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Abstract 
This paper presents four methods of constructing the confidence interval for 
the proportion p of the binomial distribution. Evidence in the literature indi-
cates the standard Wald confidence interval for the binomial proportion is 
inaccurate, especially for extreme values of p. Even for moderately large sam-
ple sizes, the coverage probabilities of the Wald confidence interval prove to 
be erratic for extreme values of p. Three alternative confidence intervals, 
namely, Wilson confidence interval, Clopper-Pearson interval, and likelihood 
interval, are compared to the Wald confidence interval on the basis of cover-
age probability and expected length by means of simulation.  
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1. Introduction 

Estimation of a binomial proportion p is one of the most commonly encoun-
tered statistical problems, with important application in areas such as clinical 
medicine, business, politics and quality control. For instance, politicians are cer-
tainly interested in knowing what fraction of voters would favor them in the next 
election. The binomial data is obtained from a binomial experiment which con-
sists of a fixed number n of independent Bernoulli trials, each of which can re-
sult in either a success or a failure. The success probability p is assumed fixed. 
The binomial probability distribution is used to model the total number x of 
success resulting from the Binomial experiment. Once data are available, then 
information about p can be summarized by the likelihood function and on the 
basis of this summary, a point estimate for the Binomial proportion, denoted by  

p̂  is obtained by the method of maximum likelihood as xp
n

= . A number of  
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two-sided confidence intervals for p have been proposed by several authors. The 
Wald method is the most commonly used technique since it is based normal ap-
proximation to the binomial distribution. However, the approximation is inac-
curate whenever the sample size is small (n < 30) or when the proportion p is 
close to zero or one; the Wald confidence interval may have low coverage prob-
ability even if p is not close to zero or one, and confidence limits outside the in-
terval ( )0,1 . Matiri et al. [1] applied the Wald method to obtain interval esti-
mates for the prevalence rate and encountered the problem of overshoot with 
negative lower confidence limits. Poor performance of the Wald confidence in-
terval has been pointed out by many authors [2] [3] [4] [5] [6]. 

Alternative methods for constructing confidence interval for p have been 
proposed, such as the Wilson Score, Clopper-Pearson and Agresti-Coull confi-
dence intervals among others. Just like the Wald confidence intervals, the validi-
ty of the Wilson Confidence interval heavily depends on large sample approxi-
mation. The Clopper-Pearson interval is an exact two-sided confidence interval 
derived from the binomial probability mass function. Past studies indicate that 
the Clopper-Pearson confidence interval is very conservative for small to mod-
erate n [3]. Panatiogis & Konstantinos [7] present a bootstrap method for esti-
mating the binomial proportion and compare it with Wald confidence interval 
and Agresti-Coull interval. 

This paper considers an alternative method, called the likelihood method, for 
constructing the approximate confidence interval for the binomial proportion. The 
likelihood intervals are determined from the graph of the relative likelihood func-
tion or its logarithm for a fixed likelihood level [8]. They are fully conditioned on 
the shape of the likelihood function and hence are optimal. The likelihood method 
can be used to construct confidence interval for the proportion in situations where 
the traditional methods based on asymptotic normality are inaccurate. 

In order to identify the best confidence interval for the binomial proportion p, 
the Wald, Wilson score, Pearson-Clopper and Likelihood methods of interval 
estimation are compared on the basis of coverage probability and interval width 
using simulated data. The four intervals are also applied to a real data example. 
The resulting confidence intervals for the binomial proportion are compared in 
terms interval width and plausibilities of the parameter values in them. 

The paper is organized as follows: in Section 2, the four methods of interval es-
timation are described. In Section 3, the simulation results regarding coverage 
probability and expected length of the different intervals are presented and dis-
cussed. Section 4 applies the four intervals to a real-life data from a clinical study 
and compares them in terms of interval length and plausibilities of the parame-
ter values inside them. Section 5 is devoted to concluding remarks. 

2. Interval Methods 
2.1. Wald Interval 

Let 1, , nX X  be IID Bernoulli (p) random variables, where the parameter 
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( )0,1p∈  is unknown. Then the sum 
1

n

i
i

X X
=

= ∑  of the n Bernoulli random  

variables is a binomial random variable with parameters n and p. If the un-
known proportion p is not too close to 0 or 1, then by the Central Limit  

Theorem, for n sufficiently large, the MLE ˆ Xp
n

=  is approximately normally 

distributed with mean p̂ pµ =  and variance ( )2
ˆ

1
p

p p
n

σ
−

= . The Wald confi-

dence interval is based on the normal approximation to the binomial distribu-

tion and is given by 
( )

2

ˆ ˆ1
ˆ

p p
p z

nα

−
± , where 

2

zα  is the 1
2
α

−  percentile of  

the standard normal distribution. The Wald method should be used only when 
( )min ,1n p p∗ −  is at least 5 (or 10), otherwise it will produce unreliable inter-

val estimates. 

2.2. Clopper-Pearson Interval 

Clopper-Pearson [9] proposed a method of constructing an exact two-sided con-
fidence interval for the binomial proportion p using the equal-tail rule. The de-
rivation of the two-sided ( )100 1 %α−  Clopper-Pearson confidence interval for 
the binomial proportion p is based on the relationships between the binomial, 
beta and F distributions. The relationships are stated in the following three 
theorems.  

Theorem 1 
If ( )~ ,X Beta α β  then ( )1 ~ ,Z X Beta β α= −  
Proof 

The density function of X is given by ( ) ( )
( ) ( ) ( ) 11 1f x x x
x

βαα β
β

−−Γ +
= −
Γ Γ

. By 

change of variable technique the density function of Z is obtained as  

( ) ( ) ( )
( ) ( ) ( ) 1 1d1 1

dz x
xf z f z z z
z x

α βα β
β

− −Γ +
= − = −

Γ Γ
, 

which is the density function of a beta distribution with parameters β and α. Im-
plying that ( )~ ,Z Beta β α . 

Theorem 2 
If ( )~ ,X Bin n p  then [ ] [ ]pP X x P Y p≥ = ≤ , where ( )~ , 1Y Beta x n x− +  
Proof 
Consider the identity 

( ) ( ) ( )1 1
0 0

1 1 d
pn k xk n xx

k

n n
p p n x t t t

k x
−− − −

=

   
− − −   

   
=∑ ∫ ,        (i) 

We use the above identity to obtain  
[ ] [ ]1 1P X x P X x≥ = − ≤ −  

( )1
01 1 n kx k

k

n
p p

k
−−

=

 
= − − 

 
∑  
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( ) ( ) ( )1 11 1

0
1 1 1 d

1
p xn xn

n x t t t
x

− −− − − 
= − − + − − 

∫  

( )
( ) ( )

( ) ( )1 11 1

0

1
1 1 d

1
p xn xn
t t t

x n x
− −− − −Γ +

= − −
Γ Γ − + ∫  

[ ]1 1P T p= − ≤ − , 

where 

( )~ 1,T Beta n x x− +  

[ ]1P T p= ≥ −  

[ ]1P T p= − ≤ −  

[ ]1P T p= − ≤  

[ ]P Y p= ≤  

where 1Y T= − . 
Hence it follows by Theorem 1 that ( )~ , 1Y Beta x n x− + . 
Theorem 3 
If X has an F distribution with u and v degrees of freedom, then the random 

variable 
1

u X
vY

u X
v

=
+

 has a ,
2 2
u vBeta  

 
 

 distribution. 

Proof 

Let 
1

u x
vy

u x
v

=
+

. Then 
1

y vx
y u

=
−

 and 
( )2

d 1
d 1

x v
y uy
=

−
. By the change of 

variable technique the density function of Y is obtained as  

( ) d
1 dY X

y v xf y f
y u y

 
=  − 

 

( )

1
22

2
2

2 1 1
1

1
2 2 1

uu

u v

u v u y v
v y u v

uyu v y
y

−

+

 +  Γ    −    =
−    Γ Γ +    −    

 

( )
1 12 21

2

2 2

u vu v y y

u v

− −+ Γ − 
 =

   Γ Γ   
   

 

which is the density function of a ,
2 2
u vBeta  

 
 

 distribution. Hence  

~ ,
2 2
u vY Beta  

 
 

. 

The above three theorems are now applied in the derivation of the closed 
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forms of the lower and upper confidence limits of the Clopper-Pearson interval 
for the binomial proportion p as follows: Suppose that ( )~ , 1Y Beta x n x− + , 
where x is the observed value of a ( ),Bin n p  random variable X, then by  

Theorem 3 the random variable 1
1

n x Y
x Y

− +
−

 has an F distribution with 2x  

and ( )2 1n x− +  degrees of freedom. Therefore for a fixed ( )0,1α ∈ , the lower 
limit of a two-sided exact Clopper-Pearson interval is obtained by solving the 
equation, 

[ ]
2

P X xα
= ≥  

By Theorem 2 we have  

[ ] [ ]
2

P X x P Y pα
= ≥ = ≤  

where ( )~ , 1Y Beta x n x− +  

1 1
1 1

n x Y n x pP
x Y X p

 − + − +
= ≤ − − 

 

( )2 ,2 1
1

1x n x
n x pP F

x p− +

 − +
= ≤ − 

, 

where ( )2 ,2 1x n xF − +  is an F random variable with 2x and ( )2 1n x− +  degrees of 

freedom. This implies that 
( )1 ,2 ,2 1

2

1
1x n x

n x pf
x pα

− − +

− +
=

−
 and solving for p we 

get 

( ),2 1 ,2
2

1
11

n x x

n x f
x α

− +

− +
+

 as the lower limit. 

Similarly, the upper limit is obtained by solving the equation 

[ ]
2

P X xα
= ≤  

Equivalently, we write 

[ ]
2

P X xα
= ≤  

[ ]1 1P X x= − ≥ +  

[ ]1 1P T p= − ≤ − , 

where 

( )~ , 1T Beta n x x− +  

[ ]1P T p= ≥ −  

[ ]1P T p= − ≥  

[ ]P Y p= ≥ , 

where 

( )~ 1,Y Beta x n x+ −  
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1 1 1 1
n x Y n x pP
x Y x p

 − −
= ≥ + − + − 

 

( ) ( )2 1 ,2 1 1x n x
n x pP F
x p+ −

 −
= ≥ + − 

. 

Solving this equation for p yields 
( ) ( )

( ) ( )

,2 1 ,2
2

,2 1 ,2
2

1

11

x n x

x n x

x f
n x

x f
n x

α

α

+ −

+ −

+
−
+

+
−

 as the upper limit. 

Therefore, the ( )100 1 %α−  exact Clopper-Pearson confidence interval for p 
becomes  

( )

( ) ( )

( ) ( )

,2 1 ,2
2

,2 1 ,2 ,2 1 ,2
2 2

1
1

1 11 1

x n x

n x x x n x

x f
n x

p
n x xf f

x n x

α

α α

+ −

− + + −

+
−

≤ ≤
− + +

+ +
−

. 

2.3. Likelihood Interval 

Let x be the observed value of a ( ),Bin n p  random variable X. The likelihood 
function of p is defined as 

( ) [ ];L p kP X x p= = , 

where k is any positive constant not depending on p. We choose k to simplify 

the expression for ( )L p  and a natural choice is 1k
n
x

=
 
 
 

. Then binomial like-

lihood function is 

( ) ( )1 n xxL p p p −= −  for 0 1p< < . 

The log-likelihood function is now 

( ) ( ) ( ) ( )log log 1l p x p n x p= + − − , for 0 1p< < . 

The relative likelihood function of p, denoted by ( )R p  is given by 

( ) ( )
( )

( ) ( )1 1
ˆ

1

n xn x xx

x n x

L p p p n pnpR p
L x n xx xp

n n

−−

−

− −  = = =    −      −   
   

 

The log-relative likelihood function of p, denoted by ( )r p  is  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆlog log log 1r p R p l p l p x p n x p l p= = − = + − − − . 

The likelihood intervals may be determined from a graph of ( )R p  or its lo-
garithm, ( )r p  although it is more convenient to work with ( )r p . The set of p 
values for which ( )R p c≥  is called a 100 %c  likelihood interval (LI). The 
maximum likelihood estimate (MLE) p, of p̂  is the most plausible value of p in 
that it makes the observed sample most probable. The relative-likelihood func-
tion measures the plausibility of any specific value of p relative to that of p̂ . The 
end points of the 100 %c  likelihood interval (LI) are obtained as the roots of 
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the equation ( ) ( )log 0r p c− = . The use of a numerical procedure is usually ne-
cessary to solve this equation. In repeated samples from the parent distribution 

( ),Bin n p  using arbitrary value of p, the resulting population of level c likelih-
ood intervals will contain this value of p with known frequency. They are there-
fore also confidence intervals and so are likelihood confidence intervals. 

2.4. Wilson Interval 

The Wilson score method for constructing confidence interval for binomial 
proportion p was developed by Edward B. Wilson [10] and is based on inverting 
the z-test for p. The endpoints of the ( )100 1 %α−  is obtained by solving the  

quadratic inequality 


2 2

p pz z
pq nα α
−

− ≤ ≤  for p. This confidence interval is of 

the form 

  2 2

2 2

2

2

2 4 1

2

n p z z n p p

n z

α α

α

   
+ ± + −      

   
 

+  
 

. The score confidence interval is  

asymmetric and does not suffer from problems of overshoot and zero width 
confidence intervals associated with Wald confidence interval.  

3. Simulations  

In this section the simulation studies are carried out and finite-sample compari-
sons of the performances of the Wald, Cloper-Pearson, Wilson score and Like-
lihood intervals on the basis of coverage probability and expected length. For 
any confidence interval method for estimating of p, the actual coverage proba-
bility at a fixed value of p is 

( ) ( ) ( )0, , 1 n kkn
k

n
Cp p n I k n p p

k
−

=

 
= − 

 
∑ , 

where ( ),I k n  equals 1 if the interval contains p when X k=  and equals 0 if it 
does not contain p. Denote by ( )L X  and ( )U X  the lower and upper confi-
dence limits, respectively. The expected length of this interval 

( ) ( ) ( ) ( )0, 1n n kk
k

n
EL p n p p U x L x

k
−

=

 
= − −    

 
∑  

The coverage probability and expected length were computed for 1000 values 
of p, equally spaced in the interval (0.2, 0.8) for sample sizes n = 15, 30, 50 and 
100, and for nominal 95% Clopper-Pearson, Wilson score, Wald and likelihood 
confidence intervals. For each sample size and for each method summary values 
for coverage probability and expected length are obtained by averaging over the 
values of p used in the simulation. Table 1 below shows the mean of the actual 
coverage probabilities for the four methods of interval estimation at various 
sample sizes. The Clopper-Pearson interval is very conservative but has the 
highest mean interval length for all the values of n. The mean coverage probabilities  
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Table 1. Mean coverage probabilities and mean expected lengths (in parentheses) of no-
minal 95% confidence intervals for the binomial parameter p. 

Method n = 15 n = 30 n = 50 n = 100 

Clopper-Pearson 0.974 (0.479) 0.969 (0.347) 0.965 (0.269) 0.961 (0.190) 

Wilson score 0.957 (0.416) 0.951 (0.313) 0.950 (0.2487) 0.950 (0.180) 

Wald 0.913 (0.456) 0.931 (0.328) 0.939 (0.256) 0.945 (0.182) 

Likelihood 0.951(0.431) 0.948(0.319) 0.950 (0.216) 0.949 (0.81) 

 
for Wilson interval are very close to the nominal level and has the smallest mean 
expected length for all n. On the other hand, the traditional Wald interval has 
mean coverage probabilities which are smaller than the nominal level. Finally, 
the mean coverage probabilities for likelihood interval are very close to the no-
minal level for all the sample sizes.  

Figure 1 and Figure 2 show, respectively, plots of coverage probability and 
expected length against the values of p for the four intervals when n = 15. It can 
be noted from Figure 1 that for the Wald interval most coverage probabilities 
are below the nominal level and are extremely low for values of p near 0.2 or 0.8. 
This may be due to poor normality approximation when the sample is small and 
p not close to 0.5. Clopper-Interval has coverage probabilities above the nominal 
level and with short spikes, but has the largest expected lengths. The Wilson and 
likelihood intervals are not conservative but their coverage probabilities are close 
to the nominal level and have smaller expected lengths than Clopper-Pearson and 
Wald intervals (see Figure 2). 

For a large sample n = 50, the same pattern is observed but there is a remark-
able improvement in terms convergence of coverage probabilities and reduced 
expected lengths. Clopper-Pearson is still conservative and show convergence to 
a value above the nominal level. Most coverage probabilities for Wald interval 
are still below nominal level and show poor convergence. The Wilson and Like-
lihood interval again are better than Clopper-Pearson and Wald interval in 
terms of the two performance measures (Figure 3 and Figure 4). 

4. Application to Real Example 

The four methods of interval estimation are applied in a clinical study about the 
effectiveness of hyperdynamic therapy in treating cerebral vasospasm [11]. The 
success of the therapy was defined as clinical improvement in terms of neuro-
logical deficits. The study reported 16 successes out of 17 patients. On the basis 
of this data the four 95% confidence intervals are computed as 1) (0.7131, 
0.9985) for the Clopper-Pearson interval, 2) (0.7302, 0.9895) for Wilson interval, 
(0.8289, 1.053) for Wald interval, and 3) (0.7658, 0.9965) for likelihood interval. 
Each of these four confidence intervals is plotted on the graph of relative like-
lihood function as shown in Figure 5. It is observed that the Clopper-Pearson 
and Wilson intervals include implausible values of the parameter p whereas the 
Wald interval excludes plausible values and has an upper limit greater than 1.  
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Figure 1. Coverage probabilities for n = 15. 

 

 

Figure 2. Expected lengths for n = 15. 
 

 

Figure 3. Coverage probabilities for n = 50. 
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Figure 4. Expected lengths for n = 50. 
 

 

Figure 5. Confidence intervals plotted on the graph of relative likelihood function. 
 
The likelihood interval looks optimal by evidence presented in Table 1. With 
these four confidence intervals we can conclude that hyperdynamic therapy is an 
effective method for treating ischaemic neurological symptoms due to vasos-
pasm. 

5. Conclusion 

Clopper-Pearson interval is conservative for both small and large samples; how-
ever, it is always wider than it should. The Wald interval is well known and fre-
quently used in statistical practice. Unfortunately, according to the above simu-
lation study, its coverage probabilities are lower than the nominal level and are 
associated with problem of overshoot. Therefore, the inferential comparisons 
and judgements based on them might be misleading. On the other hand, Wilson 
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and Likelihood intervals have coverage probabilities near the nominal level and 
shorter lengths. Wilson interval for the real data application is wider than the li-
kelihood interval and includes implausible values of the parameter. In summary, 
the Wilson and Likelihood intervals are recommended to be used in practice. It 
is worth noting the Likelihood interval looks superior to Wilson interval in that 
it is shorter and includes plausible values of the parameter p. The likelihood 
method has one drawback in the sense that it does not produce an interval when 
the number of successes x is 0 or n. 
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