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Abstract 

In this paper, we consider the construction of the approximate profile- like-
lihood confidence intervals for parameters of the 2-parameter Weibull dis-
tribution based on small type-2 censored samples. In previous research 
works, the traditional Wald method has been used to construct approximate 
confidence intervals for the 2-parameter Weibull distribution under type-2 
censoring scheme. However, the Wald technique is based on normality as-
sumption and thus may not produce accurate interval estimates for small 
samples. The profile-likelihood and Wald confidence intervals are con-
structed for the shape and scale parameters of the 2-parameter Weibull dis-
tribution based on simulated and real type-2 censored data, and are hence 
compared using confidence length and coverage probability. 
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1. Introduction 

On most occasions, when performing life testing experiments, the main interest 
is to examine the lifespan of a specimen. For instance, tests might be carried out 
to determine the lifespan of an aircraft wing prior to failure from metal fatigue. 
Such experiments are expensive and time-consuming, and only a few units can 
be inspected. Due to time and financial constraints, a researcher may not be able 
to examine the failure time of all the units under investigation [1] and [2]. One is 
prompted to set an appropriate censoring limit after which the experiment is 
terminated. The termination of observations in life test experiments due to 
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causes other than the natural failure to which an item is subjected is referred to 
as censoring. 

Type-2 censoring arises when a set of identical items are subjected to a life test, 
and the experiment is stopped when a predetermined number of items are ob-
served to have failed, and after that, the remaining items are right censored [3]. 
Type-2 censoring scheme is one of the most popular censoring schemes used in 
reliability and life testing experiments. This is because most of the life testing 
experiments especially in the field of engineering and medicine require one to 
choose a sample size that will minimize costs.  

Some of the common statistical distributions used to fit censored life data in-
clude Rayleigh [4], Gamma [5], Gumbel [6], logistic [7], lognormal [8], log- lo-
gistic [9], exponential [10], normal [11], Weibull [12] and [13], and Mixed 
Weibull [14]. 

From the aforementioned life distributions, Weibull distribution is the most 
preferred distribution since it can take characteristics of other life distributions 
based on the value of its shape parameter [15]. Although, there are different 
forms of Weibull distributions, 2-parameter Weibull distribution and 3-parameter 
Weibull distribution are the most commonly used forms in fitting censored life 
data.  

Point estimation in a 2-parameter Weibull distribution or 3-parameter Wei-
bull distribution in the presence of censored data can be done using various 
techniques. These methods include; maximum likelihood estimation (MLE) [16], 
a method of moments (MOM) [17], expectation maximization (EM) algorithm 
[13], and generalized least square (GLS) [18]. 

Interval estimation in a 2-parameter Weibull distribution based on large sam-
ples has been carried out in several ways; including Bayesian and Wald [19]. In 
previous research works, Wald method has been employed to construct ap-
proximate confidence intervals for the parameters of this distribution under 
type-2 censoring scheme [3]. However, this method is appropriate for large 
samples and may give inaccurate interval estimates when the sample size is small. 
Hence, there is a need to explore other methods of constructing confidence in-
tervals, especially on small samples. The profile-likelihood technique comes in 
handy. This technique has not been used previously to construct approximate 
confidence intervals for parameters of 2-parameter Weibull distribution under 
small type-2 censored samples.  

The profile-likelihood method is used in situations where the focus is on a 
subset of parameters of a certain statistical model. Under this method, the like-
lihood is written as a function of one or a few parameters of interest by treating 
the rest as nuisance parameters. The likelihood is then maximized over the 
nuisance parameters. To facilitate the construction of the profile-likelihood con-
fidence interval for the parameter of interest, the concept of maximum relative 
likelihood is employed. The maximum relative likelihood function of the para-
meter of interest is obtained by maximizing the relative likelihood function of all 
the parameters in the model over the nuisance parameter, with the value of the 
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parameter of interest fixed.  
In this paper, we consider approximate confidence intervals for the 2- para-

meter Weibull distribution based on small type-2 censored samples using pro-
file-likelihood method. The efficiency of this technique in carrying out interval 
estimation for the 2-parameter Weibull distribution based on type-2 censored 
data is then compared with the Wald technique based on the confidence lengths 
and coverage probabilities.  

The remaining part of the paper is organized as follows: materials and me-
thods are presented in Sections 2, 3 and 4. Section 5 presents interval estimate 
and coverage probability results. In Section 6, discussion of the results is pre-
sented. Conclusions are presented in Section 7. 

2. The 2-Parameter Weibull Distribution 

A continuous random variable X is said to have a 2-parameter Weibull distribu-
tion if its probability density function is given by 

( ) 1e , 0; 0, 0, 0xf x x x x
ββ ααβ α β− −= > > > >             (1) 

where α  and β  are the scale and shape parameters, respectively. This form 
of the Weibull distribution is known as the 2-parameter Weibull distribution.  

The cumulative density function for the 2-parameter Weibull distribution can 
be derived from Equation (1) and expressed as  

( ) 1 e , 0, 0, 0xF x x
βα α β−= − > > >                   (2) 

Thus, the Weibull reliability at time x, which is ( ) ( )1 F x R x− = , is defined as  

( ) ( )1 e xR x F x
βα−= − =                       (3) 

The hazard function (sometimes called the failure rate) function, denoted by 
( )h x , of the 2-parameter Weibull distribution is given as  

( ) ( )
( )

1

1
f x

h x x
F x

βαβ −= =
−

.                    (4) 

Integrating both sides of Equation (4) yields 

( )( ) ( )
0

ln 1 d
x

F x h t t− = −∫  

or 

( ) ( ) ( )0 d1 e 1 e
x h t t H xF x − −∫= − = −   

where ( ) ( )
0

d
x

H x h t t xβα= =∫  is called the cumulative hazard function. Also, 
in terms of the cumulative hazard function the reliability function in Equation (3) 
can be given as 

( ) ( )e H xR x −= . 

3. Maximum Likelihood Estimation (MLE) Method 

In this paper, MLE estimates of the 2-parameter Weibull distribution are ob-
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tained using Panahi [3] procedure. 
Let 1 2 rX X X< < <  be a type-2 censored sample of size r acquired from a 

life test on n items whose lifetimes have Weibull. The likelihood function can be 
written as  

( ) ( ) ( ) ( )1

!, 1
!

n rr
i ri

nL f x F x
n r

α β
−

=
 = −   − ∏              (5) 

Specifically, 

( ) ( ) ( )

( ) ( ) ( )( )

1
1

1
1 1

!, e 1 1 e
!

! e e
!

i r

i r

n r
r x x

ii

n rr r rx x
ii i

nL x
n r

n x
n r

β β

β β

α αβ

α αβ

α β αβ

αβ

−
− −−

=

−
− −−

= =

  = − −      −

 
−

= 

∏

∏ ∏
        (6) 

Then, the log-likelihood function is written as 

( ) ( ) ( )
( )1 1

, log ! log ! log log

1 log
r

r r
i ii i

n n r r r n r x

x x

β

β

α β α β α

α β
= =

= − − + + − −

− + −∑ ∑


        (7) 

The MLE of α  and β  denoted as α̂  and β̂  are solutions of the fol-
lowing equations; 

( ) 1 0r
r ii

r n r x xβ β

α α =

∂
= − − − =

∂ ∑                   (8) 

and,  

( ) 1 1log log log 0r r
r r i i ii i

r n r x x x x xβ βα α
β β = =

∂
= − − − + =

∂ ∑ ∑        (9) 

From Equation (8), the MLE of α  is a function of β  i.e., 

( ) 1

ˆ
r

r ii

r
n r x xβ β

α
=

=
− +∑

                     (10) 

The MLE of β̂  can be obtained as the solution of  

( )
( )

( )

1

1 1
1

log

log log 0

r rr
r ii

r r
i i ir i i

r ii

r n r
x x

n r x x

r rx x x
n r x x

β
β β

β
β β β

=

= =

=

 −
 
 − + 
 
 + − − =
 − + 

∑

∑ ∑
∑

       (11) 

β̂  will be obtained numerically via the Newton-Raphson iterative procedure 
since Equation (11) cannot be solved analytically. Therefore,  

( )
( ) ( )2 2

1 3 3 3
2 2

1

2
4 3 3 4 42

2 2

ˆ
ˆ ˆ

ˆ
f s

f f f s
f si

i i
r

S S
s f s f s

f s

r rS S S S
S S

r rS S S S S
S S

β
β β

β

+
+

+
+

  + − − + 
  

  + − + + 
+

= +



  (12) 

where 1 1logr
f iiS x

=
= ∑ , 2 ifS xβ= ∑ , ( )2s rnS xr β= − , 3 0 logr

f i iiS x xβ
=

= ∑ , 
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( )3 logs r rS xn r xβ= − , ( )2
4 0 logr

f i iiS x xβ
=

= ∑ , and ( ) ( )2
4 logs r rS xr xn β= −   

Once β̂  has been obtained, α̂  is computed as follows:  

2 2

ˆ
f s

r
S S

α
+

=                         (13) 

4. Interval Estimation 

Approximate confidence intervals for the parameters of the 2-parameter Weibull 
distribution are obtained using the Wald technique and profile-likelihood me-
thod. 

4.1. Wald Technique 

Approximate Wald confidence intervals for the parameters, α  and β , of the 
2-parameter Weibull distribution under the type-2 censoring scheme are also 
obtained using the steps described in Panahi [3]. 

Step 1: MLE of α  and β  are obtained as described in Section 3 above. 
Step 2: Computation of the observed Fisher information matrix for the MLE’s 

from Equations (8) and (9), 
2

2 2

r
α α
∂

= −
∂
                            (14) 

( ) ( ) ( )
2

22
2 2 1log logr

r r i ii

r n r x x x xβ βα α
β β =

∂
= − − − −

∂ ∑          (15) 

and  

( )
2 2

1log logr
r r i iin r x x x xβ β

α β β α =

∂ ∂
= = − − −

∂ ∂ ∂ ∂ ∑             (16)  

Equations (14), (15), and (16) will facilitate the computation of the observed 
Fisher information matrix denoted by  

( )

2 2

2

2 2

2

ˆˆ ,I E
β αβ

α β

α β α

 −∂ −∂
 ∂ ∂∂ =
 −∂ −∂
 
∂ ∂ ∂  

 

 

                   (17) 

The observed Fisher information matrix will aid in the construction of ap-
proximate confidence intervals for the parameters based on the limiting normal 
distribution.  

Step 3: Obtaining the inverse of the observed Fisher information matrix in 
order to find a local estimate of the asymptotic variance-covariance matrix of the 
MLE. The inverse of the Fisher information matrix is obtained as, 

( ) ( ) ( )
( ) ( )

2
1

2

ˆ ˆ ˆˆ ˆ ,
ˆˆ ,

ˆˆ ˆˆ ˆ,
I

σ β σ β α
α β

σ α β σ α

−
 
   =   
  

               (18) 

Step 4: The Wald confidence intervals. In accordance with the asymptotic 
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theory of MLE, the sampling distribution of 
( )

( )2

ˆ

ˆˆ

β β

σ β

−
 can be approximated by 

a standard normal distribution. A two sided ( )100 1 %ψ−  normal approximate 
confidence interval for β  is constructed as 

( )2

1
2

ˆ ˆˆZ ψβ σ β
−

±                       (19) 

Analogously, the two-sided ( )100 1 %ψ−  normal approximate confidence 
interval for α  is constructed as 

( )2

1
2

ˆ ˆˆZ ψα σ α
−

±                       (20) 

4.2. Profile-Likelihood Technique 

Let α  and β  be the scale and the shape parameters of the 2-parameter Wei-
bull distribution. The joint relative likelihood function for α  and β , denoted 
by ( ),R α β , is defined as the ratio of the likelihood function ( ),L α β  to its 
maximum value ( )ˆˆ ,L α β , i.e. 

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( )

1 1
ˆ ˆ

1 1

log ! log ! log log 1 log,
,

ˆ ˆ ˆˆ ˆ ˆ, log ! log ! log log 1 log

r r
r i ii i

r r
r i ii i

n n r r r n r x x xL
R

L n n r r r n r x x x

β β

β β

α β α α βα β
α β

α β α β α α β
= =

= =

− − + + − − − + −
= =

− − + + − − − + −

∑ ∑
∑ ∑

(21) 

Suppose we denote by ( )α̂ β  the MLE of α  given β . Then  

( ) ( ) ( )( )ˆmax , ,pL L Lαβ α β α β β= =                 (22) 

is called the profile-likelihood function of β . Hence the relative pro-
file-likelihood function of β  is defined as  

( )
( )( )
( ) ( )( )
ˆ ,

ˆ ,
ˆˆ ,

p

L
R R

L

α β β
β α β β

α β
= =                 (23) 

Similarly, if we let α  be our parameter of interest and β  to be the nuis-
ance parameter, then profile-likelihood function for α  is obtained by max-
imizing ( ),L α β  over β  with α  fixed. The relative profile-likelihood func-
tion of α  is 

( )
( )( )

( ) ( )( )
ˆ,

ˆ,
ˆˆ ,

p

L
R R

L

α β α
α α β α

α β
= =                  (24) 

The 100 %ψ  profile-likelihood confidence interval for the parameter β  is 
the set of all values for which ( )pR β ψ≥ . Taking natural log both sides of this 
inequality we obtain ( ) ( )log logp pr Rβ β ψ= ≥ , where ( )pr β  is the log rela-
tive profile-likelihood of β . The end points of the above profile-likelihood con-
fidence interval are obtained as the solution to the equation 

( ) log 0pr β ψ− = , 

( ) ( )log 0.147 0pr β − = ,                    (25) 
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which is solved numerically using the bisection method. 
Similarly, the 100 %ψ  profile-likelihood confidence interval or region for the 

parameter α  is the set of all values for which ( )pR α ψ≥  and the end points 
of this interval are obtained as the solution to the equation 

( ) log 0pr α ψ− =  

( ) ( )log 0.147 0pr α − =                     (26) 

which is solved numerically using the bisection method. 
The profile-likelihood confidence intervals are fully conditioned on the shape 

of the profile-likelihood function and in this sense they are optimal. The 14.7% 
profile-likelihood interval corresponds approximately to 95% confidence inter-
val [20]. 

5. Simulation Study and Real Data Application  

5.1. Simulation  

In this study, n identical items were subjected to a life test. The first r items to 
fail were used for analysis while the remaining ( )n r−  items were right cen-
sored. Time taken for the items to fail was ordered as 1, , rX X . The 2- para-
mater Weibull distribution given by Equation (1) was used to fit the type-2 cen-
sored data. 

The simulation of type-2 censored data for the 2-parameter Weibull distribu-
tion used the algorithm by Newby [21]. In this approach, the following steps 
were followed: 

Step 1: Set 0jh = . 
Step 2: Generate random numbers ( )Uniform 0,1ju ∼ , ( )0,1, , 1j r= − . 

Step 3: Set 
( )

1

log j
j j

u
h h

n j+ = −
−

, ( )0,1, , 1j r= − . 

Step 4: ( )1
1 1j jX H h−
+ += , 0,1, , 1j r= − . 

One thousand samples each of size n were generated from 2-parameter Wei-
bull distribution by repeated simulations and censored using the type-2 censor-
ing scheme. This repeated sampling was used to compute coverage probability 
for the 95% Wald confidence intervals and 95% approximate profile-confidence 
intervals for the parameters of the 2-parameter Weibull distribution for different 
fixed values of r, n, α and with the value of shape parameter β fixed at 1.5. Sub-
routines to obtain the approximate Wald confidence intervals and the approx-
imate profile-likelihood confidence intervals for the two parameters were devel-
oped in the R program (Version 3.5.1). To check the efficiencies of the interval 
estimates computed by the two techniques, confidence lengths and coverage 
probabilities for the interval estimates are compared. 

5.2. Simulated Results 

The 95% Wald confidence intervals and the 95% profile-likelihood confidence 
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approximate intervals for the parameters of the 2- parameter Weibull distribu-
tion under type-2 censoring scheme are given in Tables 1-4. 
 
Table 1. Wald confidence intervals, for n = 20. 

α  r [ ]ˆ ˆ,l uα α  CL for α  ˆ ˆ,l uβ β 
   CL for β  

0.5 
8 [0.19764, 1.22446] 1.02682 [0.39738, 2.08385] 1.68647 

4 [0.00000, 0.82520 0.82520 [0.038015, 2.06786] 2.02985 

1.0 
8 [0.22690, 1.97821] 1.75131 [0.377045, 1.74620] 1.36916 

4 [0.0000, 1.39428] 1.39428 [0.066103, 1.93431] 1.86821 

1.5 
8 [0.22094, 2.54861] 2.32767 [0.37266, 1.60855] 1.23589 

4 [0.00000, 1.86983] 1.86983 [0.084172, 1.86530] 1.78113 

 
Table 2. Wald confidence intervals, for n = 40.  

α  r [ ]ˆ ˆ,l uα α  CL for α  ˆ ˆ,l uβ β 
   CL for β  

0.5 
8 [0.043312, 1.33135] 1.28804 [0.45263, 2.01939] 1.56676 

4 [0.00000, 0.86937] 0.86937 [0.063159, 2.10891] 2.04575 

1.0 
8 [0.00000, 2.19627] 2.19627 [0.46025, 1.81479] 1.35454 

4 [0.00000, 1.5250] 1.5250 [0.092796, 2.01836] 1.92556 

1.5 
8 [0.00000, 2.88451] 2.88451 [0.46492, 1.72284] 1.25792 

4 [0.00000, 2.08531] 2.08531 [0.11064, 1.96890] 1.85826 

 
Table 3. The 95% profile-likelihood approximate confidence intervals, for n = 20. 

α  r [ ]ˆ ˆ,l uα α  CL for α  ˆ ˆ,l uβ β 
   CL for β  

0.5 
8 [0.32520, 1.32290] 0.99770 [0.58814, 2.21117] 1.52356 

4 [0.12235, 0.913881] 0.79153 [0.36406, 2.17766] 1.81360 

1.0 
8 [0.50424, 2.05129] 1.54705 [0.55455, 1.75009] 1.19554 

4 [0.18933, 1.41421] 1.22488 [0.41767, 1.84438] 1.42671 

1.5 
8 [0.63331, 2.57639] 1.94308 [0.54927, 1.57123] 1.02196 

4 [0.24103, 1.80033] 1.5593 [0.45431, 1.70303] 1.24872 

 
Table 4. The 95% profile-likelihood approximate confidence intervals, for n = 40. 

α  r [ ]ˆ ˆ,l uα α  CL for α  ˆ ˆ,l uβ β 
   CL for β  

0.5 
8 [0.31436, 1.27880] 0.96444 [0.72555, 1.88895] 1.16340 

4 [0.10992, 0.82101] 0.71109 [0.50643, 1.89330] 1.38687 

1.0 
8 [0.48605, 1.97731] 1.49126 [0.74387, 1.63058] 0.88671 

4 [0.17309, 1.29293] 1.11984 [0.58740, 1.68967] 1.10227 

1.5 
8 [0.61742, 2.51172] 1.8943 [0.74968, 1.52322] 0.77354 

4 [0.22375, 1.67125] 1.44750 [0.62380, 1.60089] 0.97709 

https://doi.org/10.4236/ojs.2020.106059


R. M. Mweleli et al. 
 

 

DOI: 10.4236/ojs.2020.106059 1047 Open Journal of Statistics 
 

From the simulation results in the Table 1, it can be observed that for a fixed 
value of the scale parameter α and overall sample size n, as the effective sample 
size r increases, the length of the Wald confidence interval for the shape para-
meter β decreases. On the other hand, it can be observed that for a fixed value of 
the scale parameter α and overall sample size n, as the effective sample size r in-
creases, the length of the Wald confidence interval for the scale parameter α also 
increases.  

From the simulation results in Table 2, it can be observed that for a fixed val-
ue of the scale parameter α and overall sample size n, as the effective sample size 
r increases, the length of the Wald confidence interval for the shape parameter β 
decreases. On the other hand, it can be observed that for a fixed value of the 
scale parameter α and overall sample size n, as the effective sample size r in-
creases, the length of the Wald confidence interval for the scale parameter α also 
increases. 

Moreover, it can be observed that when the effective sample size r = 8, most 
of the Wald confidence interval results for the shape parameter β in Table 2 
are narrower than the Wald confidence interval results for the shape parame-
ter β in Table 1. Also, it can be observed that the Wald confidence interval 
results for the scale parameter α in Table 1 are narrower than those in Table 
2. 

From the simulation results in Table 3, it can be observed that for a fixed val-
ue of the scale parameter α and overall sample size n, as the effective sample size 
r increases, the length of the approximate Profile-likelihood confidence interval 
for the shape parameter β decreases. On the other hand, it can be observed that 
for a fixed value of the scale parameter α and overall sample size n, as the effec-
tive sample size r increases, the length of the approximate profile-likelihood 
confidence interval for the scale parameter α also increases. 

From the simulation results in Table 4, it can be observed that for a fixed val-
ue of the scale parameter α and overall sample size n, as the effective sample size 
r increases, the length of the approximate Profile-likelihood confidence interval 
for the shape parameter β decreases. On the other hand, it can be observed that 
for a fixed value of the scale parameter α and overall sample size n, as the effec-
tive sample size r increases, the length of the approximate profile-likelihood 
confidence interval for the scale parameter α also increases. 

Furthermore, it can be observed that the 95% profile-likelihood confidence 
interval results for the scale parameter α and shape parameter β in Table 4 are 
narrower than the 95% profile-likelihood confidence interval results in Table 3. 
That is, the 95% profile-likelihood confidence intervals for β and α become nar-
rower when the sample size n is increased. 

Some selected 95% confidence interval estimates for the shape parameter β 
obtained using the aforementioned techniques are plotted on the relative profile- 
likelihood function graph of β in order to compare their plausibilities. These 
plots are given below. 
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Figure 1. Plots of relative profile-likelihood function of β for α = 1, β = 1.5, 
r = 4, n = 40. 

 

 

Figure 2. Plots of relative profile-likelihood function of β for α = 1.5, β = 1.5, 
r = 4, n = 40. 

 

 

Figure 3. Plots of relative profile-likelihood function of β for α = 0.5, β = 1.5, 
r = 8, n = 40. 
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Figure 4. Plots of relative profile-likelihood function of β for α = 1, β = 1.5, 
r = 8, n = 40. 

 

 

Figure 5. Plots of relative profile-likelihood function of β for α = 1.5, β = 1.5, 
r = 8, n = 40. 

 

 

Figure 6. Plots of relative profile-likelihood function of β for α = 1.5, β = 1.5, 
r = 4, n = 20. 
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Figure 7. Plots of relative profile-likelihood function of β for α = 1.5, β = 1.5, r = 8, n = 20. 
 

It is evident from Figures 1-7 that the length of the interval estimates for the shape 
parameter β associated with the profile-likelihood method are narrower as compared 
to those associated with the Wald technique irrespective of the sample size n. 

Similarly, a subset of interval estimates for the scale parameter α obtained us-
ing the aforementioned techniques, are plotted on the profile-likelihood func-
tion graph of α in order to illustrate their plausibilities. The horizontal red line 
denotes 14.7% percentile which is equivalent to 95% confidence interval. These 
plots are given below.  

 

 

Figure 8. Plots of relative profile-likelihood function of α for α = 1, β = 1.5, r = 4, n = 40. 
 

 

Figure 9. Plots of relative profile-likelihood function of α for α = 1.5, β = 1.5, r = 4, n = 40. 
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Figure 10. Plots of relative profile-likelihood function of α for α = 1.5, β = 1.5, r = 4, 
n = 20. 
 
It is evident from Figures 8-10 above the length of the interval estimates for 

the scale parameter α associated with the profile-likelihood method are narrower 
as compared to those associated with the Wald technique irrespective of the size 
of the sample size n. 

5.3. The Coverage Probabilities Results 

The 95% coverage probability results for the interval estimates of the 2-parameter 
Weibull distribution associated with Wald and profile-likelihood technique un-
der type-2 censoring scheme are given in Tables 5-8. 

From the results in Table 5, it can be observed that most of the coverage 
probabilities for the shape parameter β are greater than or relatively close to the 
nominal coverage probability (0.95). Similarly, it can also be observed that the 
coverage probabilities of the scale parameter α are less than the nominal cover-
age probability (0.95). 

From the results in Table 6, it can be observed that most of the coverage 
probabilities for the shape parameter β are greater than or relatively close to the 
nominal coverage probability (0.95). On the other hand, it can be observed that 
the coverage probabilities for the scale parameter α are less than or relatively 
close to the nominal coverage probability (0.95). 

 
Table 5. The 95% wald approximate coverage probabilities, for n = 20. 

α r CPα CPβ 

0.5 
8 0.845 0.956 

4 0.910 0.976 

1.0 
8 0.798 0.912 

4 0.895 0.968 

1.5 
8 0.682 0.858 

4 0.848 0.962 
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Table 6. The 95% wald approximate Coverage probabilities, for n = 40. 

α r CPα CPβ 

0.5 
8 0.915 0.958 

4 0.948 0.977 

1.0 
8 0.844 0.942 

4 0.920 0.976 

1.5 
8 0.767 0.918 

4 0.897 0.976 

 
Table 7. The 95% profile-likelihood coverage probabilities, for n = 20. 

α r CPα CPβ 

0.5 
8 0.873 0.923 

4 0.949 0.947 

1.0 
8 0.927 0.945 

4 0.958 0.966 

1.5 
8 0.682 0.881 

4 0.860 0.937 

 
Table 8. The 95% profile-likelihood coverage probabilities, for n = 40. 

α r CPα CPβ 

0.5 
8 0.955 0.961 

4 0.945 0.924 

1.0 
8 0.886 0.889 

4 0.892 0.937 

1.5 
8 0.674 0.817 

4 0.755 0.905 

 
Based on the coverage probability results given in Table 5 and Table 6, it can 

be observed that Wald coverage probabilities improve when sample size n is in-
creased. 

From the results given in Table 7, it can be observed that most of the coverage 
probabilities for the shape parameter β are very close to the nominal coverage 
probability (0.95) and the coverage probabilities for the scale parameter 𝛼𝛼 are 
less than or relatively close to the nominal coverage probability. 

From results given in Table 8, it can be observed that the coverage probabili-
ties for the shape parameter β are either less than, greater than or relatively close 
to the nominal coverage probability (0.95). Similarly, it can be observed that 
most of the coverage probabilities for the scale parameter α are less than the 
nominal coverage probability. 

Moreover, based on the coverage probability simulated results in Table 7 and 
Table 8, it can be observed that most of the profile-likelihood coverage proba-
bilities for both parameters are close to the nominal coverage probability (0.95) 
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when the sample size n is small, that is, when n = 20 . 

5.4. Real Data Analysis 

For illustrative purposes, real type-2 censored life data given in Nelson [22] is 
deployed to construct the approximate Wald confidence intervals and the ap-
proximate profile-likelihood confidence intervals for parameters of the 2- para-
meter Weibull distribution. The data represents the lifetimes in hours of twelve 
appliance cords subjected to a flex test and the test terminated after the failure of 
the first nine appliance cords. 

The data is as given below.  
57.5, 77.8, 88.0, 98.4, 102.1, 105.3, 139.3, 143.9, 148.0 
Since the empirical hazard function exhibits an increasing trend, the 2- para-

meter Weibull distribution can be used for analyzing the above real type-2 cen-
sored life data as described by Kundu and Raqab [23]. For the sake of computa-
tional ease, we have divided all the data points by 100. 

Using the above real data, the MLE’s of the parameters α and β of the 
2-parameter Weibull distribution under type-2 censoring scheme are obtained as 
0.3392821 and 4.4127589 respectively. Deploying the Wald method, the 95% ap-
proximate confidence intervals for α and β are obtained as [0.0485729, 0.629991] 
and [2.195963, 6.629554] respectively. Further, using the profile-likelihood tech-
nique, the 95% approximate confidence intervals for α and β are obtained as 
[0.1631579, 0.6113762] and [2.724605, 6.025074], respectively. Based on these 
results, it can be observed that the interval estimates obtained by the pro-
file-likelihood method are narrower as compared to those obtained using the 
Wald technique. The interval estimates obtained using both approaches are 
plotted on the relative profile-likelihood function graphs of α and β in order to 
illustrate their plausibilities. These plots are given in Figures 11-12. 

It is evident from Figure 11 and Figure 12 that the interval estimates ob-
tained by the profile-likelihood method are narrower as compared to those ob-
tained using the Wald technique.  

 

 

Figure 11. Plots of relative profile-likelihood function of β for = 9, n = 12. 
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Figure 12. Plots of relative profile-likelihood function of α for = 9, n = 12.  

6. Discussion 

In this paper, we have considered interval estimation of a 2-parameter Weibull 
distribution based on type-2 censored data. We have used profile-likelihood 
technique to compute approximate confidence intervals for the parameters of 
the Weibull distribution under different values of sample size n, different values 
of effective sample size r and different values of the scale parameter α with value 
of the shape parameter β fixed as 1.5. From simulation results in Table 1 and 
Table 2, it can be observed that the confidence lengths of interval estimates for α 
and β obtained by Wald technique are relatively wide for both small and large 
sample size. 

From the simulation results in Table 3 and Table 4 it can be observed the 
confidence lengths of interval estimates for the scale parameter α and shape pa-
rameter β obtained by profile-likelihood technique are relatively narrow for both 
small and large sample size. The profile-likelihood technique produced im-
proved confidence interval estimates for α and β given in Table 3 to Table 4 
which are relatively narrower for both small and large sample size.  

From the simulation results in Tables 5-8 it can be observed that, for small 
sample size n = 20, most of the coverage probability results for the parameters α 
and β associated with the Wald method are not very stable because they are be-
low the nominal coverage probability (0.95). On the other hand, it can be ob-
served that for large sample size n = 40, most of the coverage probability results 
for the parameters α and β associated with the Wald method are greater than or 
relatively close to the nominal coverage probability (0.95). Moreover, the cover-
age probability results for the parameters α and β associated with the pro-
file-likelihood technique are not that much stable when the sample size n is large 
because most of them are less than the nominal coverage probability but when 
the sample size n is small, most of them are relatively close to the nominal cov-
erage probability. 
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In interval estimation, profile-likelihood technique is preferred over Wald 
method in the context of small samples because it yields more plausible interval 
estimates. The confidence lengths in the case of the profile-likelihood method 
are narrower as compared to those of the Wald technique. This can be explained 
by the fact that Wald method is appropriate for large samples [24]. Therefore, it 
may give inaccurate interval estimates when the sample size is small.  

The Profile-likelihood interval estimates obtained in this paper can be used to 
make better inferences in life-testing experiments when the sample size n used is 
small. This will save time and minimize the cost of performing life-testing expe-
riments.  

7. Conclusion 

Based on the simulation and real data results, it can be concluded that the Pro-
file-likelihood technique outperforms the Wald method because it yields nar-
rower interval estimates. The method applied in this paper can be extended to 
constructing approximate confidence intervals for the parameters of 2- parame-
ter Weibull distribution based on hybrid censored data. 
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