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Abstract 
This paper provides methods for assessing the precision of cost elasticity es-
timates when the underlying regression function is assumed to be polynomi-
al. Specifically, the paper adapts two well-known methods for computing 
confidential intervals for ratios: the delta-method and the Fieller method. We 
show that performing the estimation with mean-centered explanatory va-
riables provides a straightforward way to estimate the elasticity and compute 
a confidence interval for it. A theoretical discussion of the proposed methods 
is provided, as well as an empirical example based on publicly available postal 
data. Possible areas of application include postal service providers worldwide, 
transportation and electricity.  
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1. Introduction 

Around the world, posts are confronted with declining volumes and revenues. In 
such an environment, it is vitally important that price signals are properly con-
structed using accurate cost data at the product level. Because posts are mul-
ti-product firms they exhibit complex cost behaviors. The presence of common 
costs and the thin line between fixed and variable costs make it challenging for 
posts to accurately determine cost elasticity by product. The United States Postal 
Service (Postal Service) uses quadratic and translog regression equations, among 
others, for estimating volume variabilities of cost-related variables, such as street 
time or vehicle capacity, with respect to diverse cost drivers, such as mail volume 
[1] [2] [3]. The term “volume variability” (or variability) is used by the Postal 

How to cite this paper: Lyudmila, B.Y., 
Cigno, M.M. and Namoro, S.D. (2021) Com-
puting Confidence Intervals for the Postal 
Service’s Cost-Elasticity Estimates. Open Jour-
nal of Statistics, 11, 607-619. 
https://doi.org/10.4236/ojs.2021.115036 
 
Received: July 26, 2021 
Accepted: September 25, 2021 
Published: September 28, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2021.115036
https://www.scirp.org/
https://doi.org/10.4236/ojs.2021.115036
http://creativecommons.org/licenses/by/4.0/


B. Y. Lyudmila et al. 
 

 

DOI: 10.4236/ojs.2021.115036 608 Open Journal of Statistics 
 

Service as a substitute for “cost elasticity” [2]. The Postal Service uses both terms 
as synonyms to mean “the percentage change in cost caused by a percentage 
change in volume (or other relevant cost driver)” [4]. 

The present paper is motivated by the fact that confidence intervals are not 
reported with the Postal Service’s variability estimates. If available, confidence 
intervals allow assessment of the precision of the estimates and help gauge their 
stability across alternative independent data samples. In addition, the computa-
tion of the relevant confidence intervals provides direct information on the po-
tential effects of covariate multicollinearity on the variability estimates. 

Considering that cost elasticities are estimated not only by the United States 
Postal Service, but also by posts worldwide, the methods described in the paper 
could be of wide interest [5]. In addition, the described analysis of confidence 
intervals for cost elasticity estimates could be applicable in other industries, such 
as transportation or electricity. 

The Postal Service computes variability in two steps. In the first step, the Or-
dinary Least Squares or the generalized least Squares method is used to estimate 
a chosen econometric model linking the cost-related (dependent) variable to a 
set of explanatory variables. The estimated relation is treated as the cost-related 
function. In the second step, the variability is computed as the elasticity of the 
cost-related function with respect to the variable of interest. Since the results 
vary across observations, a fixed variability estimate is computed as the elasticity 
at the sample average of the explanatory vector. The obtained elasticity is a ratio, 
the numerator and denominator of which are both linear combinations of the 
estimated parameter vector, with coefficients depending on the sample averages 
of the explanatory variables. These coefficients converge in probability to con-
stants, thanks to the weak law of large numbers (WLLN) and provided that the 
involved variables have finite expectations. Hence, the asymptotic normality of 
the estimator of the parameter vector of the model provides the basic informa-
tion needed to test the significance of the variability estimate and construct a 
confidence interval for the implicit variability parameter. Of course, the ratio 
nature of the estimator raises issues about the coverage probability when the im-
plicit variability parameter is undefined, for example because its denominator is 
statistically null. Indeed, as shown later in the paper, the denominator can be 
obtained as the estimate of the constant term in the regression of the dependent 
variable on the mean-centered versions of the same explanatory variables. There 
is, however, a possibility that this estimate is insignificant. 

This paper presents a method to compute the confidential interval and conduct 
the relevant tests using the estimates of the regression model with mean-centered 
explanatory variables, i.e., the main variables are all centered and the interac-
tions variables are computed using the centered variables. As Echambadi and 
Hess [6] showed, for linear (in parameters) models containing interaction va-
riables, there is a linear and one-to-one correspondence between the OLS (or the 
generalized least-squares (GLS)) estimates obtained with non-centered variables 
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versus mean-centered variables. The statistical inference for the two models is 
also shown in the cited paper to be exactly the same, provided that the linear 
transformation between the parameter vectors in the two models is accounted 
for in the inference. This is an example of equivariant estimators [7]. 

A practical advantage of using the centered regression compared to the one 
with non-centered explanatory variables is that any statistical software will di-
rectly provide the numerator (up to a factor equal to the mean of the cost driver) 
and the denominator of the variability estimates and compute the confidence 
intervals for the corresponding parameters. Hence, a byproduct of the proposed 
method is that it also provides a simpler alternative, and numerically equivalent 
way to compute the variability parameter. The analysis conducted in this paper 
is of potential interest to any application involving elasticity estimates and it falls 
in the literature on elasticity estimation, as illustrated in [8] [9] [10] and the ref-
erences therein. 

The purpose of the paper is to present a simpler way to estimate quadrat-
ic-form regression functions and two algorithms for computing confidence in-
tervals for the Postal Service’s cost elasticity estimates. More generally, the paper 
purports to present within the context of elasticity estimation, tools for compu-
ting confidence intervals for a parameter that is estimated as a ratio of a pair of 
asymptotically normal estimators.  

In Section 2, the quadratic model is briefly discussed with the goal of provid-
ing the precise formal setting in which the analysis is conducted. In Section 3, 
the confidence interval for the variability parameter is derived from the delta 
method. Section 4 discusses the inferential problems related to the delta method 
in this context and shows how to derive an alternative confidence interval based 
on Fieller’s method. The empirical computation of the two types of confidence 
interval is discussed in Section 5. The last section concludes the paper. 

2. The Formal Setting 

A class of regression equation often considered in applications has the form: 

0 .y x x Ax uβ β′ ′= + + +                        (1) 

Regression functions that are not polynomial in the explanatory vector will 
require a less straightforward analysis than the one proposed in the present pa-
per. In the relation (1), vectors are understood as column vectors and the prime 
sign denotes transposition. 

For example, in the Postal Service’s model, y is a cost-related variable, x is a 
row-vector of explanatory variables including mail volume, and u is the usual 
error term. In this paper, the explanatory variables are the components of the 
vector x. These components, together with their interactions are referred to as 
the covariates. 

Assuming that u is mean-independent of x, the right-hand side of (1), exclud-
ing the error term, is the conditional expectation of y, given X x= , where x is 
an observation of X. To avoid complicating the notation, expectation operators 
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will be applied indifferently to both a random variable and its observation and 
will mean the same thing even though the latter is not random. Hence, for ex-
ample, E(X) and E(x) will both denote the mathematical expectation of X and 
this use will be contextually unambiguous. For two explanatory variables, the 
model is: 

2 2
0 1 1 2 2 11 1 22 2 12 1 2y x x a x a x a x x uβ β β= + + + + + +             (2) 

( ) 11 12
1 2

22

, ,
0

a a
A

a
β β β

 ′= =  
 

                    (3) 

A point worth noting is that the equality 
( )

2
x A A x

x Ax
′ ′+

′ = , which uses the  

symmetric part of A, i.e., B A A′= + , allows us to write model (1) equivalently 
as 

( )0 .
2

x Bxy x u g x uθβ β
′

′= + + + = +                  (4) 

The index θ is a vector the component of which are the parameters of the 
model. Model (4) is referred to in this paper as the quadratic regression model. 
The version of it in which y and all components of x are in the logarithm form is 
referred to as the translog regression model, after the function introduced by 
Christensen et al. [11]. It is easily seen that although quadratic in x, the model is 
linear in the parameters. 

3. The Delta-Method Confidence Interval 

The developments in this section start from the observation that the quadratic 
function ( )g xθ  is analytic and, hence, it is its own Taylor expansion centered 
at any point of its domain. From this observation, it follows that one can equiva-
lently write 

( ) ( ) ( ) ( )
0 ,

2
x e B x e

g x x eθ α α
′− −′= + − +               (5) 

for any interior point e of the domain of gθ , where  

( ) ( ) ( )
1

, , g
d

x e

g x g x
e

x x θ

θ θα

=

′∂ ∂ 
= = ∇ 

∂ ∂ 
  is the gradient of gθ  at e and d is the  

dimension of the vector x. The motivation for representing the argument of the 
function gθ  as the deviation of x from e is the direct meaning of α as the gra-
dient ( )g e Be

θ
β∇ = +  (obtained from taking the derivative with respect to x in 

(4) and substituting e for x in the result), which, computationally has the advan-
tage of being read directly from an estimation output, using any of the common 
statistical software packages. Let z denote the component of x, which represents 
the explanatory variable of interest, and zx−  be the remaining sub-vector of x, 
after discarding z. The following equality results from these notations: 

( ), zx z x− ′′= , assuming that z is the first component of x. The formal expression 
of the elasticity to be computed at some chosen value of x, say ( )00 0 , zx z x−

′′= , is  
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( )
( )

( )
0 0

0

,

.

z zz z x x

g x
zx z

g x

θ

θ

γ

− −= =

∂
∂=                   (6) 

The value 0x  can be taken to be the expected value of x, i.e., ( )0x E x= , 
which is the case that is considered in this paper. In other words, the parameter 
of interest in the analysis is 

( )( )
( )

( )
( )

( )( )

( )( ) ( ):

x E x

g E xg x
z zE x z E z

g x g E x

θθ

θ θ

γ

=

=

∂∂
∂ ∂=            (7) 

The least-square estimation of the model 

( )( ) ( )( ) ( )( ) ( )( )0 ,
2

x E x B x E x
y x E x u g x E x uδα α

′− −′= + − + + = − +   (8) 

where ( )( ) ( )g x E x g xδ θ− ≡  and δ denotes the vector of the parameters in 
the expression on right-hand side of the first equality in (8), is performed by 
mean-centering each component of x in (4).  

Echambadi and Hess [6] showed that there is a linear one-to-one correspon-
dence between θ̂  and δ̂ , the ordinary least squares (OLS) estimators in the 
regression in the regression with non-centered and centered variables, respec-
tively. These two regressions will be henceforth referred to as the non-centered 
and the centered regression, respectively. So, assuming again that z is the first 
component of x and its sample mean is z , directly computing the OLS estimate 
of zα , the coefficient of z z−  in (8), is numerically equivalent to first compu-
ting the OLS estimate of θ in (4) and then computing ˆ ˆ

z zB xβ + , where ˆ
zβ  and 

ˆ
zB  are, respectively, the estimate of the coefficient of z and the first row of B̂ , the 

estimate of B.  
The least-square estimator of ( )( )E xγ , which is denoted by ( )( )ˆ E xγ , only 

involves a ratio, 
0

ˆ
ˆ

zα
α

 where the numerator is the estimated coefficient of z z− ,  

and the denominator is the estimated constant term, equal to ( )g xθ . Because 
x  converges in probability to ( )E x  (by the WLLN), the continuous mapping 
theorem (see theorem 1 in Borovkov [12]) implies that the estimator  

( )( )
0

ˆ
ˆ

ˆ
zE x zα

γ
α

=  

is consistent (for estimating ( )( )E xγ , provided that the latter is defined, i.e., 

that its denominator is non null [10]. Further, the couple ( )0ˆ ˆ,zα α  is asymp-
totically normal. Assuming that its asymptotic distribution is 

2

2
0 0 0

ˆ ˆ ˆ
~ ,

ˆ ˆ ˆ
z z z zm

zm

N
α α σ σ
α α σ σ

     
     
       

,                   (9) 

the corresponding asymptotic distribution of ( )( )ˆ E xγ  is  
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( )( ) ( )( )
2

02
2

0 0
2
0

2
0

1
ˆˆ ˆˆ1ˆ ~ , ,
ˆˆ ˆ ˆ ˆ
ˆ

z zmz

zzm

E x N E x z
ασ σα

γ γ
αα α σ σ
α

  
      −        −  
   

     (10) 

( )( )
2 2

2 2
0

0 0 0

ˆ ˆ
ˆ ˆ ˆ,

ˆ ˆ
2

ˆ
z z

z zm
zN E x α α

γ σ σ σ
α α α

          
 
 + −
  

 
       

.         (11) 

Using the notation 
2

2 2
0

0 0

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ
2z z

z zmw α α
σ σ σ

α α
+ −

    
 =    
     

, the delta-method 

based 95%-level confidence interval for ( )( )E xγ  is written as 

( )( ) ( )( )
2 2

0 0

ˆ ˆˆ ˆ1.96 ; 1.96
ˆ ˆ
z zE x w E x wγ γ
α α

     − +        

         (12) 

A robust version of (12) can be obtained by using, for example, the White’s 
heteroskedasticity-consistent covariance matrix estimator for the covariance 
matrix in (9) [13]. 

4. The Fieller-Method Confidence Interval 

Several researchers have expressed doubt pertaining to a class of confidence-intervals 
for a ratio, including the one obtained by the delta-method. Doubt about the 
confidence interval estimated using the delta method arises from the fact that the 
delta method suggests that a ratio of two normally distributed random variables 
will be normally distributed, which is not true. The delta method also relies cru-
cially on the assumption that the denominator of the “true” value of the ratio 
parameter of interest is not null.  

To get more insight about a potential problem posed by the delta-method 
confidence interval, a few definitions are necessary. The presentation here is 
based on Gleser and Hwang [14]. Suppose some variable of interest X has the 
parametric probability distribution ( )A P X Aθ ∈ , where the finite-dimensional 
parameter vector θ lies in the set Θ. A confidence interval for a function ( )γ θ  
of the parameter vector has the form ( ) ( ),L X U X   . It is a random interval, 
because its bounds depend on the random variable X. Of course, for a particular 
sample, x of X, ( ) ( ),L x U x    is a fixed (non-random) interval. However, the 
statistical properties of the confidence interval are studied based on the random 
interval. One important property is the coverage probability of the interval, 
which, for a given θ ∈Θ , is defined as the probability pθ , that the random in-
terval contains the parameter of interest, ( ) ( ) ( )p P L X U Xθ θ γ θ= ≤ ≤   . The 
lower bound, ( ) ( )1 inf pθ θα ∈Θ− = , of the coverage probability, where α is here 
a positive real falling in the interval ( )0,1 , is called the confidence level of the 
confidence interval and represents the theoretical lowest probability that the 
random interval contains the parameter of interest. To assess the confidence in-
terval, one additional piece of information is needed, namely, its expected length, 
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which, for a given θ, is the expectation ( ) ( ) ( )l E U X L Uθθ = −   . Clearly, a 
larger ( )1 α−  and a lower ( )l θ  across the set Θ, makes the interval more ap-
pealing for the researcher than it would be otherwise.  

In some important cases, such as building a confidence interval for a ratio of 
two OLS regression parameters, these desirable properties of a confidence inter-
val may be out of reach when the intervals are obtained by a class of methods 
that includes the delta method. Confidence intervals of the form (12) fall in a 
class that Dufour [15] (page 1366) refers to as Wald-type confidence sets. 

Specifically, Gleser and Hwang [14], Koschat [16], and Dufour [15] have 
proved what is known in the relevant literature as impossibility theorems. Recall 
that in the context of the present paper, zα  and 0α  are the expectations of the 
limiting jointly normal distribution of ( )0ˆ ˆ,zα α , and the variability estimator is 
based on the ratio between the least-squares estimators of zα  and 0α . Koschat 
[16] shows that, in general, “[T]here is no procedure that with probability 1 
gives bounded α-level confidence intervals for the ratio”. Dufour [15] also shows  

that any confidence interval of the form 
2

*

0 0

ˆ
ˆ

ˆ ˆ
z zz wα

τ
α α

     ±        

, (say,  

* 1.96τ = ), derived, for example, from the estimation of a linear regression equ-
ation, such as (12), has zero coverage probability. 

Fortunately, there is a way out of these impossibility theorems. Both Koschat 
and Dufour indicate that the Fieller confidence interval is a better alternative for 
estimating a ratio [17]. The general principle that underlies the procedure for 
obtaining a Fieller confidence interval is clearly explained in Rao [18]. This pro-
cedure is used here to provide an alternative confidence interval for the variability  

estimator. Setting aside the expectation ( )E z , the ratio 
0

zαλ
α
 

=  
 

 is the pa-

rameter of interest and we assume again that the asymptotic covariance matrix 

of the vector 
0

ˆ
ˆ

zα
α
 
 
 

 is 
2

2
0

ˆ ˆ
ˆ ˆ

z zm

zm

σ σ
σ σ
 
 
 

. The equality 
0

zαλ
α
 

=  
 

 implies  

0 0zα λα− =  and, if λ is the “true” ratio, the least-squares estimator of 

0zα λα−  is 0ˆ ˆzα λα− , with ( )0ˆ ˆ 0zE α λα− = , and its asymptotic variance is 
2 2 2

0ˆ ˆ ˆ2z zmσ λ σ λσ+ − . Letting t denote the Student’s t-statistic for the 
( )1 100%α−  confidence level, the procedure consists of determining the set of  

values of λ for which the inequality 
( )2

0 2
2 2 2

0

ˆ ˆ
ˆ ˆ ˆ2

z

z zm

t
α λα

σ λ σ λσ
−

≤
+ −

 holds with a 

probability equal to ( )1 α− :  

( )

( ) ( )

2
0 2

2 2 2
0

2 2 2 2 2
0 0

ˆ ˆ
ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ ˆ2 0

1

z

z zm

z z zm

P t

P t

α λα
σ λ σ λσ

α λα σ λ σ λσ

α

 −
 ≤
 + − 
 = − − + − ≤ 

= −

            (13) 

In other words, the confidence set is the set of values of λ over which the null 
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hypothesis 0 0: 0zH α λα− =  is not rejected against the alternative  

0 0: 0zH α λα− ≠  in an F-test. It is worth recalling here that the square of the 
Student’s t is equal (in distribution) to the Fisher’s F. The expression on the 
left-hand side of the last inequality (in the probability) can be written as a qua-
dratic form in λ: 

( ) ( ) ( )2 2 2 2 2 2
0 0ˆ ˆ ˆ ˆ ˆ2 ,z z zmQ tλ α λα σ λ σ λσ µλ ρλ δ= − − + − = + +       (14) 

with 2 2 2
0 0ˆ ˆtµ α σ= − , ( )2

0ˆ ˆˆ2 zm ztρ σ α α= − , 2 2 2ˆ ˆz ztδ α σ= − . 
Provided that the quadratic form 2µλ ρλ δ+ +  in λ has two distinct 

real-valued roots, these roots represent the two bounds of the ratio parameter  

0

zα
α

. It is worth noting here that if the non-centered regression is used instead, a  

similar equation in matrix form determines the bounds of the Fieller confidence 
interval [19]. The conditions determining the nature and the signs of the roots of 
( )Q λ  are discussed in Scheffé [20]. In fact, from 

( ) ( )( )
2

22 2 2 2 2 2 2
0 0 0ˆ ˆ ˆ ˆˆ ˆ ˆ ,

2 zm z z zt t tρ µδ σ α α α σ α σ ∆ = − = − − − − 
 

 

it is clear that if 0∆ > , then ( )Q λ  has two distinct real-valued roots. Any 
value of λ falling between these two roots is such that ( )Q λ  is of the opposite 
sign of μ. Hence, if 0∆ >  and 0µ > , then ( ) 0Q λ <  and one obtains a 
bounded confidence interval for ( )( )E xγ . However, if 0∆ >  and 0µ < , the 
confidence interval will be the (unbounded) complement set of a bounded in-
terval. If 0∆ < , then ( )Q λ  is of the sign of μ. So, if, in addition to 0∆ < , one 
has 0µ < , then the confidence interval is the entire real line. The case ( 0∆ < , 

0µ > ) is mathematically impossible, as shown by Scheffé [20], who also notes 
that the cases 0∆ =  and 0µ =  are zero-probability (negligible) events. 

The event { }2 2 2
0 0ˆ ˆ 0A tµ α σ= = − <  determines, therefore, the boundedness 

of the Fieller interval. This event has the meaning that the Student test for 0α  
leads to no rejection of the null 0 0: 0H α = . Under this null assumption, the 
event A has the probability ( ) 1P A α= − . For example, if the null 0 0: 0H α =  
is not rejected at 5% significance level in a t-test, then the 95%-level confidence 
interval will be unbounded. This is in sharp contrast to the always bounded 
confidence interval resulting from the delta method, which assumes away 

0 0: 0H α = . By doing so, it imposes a sure rejection ( ( ) 0P A = ) of 0H  in the 
described Student test, whence, 1α = . In other words, it imposes a zero cover-
age probability for the confidence interval. By doing so, it imposes a sure rejec-
tion ( ( ) 0P A = ) of 0H  in the described Student test, whence, 1α = . In other 
words, it imposes a zero coverage probability for the confidence interval.  

In the context of the Postal Service, if for example street time is the dependent 
and volume the cost-driver of interest, the possibility that the best-prediction of 
street time given average mail-volume—the meaning of the parameter 0α —be 
equal to zero is hard to imagine. However, unless 0 0α ≠  is imposed through 
some additional modeling as an estimation constraint, there is no guaranty that 
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the corresponding estimate will be statistically significant. It seems reasonable, 
therefore, to always report both confidence intervals, delta and Fieller, regardless 
of the researcher’s prior belief about the possibility that 0α  be null. 

5. Results and Discussion 
5.1. Empirical Examples of Delta and Fieller Intervals 

The above theory is applied to a data set that is publicly available at  
https://www.prc.gov/dockets/document/109489. In the example, the dependent 
variable is “street time” and labelled as “thours”. Table 1 displays the table of the 
estimation results, along with all the information needed to compute the confi-
dence intervals for the elasticity estimate. The variable with respect to which the 
elasticity is computed is “volume”. Its mean-centered version is labelled as 
“CVol” (centered volume) in the top larger table containing the regression re-
sult. Its coefficient and the constant term are labelled in the bottom small table 
respectively as “Alpha_Vol” and “Alpha_Zero”. The small table also contains the 
sample means of the volume variable and the covariance matrix of the pair (Al-
pha_Vol, Alpha_Zero). Recall here that the constant term is equal to ( )ˆg x

θ  
and is the denominator of the elasticity. The numerator of the elasticity is the 
product of Alpha_Vol by the sample average of volume. The volume-elasticity is 
estimated as 0.62064233. Using the described information, the delta-method 
95% confidence interval for the volume elasticity, denoted below by DCI, is 

( )( ) ( )( )

[ ]

2 2

0 0

ˆ ˆˆ ˆ1.96 ; 1.96
ˆ ˆ

0.592578355;0.648706305 .

z zDCI E x w E x wγ γ
α α

     = − +        
=

 

The Fieller 95%-confidence interval, denoted below by FCI, is  

[ ]0.592581517;0.648733034 .FCI =  

Both confidence intervals are computed after estimating the centered regres-
sion estimation and collecting the estimates ˆ zα  (Alpha_Vol ) and 0α̂  (Al-
pha_Zero), along with the corresponding estimate of their variance-covariance  

matrix. The volume-elasticity is computed as ( )( )
0

ˆ
ˆ

ˆ
zE x zα

γ
α

= , where z  is the  

sample mean of the volume variable. The delta-method interval, DCI, is  

obtained from (12). To compute the Filler confidence interval for the ratio 
0

zα
α

, 

the expressions μ, ρ, and δ are first computed as they appear in (14). The discri-

minant is computes as 
2

2
ρ µδ ∆ = − 

 
 and, if both ∆ and μ are positive, the left 

bound of the interval (respectively, the right bound of the interval) is computed 

as 1
2

L ρ
µ
 = − − ∆ 
 

 (Respectively, 1
2

L ρ
µ
 = − + ∆ 
 

). The final interval, 

FCI, is obtained for ( )( )E xγ  by simply multiplying the above bounds by z . 
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Table 1. Regression results with centered explanatory variables. 

 

Number of Obs: 3146 

 

F(29, 3116) = 250.53 

Prob > F = 0.0000 

R-squared = 0.8710 

Root MSE = 22.194 

thours = dependent Coefficients 
Robust 

Std. Err. 
t P > t [95% Conf.] 

Covariates 
 

Cvol 0.0813301 0.0022094 36.810 0.000 0.0769981 0.0856622 

vol2 −0.0000053 0.0000006 −8.530 0.000 −0.0000065 −0.0000041 

volcurb 0.0270784 0.0204113 1.330 0.185 −0.0129426 0.0670994 

volcbu −0.0725671 0.0359772 −2.020 0.044 −0.1431086 −0.0020257 

volcent 0.0072648 0.0197153 0.370 0.713 −0.0313915 0.0459212 

voldoor −0.0124164 0.0152493 −0.810 0.416 −0.0423161 0.0174833 

volbr −0.0003747 0.0206299 −0.020 0.986 −0.0408243 0.0400748 

voliam −0.0462756 0.0134243 −3.450 0.001 −0.0725971 −0.0199542 

volfdp −0.0550723 0.0151079 −3.650 0.000 −0.0846947 −0.0254498 

volifr 0.0306551 0.0168253 1.820 0.069 −0.0023346 0.0636449 

volcv −0.0000378 0.0000171 −2.220 0.027 −0.0000713 −0.0000044 

Ccv 0.0095768 0.0086620 1.110 0.269 −0.0074070 0.0265606 

cv2 0.0000176 0.0000030 5.930 0.000 0.0000118 0.0000235 

Ccurb 1.1207270 7.2289530 0.160 0.877 −13.0532700 15.2947200 

Ccbu −19.9691900 11.1230400 −1.800 0.073 −41.7784300 1.8400450 

Ccent 10.7491700 6.5281810 1.650 0.100 −2.0508020 23.5491400 

Cdoor −2.8270550 5.0978520 −0.550 0.579 −12.8225400 7.1684330 

Cbr −2.9026710 6.1822770 −0.470 0.639 −15.0244200 9.2190780 

Ciam −28.2502300 3.7681750 −7.500 0.000 −35.6385900 −20.8618800 

Cfdp −35.3579100 4.0966100 −8.630 0.000 −43.3902400 −27.3255800 

Cifr 1.6938050 5.0887680 0.330 0.739 −8.2838720 11.6714800 

curb2 3.8599290 5.6633330 0.680 0.496 −7.2443130 14.9641700 

cbu2 −7.7040280 6.6341400 −1.160 0.246 −20.7117500 5.3037000 

cent2 −43.3282700 9.1974540 −4.710 0.000 −61.3619500 −25.2945800 

door2 −8.2948350 5.2232330 −1.590 0.112 −18.5361600 1.9464920 

br2 −18.9822600 8.5685330 −2.220 0.027 −35.7828000 −2.1817160 

iam2 −2.8435370 5.5828790 −0.510 0.611 −13.7900300 8.1029570 

fdp2 1.0518450 5.9419160 0.180 0.860 −10.5986200 12.7023100 

ifr2 −16.0448000 6.9424530 −2.310 0.021 −29.6570500 −2.4325600 

_cons 49.3815800 0.7297492 67.670 0.000 47.9507400 50.8124200 
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Estimates 

Covariances 

Alpha_Vol Alpha_Zero 

Alpha_Vol 0.0813301 4.88E−06 0.00085156 

Alpha_Zero 49.38158 0.00085156 0.53253391 

Sample Mean Volune-Elasticitiy of thours 

376.8382 0.62064233 

 
As discussed above, the main difference between the two confidence intervals 

is that FCI accounts for the possibility that 0α  be null, while DCI does not. In 
this example, the two intervals are seen to be very close to one another. The dif-
ference between the radius of the Fieller and the delta-method intervals is in the 
order of 10−5, the delta-method confidence interval being very slightly narrower. 
In particular, the Fieller confidence interval is bounded, because 0∆ >  and 

0µ > . 

5.2. The Translog Regression Function 

Because the translog functional form is quadratic in the logs of the components 
of x, the above analysis carries over to this model, but in a rather trivial way. The 
model considered becomes 

( ) ( )1ln ln , , ln dT g x x uθ= +                    (15) 

with gθ  defined, as above, to be quadratic. To add to the notation used so far, 
the elasticity of a function f of the vector ( )2, , , dz x x , with respect to the ar-
gument z, computed at ( ) ( )2 1 2, , , , , ,d dz x x a a a=  , will be denoted by  

( )
( ) ( )2 1 2, , , , , ,d d

f z x x a a a
z

= 

 . The sample geometric mean of z will be denoted by 

gz  or, simply, ( )
( )1 2, , , d

f a a a
z



 . Assuming that the model (15) is estimated with 

centered explanatory variables and writing ( ) ( )ˆ 1ln ln , , ln dT g x x
θ

=  , one has 

( ) ( )ln ln gz z=                          (16) 

( )

( )
( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )( )

ln
2

2

ˆ 1

e ln ,ln , ,ln
ln ,ln , ,ln

ln , , ln
lnT

d
d

d

z x x
z x x

g x
z

x
z θ

∂
=

∂





        (17) 

( )
( ) ( ) 2

ˆ 1

ln ,ln , ,ln

ln , , n
ln

l

g gg
d

d

z x x

g
z

x x
θ

            

∂
=

∂




   (18) 

The right-hand side of (18) is the coefficient of ( ) ( )ln lnz z−  in the centered 
regression result: 

( )
( ) ( ) 2

ˆ 1
ln

ln ,ln , ,ln

ln , , ln
ˆ

ln g gg
d

d
z

z x x

g x x
z

θα
            

∂
=

∂




 

It is the elasticity of the predicted street time, ( )lne T , with respect to z, com-
puted at the vector of log geometric means. So, the inference on this elasticity is 
provided directly by the statistical software package.  
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6. Conclusion 

The present paper has provided two alternative ways to compute confidence in-
tervals for cost-elasticity (variability) when the underlying functional form in the 
regression equation is quadratic. The polynomial aspect of the assumed regres-
sion function has considerably simplified the computations. A similar analysis 
can be conducted on any functional form that is linear in the parameters, but 
will be a bit more complex if the function is not polynomial in its arguments. 
Both the delta-method and the Fieller confidence intervals have been derived 
and illustrated with an empirical example based on publicly available Postal Ser-
vice data. For the sake of completeness and transparency, both confidence in-
tervals should be reported in applications. 
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