations by 
[2], method based on quantiles proposed by [3] and [4], methods based on ge-
nerating skewed distributions developed by [5], method based on adding para-
meters and generators proposed by [6], method based on compounding univa-
riate continuous distributions and family of discrete distributions suggested by 
[7], methods based on generators proposed by [8], composite method by [9], 
and the transformed-transformer (T-X) approached introduced by [10] which 
was later modified as T-R{Y} by [11] and [12]. 

[6] introduced an extension of the Weibull distribution called the exponen-
tiated Weibull distribution by adding additional shape parameter to this distri-
bution and since then many works have been carried out by researchers to make 
the exponentiated weibull distribution more flexible. These efforts include: the 
Exponentiated Weibull family by [13], extended exponentiated Weibull lifetime 
distribution developed by [14], exponentiated Weibull-Weibull distribution 
studied by [15], while [16] suggested a new generalization of the exponentiated 
modified Weibull known as beta-exponentiated modified Weibull. For other 
modifications of the Weibull distribution, see [17] and [18]. The exponentiated 
Weibull distribution and its extensions have a great deal of usage and current 
generalization will be able to handle more intricate lifetime modeling situations.  

This paper therefore focuses on deriving a new exponentiated Weibull lifetime 
distribution that will be capable of modeling both unimodal and bimodal data-
sets. Gumbel-Weibull, Gumbel-Rayleigh and Gumbel-exponential distributions 
form the special cases of the proposed distribution. The proposed distribution is 
flexible and can play important role in reliability analysis, because the hazard 
function can assume several shapes. The kurtosis of the Gumbel-Exponentiated 
Weibull distribution will achieve higher flexibility when compared with the 
baseline distribution.  

The remainder of this paper is organized as follows: the cdf and pdf of the new 
generalized exponentiated Weibull distribution is derived in Section 2. The sta-
tistical and reliability properties of the proposed model are presented in Section 
3. Estimation of parameters using the maximum likelihood approach is discussed 
in Section 4. Simulation of result is presented in Section 5. Section 6 presents the 
application of real-life dataset and conclusion is Section 7. 

2. The Gumbel-Exponentiated Weibull {Logistic}  
Distribution (GEWLD) 

Let T be a random variable following Gumbel distribution with the cumulative 
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distribution and density function given by  

( ) exp expT
x sZ x

b
  −  = − −      

 

and 

( ) 1 exp exp expT
x s x sz x

b b b
  −   −    = − − −              

, 

, 0, ,x b s−∞ < < ∞ > −∞ < < ∞  

respectively and b is a scale parameter and s is a location parameter. Suppose R 
is an exponentiated Weibull distribution with cumulative distribution function 
(cdf) and probability density function (pdf) given by  

( ) 1 exp ,R
xZ x

βα

λ

    = − −   
     

 

pdf is given by, 

( )
11

exp 1 exp , 0, , , 0R
x x xz x x

βα α ααβ α β λ
λ λ λ λ

−−          = − − − > >                      
 

where λ  is a scale parameter and ,α β  are the shape parameters (see [6]). 
Let the density function ( )Yz x  and quantile function ( )Y pϑ  of a Y ran-

dom variable following a standard logistic distribution be given respectively by  

( )
( )

( )2

e , , log ,0 1.
11 e

x

Y Y
x

pz x x p p
p

ϑ
−

−

 
= −∞ < < ∞ = < < − +

 

We introduce the 5-parameter GEWLD in this section, by adopting the 
T-R{Y} family of distributions generation approach introduced by [11]. Here we 
define the cdf of the T-R{Y} as 

( ) ( )
1 exp

d

1 exp

1 exp

Y
x

X Ta

Y

T Y

Z x z t t

xP T

xZ

βα
ϑ

λ

βα

βα

ϑ
λ

ϑ
λ

         − −            =

         = ≤ − −                 
         = − −                 

∫

, x∈ℜ

            (1) 

The corresponding pdf associated with (1) is 

( ) ( ) 1 exp

1 exp

X R Y

T Y

xz x z x

xz

βα

βα

ϑ
λ

ϑ
λ

       ′= × − −              
         × − −                 
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( )

1 exp

,

1 exp

T Y

R

Y Y

xz

z x x
xz

βα

βα

ϑ
λ

ϑ
λ

         − −                 = × ∈ℜ
         − −                 

         (2) 

where 

( ) ( )d
dY Yx x

x
ϑ ϑ′ =  

where, ( )TZ x , ( )RZ x  and ( )YZ x  are the cdfs of Gumbel, exponentiated 
Weibull and standard Logistic random variables with their corresponding cdfs 

( )Tz x , ( )Rz x  and ( )Yz x  and the quantile function of Y random variable 
( )Y pϑ , 0 1p< < , respectively.   

Suppose ( ), , , ,b sξ α β λ=  are the parameters of the proposed model, where 
0x > , 0α > , 0θ > , 0b > , 0λ > , s−∞ < < ∞ . Applying (1) and (2) above, 

then the cdf of the Gumbel-exponentiated Weibull {Logistic} distribution 
(GEWLD) is obtained as  

( )

1
1

; exp e 1 1 e 1

b
xs

b
GEWLZ x

α β

λξ

−−
 − 
 

 
        = − − − −           

 

         (3) 

Let ( )~X GEWL ξ  be a random variable with cdf (3), then the pdf of X is  

( )
1

1

1 12 1

1

e; e 1 e

1 1 e 1 1 e 1

exp e 1 1 e 1

s
x xb

GEWLD

b
x x

xs
b

xz x
b
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α

β
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β β
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β
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αβξ
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−
−    − −   

   

− −− −
   − −   
   

−
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    = −      

              × − − × − − −                  

  
  × − − − −  
   

1
b

− 
  
  
  
  
  

 

   (4) 

2.1. Shape of the Density 

The study of the first and second derivative of the cdf (3) helps us to understand 
the main features of the density shape. The process to obtain the first derivative 
of ( ){ }ln z x  is provided below. 

Let 1 e
x

k
α

λ
 − 
 = − . Then 1k < , ( )ln 1 xk

α

λ
 − − =  
 

 and ( )
1

ln 1 k xαλ − − =   . 

Rewrite (4) into a function in k. For 1k < , we have, 
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Taking logarithm of both sides of the equation, we have 

( )

( ) ( ) ( )
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Taking derivatives, we obtain 

( )
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The first derivative of ( )( )ln z x  of the Gumbel-Exponentiated Weibull {Lo-

gistic} distribution after replacing k by 1 e
x α

λ
 − 
 −  accordingly, is: 

11 1
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The 
( )( )ln z x

x
∂

∂
 does not exist when 0x = . If there are modes for GEWLD 

it will satisfy 
( )( )ln

0
z x
x

∂
=

∂
. 

Let, 1λ = , since it is a scale parameter and does not affect the shape of the 
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density, then 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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   (5) 

Multiplying the first part of the Equation (5) by ( )1 e xαα −− − , we obtain 

( ) ( ) ( ) ( )

( )( ) ( ) ( )

1

12 1
2

1 e 1 e 2 1 e 1 1 e

1 1 e 1 1 e 1 1 e 1

x x x x

x x x
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α α α α
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β β
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β β β
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 − − − − − − 
 

    + + − − − − − − =    
     

 (6) 

So, the modes of ( )z x  are the roots of Equation (6). Another possible root of 
the density is ( )1b α −  and there may be other roots. If we have 0x x=  as a 
root of (6) then it corresponds to the local maximum of ( )( ) 0z x x∂ ∂ >  for all 

0x x<  and ( )( ) 0z x x∂ ∂ <  for all 0x x> . It corresponds to local maximum of 
( )( ) 0z x x∂ ∂ <  for all 0x x<  and ( )( ) 0z x x∂ ∂ >  for 0x x> . The solution 

tallies to the point of inflexion if either ( )( ) 0z x x∂ ∂ <  for all 0x x≠  or 
( )( ) 0z x x∂ ∂ >  for all 0x x≠ .  

The plots in Figure 1 give (a) bimodal density shapes with fixed values of 
1, 1.2λ β= =  and varying values of α, b and s, (b) left-skewed density shapes  

 

 
Figure 1. Plots of the GEWLD pdf for 1, 1.2λ β= =  and some values of α, b and s. 

https://doi.org/10.4236/ojs.2021.115048


K. E. Anyiam, I. S. Onyeagu 
 

 

DOI: 10.4236/ojs.2021.115048 823 Open Journal of Statistics 
 

with fixed values of 1, 5aλ = =  and varying values of β, b, and s, (c) reversed-J, 
unimodal right-skewed density shapes with fixed values of 1, 4sλ = = −  and 
varying values of α, β and b. 

The Survival function which is used in engineering to model time-to-event 
surviving beyond time x in reliability analysis is presented in Equation (6)  

( )

1
1

1 exp e 1 1 e 1 ,

b
xs

bS x
α β

λ

−−
 − 
 

 
        = − − − − −           

 

            (7) 

It is easy to verify that the hazard rate function (hrf) is of GEWLD is given by 

( )

21
1

1 11 1

e e 1 e 1 1 e

1 1 e 1 exp e 1 1 e 1

s
x x xb

b
x xs

b

xhrf x
b

α α α

α α

β β
α

λ λ λ

β β

λ λ

αβ
λ λ

−−
−      − − −     

     

− −− −
   − −   
   

          = − × − −             

                − − − × − − − −                     ×

1

1
1

1 exp e 1 1 e 1 ,

b

b
xs

b

α β

λ

−

−−
 − 
 







 
        − − − − −           

 

   (8) 

From the graph of the hazard rate function (hrf) plots in Figure 2. below, the 
GEWLD displays decreasing, upside-down bathtub shape, bathtub shape and 
increasing hazard rate with time at different values of the parameters. 
 

 

Figure 2. Hazard rate function plots of GEWLD for selected parameter value. 

https://doi.org/10.4236/ojs.2021.115048


K. E. Anyiam, I. S. Onyeagu 
 

 

DOI: 10.4236/ojs.2021.115048 824 Open Journal of Statistics 
 

2.2. Submodels of the GEWL Distribution 

The following results in the proposed distribution provide some immediate 
characterization of the Gumbel-Exponentiated Weibull {Logistic} distribution 
(GEWLD). 

1) If the shape parameter 1β = , the GEWLD reduces to the four parameter 
Gumbel-Weibull (GW) distribution introduced by [19] with cdf and pdf 

( )

1

exp e e 1
bxs

b
GWZ x

α

λ

−
 
 
 

 
    = − −      

 

( )

1 11
1e e 1 exp e e 1

s
b bx xsb

b
GW

x xz x
b

α αα α
λ λα

λ λ λ

 − + − 
 −    

   
   

 
           = − − − +                

 

with 0 , , , 0x bα λ< < ∞ >  and s−∞ < < ∞ , and α, b are the shape parameters, 
λ and s are the scale parameters. 

2) If the parameter 1α β= = , then the GEWLD reduces to the Gumbel ex-
ponential distribution with cdf given as 

( )
1

exp e e 1
s x b
b

GEZ x λ

− 
  = − −   
  

 

 

( )
1 11

e e 1 exp e e 1

s
x s xb bb

b
GE

xz x
b

λ λ

λ λ

 − + − 
 

 
    = − − − +       
     

 

where 0 , , 0x b λ< < ∞ >  and s−∞ < < ∞  and λ, s are the scale parameters 
and b is the shape parameter. 

3) If 2, 1α β= = , then the GEWLD reduces to Gumbel-Rayleigh distribution 
with cdf and pdf given respectively as 

( )
2

1

exp e 1 e
bxs

b
GRZ x λ

−
 
 
 

 
    = −      

 

and 

( )

1
2

2

2
e 1 e1

2

2 e 1 e e

bxs
b xbs

bxb

GR
xz x

b

λ
λ

λ

λ

−
 
 
 

 
  
      − ++      −                   

 
 
    = −     
 
 

 

where 0 , , 0x b λ< < ∞ >  and s−∞ < < ∞ , b is the shape parameter, b and s 
are the scale parameters. 
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3. Some structural Properties 
3.1. Expansions for the Cumulative and Density Function of the  

GEWLD 

Very important mixture expression of the cumulative distribution function (cdf) 
and probability density function pdf of the GEWLD are presented here. By using 
some series expansions with obtain the cdf of GEWL distribution which is given 
by 

( )
( )1

e
k mx

gZ x
α

λ

+
 
 
 = ∅                         (9) 

where 

( ) ( )0 , , , 0

11 1
1

!

i
bi i

j k l m
g i j k l m

i n la j
b b

j ki
l m

β
−

+ + +∞ ∞

= =

      − + − +− −        ∅ = −                 

∑ ∑  

we also obtain the expression for the pdf of GEWL distribution as a linear com-
bination of Gumbel and exponentiated Weibull densities as 

( )
( )1 1

1e
q t v wx

fz x x
α β

α λ

− + + +   − −  = ∅ ,                  (10) 

where 
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βαβ
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=

− −   
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  − + + + − + + +  ×    
  

∑
 

3.2. Moments 

The rth ordinary moment of ( )~X GEWLD x  can be expressed using (10) as 

( ) ( )( ) ( )( )1 1 1 1
fr r

r
rE X

q t v w q t v w
ααµ λ

α β α β
+

 ∅ +′ = = Γ  − + + + − + + + 
 

For any positive integer n, the first four moments of GEWLD are  
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3.3. Incomplete Moments 

The incomplete moment of a distribution is very useful and answers many ques-
tions in medicine, economics, reliability analysis, demography and insurance 
when dealing with the Bonferroni and Lorenz curves. 

The sth incomplete moment ( ) ( ) ( ),s t s tϕ δ= , is defined as 

( ) ( )
( )( )1 1

1
0 0

d e d
q t v wx

t ts s
s ft x z x x x x x

α β

α λϕ
− + + +

 − −  = = ∅∫ ∫  

Set ( )( )1 1z q t v wα β= − + + + , 
Then  

( )
0

1 1e d ,
zx s

s Z Z s
s f

t
f

st x x t Z
Z Z

α
α αλ λ αϕ δ λ λ

  +− + − − − − −   = ∅ = ∅ + Ζ  ∫      (11) 

where ( ) 1
0

, e d
t s xs t x xδ − −= ∫ , is the lower incomplete Gamma function. Besides, 

the sth conditional moments of X, say ( )s tω , is defined as 

( ) ( ) ( )ds s
s t

E X X t t x z s xω
∞

> = = ∫  

Hence by (3.42), we obtain 

( ) 1,
s

z z s
s f

sx t Z
z z z

α
αλ αω λ λ

+
− − − − = ∅ Γ + 

 
,            (12) 

where ( ) 1, e d
t

s xs t x x
∞ − −Γ = ∫ , is the upper incomplete gamma function. 

3.4. Generating Function 

The moment generating function for GEWL distribution is given by 

( ) ( )etx
XM t E=  

( ) ( )
0 0! !

r r r
r

X
r n

t x tM t E E X
r r

∞ ∞
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= = 
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( )
( )( ) ( )( )0 ! 1 1 1 1

n
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X
n

t rM t
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αα λ
α β α β

∞
+

=

 ∅ +
= Γ  − + + + − + + + 
∑   (13) 

3.5. Shannon Entropy 

The Shannon Entropy as a measure of randomness or uncertainty [11] has pro-
vided important solution to several studies such as anomalous diffusion, DNA 
sequencing, daily temperature randomness, study of content of information 
signals, etc. According to [18], the Shannon’s entropy for the GEWLD is will be 
written as  

( ) ( )
( )( )( )
( )( )( )

ln ln T Y R
R X

Y Y R

z Q z X
z X z X

z Q z X
η

    − = − =         
   

( ) ( )ln lnX T Y Rz T z Xη η= + −         
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But T is a Gumbel, Y is logistic, and R is Exponentiated Weibull distribution 
random variables respectively, hence Tη  in equation is the Shannon entropy of 
the Gumbel distribution given by ln 1θ ζ+ + , where ζ  is the Euler Maschero-
ni constant. ζ  is approximately equal to 0.5772. 

But 

( )( ) ( ) ( )ln ln 1 ln 1 ln 1 expR
X X Xz X

α ααβ α β
λ λ λ λ

         = + − − + − − −                    
 

( ) ( ) [ ] ( )
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X
α
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λ β
 − −  

= + − + − − −  
 
  − + − −   
 

 


 

Recall that ( )
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e

1 e
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Therefore ( ) ( )ln 2 ln 1 e T
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Substituting ( )ln RZ X    and ( )ln Yz T    in Xη  we have 
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   (14) 

3.6. Quantiles 

The pth quantile px  of the Gumbel-Exponentiated Weibull{Logistic} distribu-
tion is obtained by direct reversal of the cdf given in (3) 

( )

1
1

1

ln 1 1 e ln 1 ,0 1
bs

b
px p p

α
β

λ

−−
−

 
       = − − − − + < <          

       (15) 

The first three quantiles of GEWLD can be obtained by using px  above for 
1 1,
4 2

p =  and 3
4

. Generally, to generate a random variate “x” from GEWL 
from the uniform random number “u” we can use the formula 

( )

1
1

1

ln 1 1 e ln 1 ,0 1
bs

bx u u

α
β

λ

−−
−

 
       = − − − − + < <          

        (16) 
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3.7. Order Statistics 

Let 1 2, , , mX X X  be a random sample GEWL distribution, Suppose :k mX  
denote the kth order statistic. The probability density function of the :k mX  can 
be expressed as 

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

1
:

1

1

1 1
, 1

1
1

1 , 1

k m k
k m

im k k i

i

z x z x Z x Z x
B k m k

m k
k z x Z x

ik B k m k

− −

− + −

=

= −      − +

− − 
= +     + − +  
∑

 

( ) ( ) ( ) 1
: , ,

1

m k k i
k m i k m

i
z x z x Z x

− + −

=

= ∅   ∑                (17) 

where 
( )

( ), ,

1
1 ( , 1)

i

i k m

m k
ik B k m k

− − 
∅ =  + − +  

 

Given the general expression of the cdf (9) and pdf (10) of the GEWL distri-
bution, we get the pdf of the kth order statistic for the GEWL distribution as 

( )1

1 1
: , ,

1 0 0
e

z v k ixm k k i
k m i k m f g

i j w
z xα λ

− + −   − ∞ ∞ − + − −  

= = =

 = ∅ ∅ ∅ ∑∑∑  

The rth moment of the kth order statistic of the Gumbel-exponentiated Weibull 
{Logistic} distribution is given by 

( ) ( )
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4. Estimation 

The model parameters of the GEWL distribution can be estimated using the 
method of maximum likelihood. Suppose ( )1 2, , , nx x x x ′=   is a random in-
dependent sample size n from the GEWLD distribution with parameter vector 

( ), , , , ,B b sα β λ ′= , then log-likelihood function is expressed as 
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Solving the log-likelihood function analytically is complex though it can be max-
imized numerically by using global iterative optimization methods available with 
software like R and Mathematica. Taking partial derivatives of the log-likelihood 
function with respect to the parameters we obtain the follows: 
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Solving the equations ( ) , , , , 0L L L L LB
b sα β λ

′ ∂ ∂ ∂ ∂ ∂
= = ∂ ∂ ∂ ∂ ∂ 

  simultaneously 

gives the maximum likelihood estimate (MLE) ( )ˆˆ ˆ ˆˆ ˆ, , , ,b sB α β λ ′=  of  

( ), , , ,B b sα β λ ′= . 

Inverting the Fisher information matrix ( ),i jI B  which can be gotten using 
the second partial derivatives of the log-likelihood function w. r. t each parameter  

( )
2

,i j
i j

LI B
B B

 ∂
=  

∂  
, the asymptotic variance-covariance matrix of the MLE pa-

rameters is obtained. 
As n →∞ , ( ) ( )( )1

5
ˆ 0,dn B B N I B−− → . 

5. Simulation Study 

In this section, assessment of the performance of the MLEs of the GEWLD pa-
rameters given in (20), (21), (22), (23) and (24) based on simulation study with 
respect to sample size n is carried out. The simulation is repeated for 5000N =  
times each with sample size 25,70,150,400n =  and 700 and arbitrarily, the 
fixed choice of parameter values is 4.5α = , 2.5β = , 5b = , 4.5s = , 1.5λ = . 
The evaluation of estimates is based on mean estimates (ME), average bias (AVB), 
roots mean square error (RMSE), average width (AW) and coverage probability 
(CP) using the R-software and result presented in Table 1. The results in Table 
1 indicate that the estimates are stable and the values of the mean estimates ap-
proached true values as the sample size increases. Moreover, Table 1 indicates 
that the values of the RMSE, AVB and AW decreased as the sample size increas-
es and that the coverage probabilities (CP) of the confidence intervals are quite 
close to the nominal level of 95%.  

6. Applications 

In this section, empirical illustrations of the GEWLD using real-life datasets are  
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Table 1. Results of Monte Carlo simulations for the GEWLD M, AVB, RMSE, AW and 
CP. 

Parameter Sample size ME AVB RMSE AW CP 

α 

n = 25 6.4366 3.1474 4.4091 45.0321 0.90 

n = 70 5.4334 3.1283 4.3894 27.3043 0.95 

n = 150 4.8143 3.1101 4.3557 24.1081 0.89 

n = 400 4.7196 3.0914 4.2943 20.2772 0.98 

n = 700 4.6520 3.0900 4.2516 16.3491 0.99 

β 

n = 25 1.8258 0.9325 6.1357 415.5115 1 

n = 70 1.9827 0.6310 5.7255 367.4212 1 

n = 150 2.7325 1.5508 5.2362 283.9237 0.90 

n = 400 2.6018 0.5637 3.3525 198.2219 0.80 

n = 700 2.5112 0.8967 2.4461 160.6621 0.96 

λ 

n = 25 0.4669 2.1004 3.0742 62.9456 1 

n = 70 0.7264 1.8786 3.0088 58.2126 1 

n = 150 1.9816 2.3099 2.7861 53.1782 1 

n = 400 1.5625 2.4349 2.1500 47.3689 1 

n = 700 1.5012 1.8523 2.0033 29.3421 0.99 

s 

n = 25 6.2326 2.4216 1.5002 27.1733 1 

n = 70 6.0524 2.2452 1.4271 22.2195 1 

n = 150 4.9031 2.3584 1.3216 20.2290 1 

n = 400 4.8416 2.4337 1.2112 15.5751 1 

n = 700 4.5710 2.2686 1.1823 11.2931 1 

b 

n = 25 7.2290 3.3082 8.1438 92.2425 0.89 

n = 70 7.0568 3.2192 6.6862 50.4314 0.90 

n = 150 6.0326 2.1519 4.0988 34.2228 0.80 

n = 400 5.2810 2.9359 2.4096 21.3001 0.90 

n = 700 5.0028 1.7254 1.1207 17.2481 1 

 
analyzed. All the datasets used are based on complete observations in different 
lifetime situations showing the usefulness of the GEWLD. The goodness-of-fit 
criterion, Akaike information criterion, Kolmogorov-Smirnov (K-S) statistic and 
p-value are used to compare the GEWLD with other competing models. 

The first dataset represents the Breaking Stress of Carbon Fibers of 50 mm 
Length (GPa). The data was obtained from [20]. The dataset is unimodal and is 
approximately symmetric (Skewness = −0.1285 and excess kurtosis = 0.1261). 
Six distributions are used to fit the dataset as shown in Table 2 namely: the 
proposed Gumbel-exponentiated Weibull {logistic} distribution (GEWLD), the 
Weibull distribution (WD) [21], the Gumbel distribution (GD) [22], the expo-
nentiated Weibull distribution (EWD) [6], the beta exponential distribution  
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Table 2. Maximum likelihood fit of the breaking stress of carbon Fibers of 50 mm Length (GPa). 

Distribution GEWLD WD GD EWD BED BGED 

Parameter 
estimates 

( )ˆ 2.673 0.654α =  

( )ˆ 0.320 0.834β =  

( )ˆ 4.093 2.284s =  

( )ˆ 2.903 2.727b =  

( )ˆ 1.659 0.881λ =  

( )ˆ 3.441 0.330α =  

( )ˆ 3.062 0.114λ =  

( )ˆ 2.310 0.119s =  

( )ˆ 0.911 0.079b =  

( )ˆ 3.910 1.067α =  

( )ˆ 0.800 0.352β =  

( )ˆ 3.230 0.345λ =  

( )ˆ 7.51 912 1.2a =  

( )ˆ 21.131 45.301b =  

( )ˆ 0.112 0.213λ =  

( )ˆ 0.40 905 0.2a =  

( )ˆ 24.129 26.647b =  

( )ˆ 10.670 8.769α =  

( )ˆ 2.813 1.573λ =  

Log-Lik −84.96 −86.07 −92.40 −85.94 −91.22 −86.43 

AIC 179.91 176.14 188.79 177.89 188.44 180.85 

K-S 0.0704 0.0823 0.1352 0.0809 0.1334 0.0936 

p-value 0.8757 0.7314 0.1627 0.7498 0.1745 0.5773 

(standard error of estimate in parenthesis) 

 
(BED) [23] and the beta generalized exponential distribution (BGED) [24]. Re-
sults in Table 2 clearly show that the proposed GEWLD not only provided a 
good fit to the dataset but also outperformed the other distribution in fitting the 
data set given that its p-value of the K-S statistic is highest and very close to uni-
ty. Again, the p-value of the K-S statistic for all the fitted distributions is greater 
than the nominal 0.05 level of significance indicating that all the distributions 
fitted the data considerably well and that the proposed GEWLD presented the 
best fit. From Figure 3, the pdfs and cdfs plots suggest good adjustments to the 
dataset and that GEWLD fits almost symmetric and unimodal dataset very well.  

The data set represents Kevlar 49/epoxy strands failure times data (pressure at 
70%). The dataset was used in the work of [19] to compare the fit of the Gum-
bel-Weibull distribution (GWD) with that of the EWD and the beta-normal dis-
tribution (BND) [25]. The data is multimodal, platykurtic, and approximately 
symmetric. (Skewness = 0.0938, excess kurtosis = −0.9154). Four distributions 
are used to fit the dataset namely: the proposed GEWLD, the EWD, the GWD 
and the BND. The results of the maximum likelihood fit of all the distributions 
are contained in Table 3. Results in Table 3 clearly show that the proposed 
GEWLD not only provided a good fit to the bimodal dataset but also outper-
formed the other distribution in fitting the data set given that its p-value of the 
K-S statistic is highest and very close to unity. Again, the p-value of the K-S sta-
tistic for all the fitted distributions is greater than the nominal 0.05 level of signi-
ficance indicating that all the distributions fitted the data considerably well and 
that the proposed GEWLD presented the best fit. The estimated pdfs and cdfs 
are presented in Figure 4 and the figure indicated GEWLD provides a better 
than the competing models.  

The third dataset represents Kevlar 49/epoxy strands failure times data (pres-
sure at 90%). The dataset was collected by [26] and obtained from [27]. The da-
taset is highly skewed to the right with a reverse-J shape. The data is unimodal 
and leptokurtic (Skewness = 2.9573, excess kurtosis = 13.3798) (Figure 5). 
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Figure 3. Fitted pdfs (3a) and cdfs (3b) of GEWLD and other completive models for da-
taset 1. 
 

 

Figure 4. Fitted pdfs (4a) and cdfs (4b) for the bimodal Kevlar 49/epoxy strands failure 
times data (pressure at 70%). 
 

Table 3. Maximum likelihood fit of the Kevlar 49/epoxy strands failure times data (pressure at 70%). 

Distribution GEWLD EWD GWD BND 

Parameter 
estimates 

( )ˆ 2.4400 0.4209α =  

( )ˆ 1.4643 0.8018β =  

( )ˆ 1.8012 1.0821s =  

( )ˆ 5.1439 2.4147b =  

( )ˆ 5006.5 3.0016λ =  

( )ˆ 5.2208 2.9744α =  

( )ˆ 0.2646 0.1880β =  

( )ˆ 10000.5 1995.8λ =  

( )ˆ 2.6741 0.3582α =  

( )ˆ 1.1546 0.7454=  

( )ˆ 4.1036 1.0343σ =  

( )ˆ 6116.9 246.54λ =  

( )ˆ 0.1150 0.1489a =  

( )ˆ 0.0806 0.1068b =  

( )ˆ 7796.1 1390.6µ =  

( )ˆ 1087.1 794.9σ =  

Log-Lik −478.5 −479.0 −478.51 −480.4 

AIC 967.0 964.1 965.0 968.8 

K-S 0.0695 0.0825 0.0742 0.0832 

p-value 0.9587 0.8651 0.9316 0.8590 

(standard error of estimate in parenthesis). 
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Figure 5. Fitted pdfs (5a) and cdfs (5b) for the right-skewed and heavy-tailed Kevlar 
49/epoxy strands failure times data (pressure at 90%). 

7. Conclusion 

This work has introduced a new generalized exponentiated Weibull univariate 
continuous distribution called the Gumbel-exponentiated Weibull {Logistic} dis-
tribution (GEWLD). The probability density function showed that the distribu-
tion is capable of modeling bimodal lifetime dataset. Several mathematical proper-
ties of the distribution were derived. Certain characterization results were also 
presented in the work. Using the method of maximum likelihood estimation 
method, the estimates of the model parameters were obtained. The new model 
provides adequate fits when compared with other models competing very well in 
terms of AICs but best when the smallest K-S statistics and highest P-values are 
considered. 
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