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Abstract 
Computer grids are infrastructures in which heterogeneous and distributed 
resources offer very high computing or storage performance. If they offer ex-
treme computing performance, they are also subject to the appearance of 
many failures related to this type of architecture. While performing tasks, if 
the response time of a node in the system incomprehensibly exceeds the re-
quirements of the specifications, the node experiences an omission failure. 
The task running in the failed node will be unavailable until the node resumes 
normal activity. Waiting not being a possible solution, many fault tolerance 
methods have been proposed. Despite this large number of fault tolerance 
methods on offer, computer grids are still prone to many failures by omis-
sion. In this work, a numerical study of the failures by omission which occur 
in the calculation grids during the execution of the tasks was carried out and 
a model allowing anticipating its failures was proposed with the formalism 
PDEVS (Parallel Discret EVent system Specification). 
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1. Introduction 

The need to have more and more computing or storage power for projects has 
pushed humans to create increasingly efficient infrastructures [1]. Since the ap-
pearance of the first computers, passing by supercomputers, then clusters to 
computer grids, the objective has always been the search for ever higher perfor-
mance. Computer networks are today the most efficient infrastructures in terms 
of power [2]. IT grid is a virtual infrastructure made up of a set of potentially 
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shared, distributed, heterogeneous, delocalized and autonomous IT resources. 
This distributed, heterogeneous and delocalized architecture that computer grids 
possess is at the origin of many failures, including failures by omission [3]. A 
failure known as “by omission” is a failure in which the component temporarily 
ceases its activity and then resumes its normal activity [4]. The origins of failures 
by omission are numerous, we can cite: The increase in processor temperature 
because when the processor temperature approaches the maximum temperature 
allowed on the processor’s Integrated Heat Distributor (IHS) is also referred to 
as the chassis temperature. Congestion when the RAM occupancy rate approaches 
100%. Many fault tolerance methods have been implemented so that the com-
puter network can function despite the presence of faults [5] [6] [7]. There are 
several fault tolerance methods that are proposed in the literature [6]: 

1) Fault tolerance based on the replication method. Different works have pre-
sented several replication methods: active, passive, semi-active, coordinator/co- 
hort and adaptive. All of these methods consist of creating a set of replicas in 
different nodes. These replicas communicate with each other and with the sys-
tem. When a failure occurs, one of the different replicas is chosen after consen-
sus to return the result of the final processing [8]. But the fact that each of the 
replicas uses the resources and decreases the overall power of the grid, is not a 
suitable method for computing grids which require the maximum of resources. 

2) Recovery-based fault tolerance. Two categories of restoration-based fault to-
lerance methods are proposed in the literature: backward recovery which consists 
of making system backups and, in the event of node failure, restoring from the 
last backup. And recovery by pursuit, which consists in the event of a failure of a 
node, reconstructs the failed job from a consensus between the other jobs [4]. 

Despite the evolution of fault tolerance methods, there are still many failures 
that occur in the performance of tasks in computer grids [9] [10]. For us, there-
fore, it is a question of answering the following question “Can we not propose a 
model that can anticipate failures by omission?”. The goal of this article is to 
propose a model which makes it possible to anticipate failures by omission in the 
calculation grids during the execution of the tasks. The plan for this article is as 
follows. In Section 2, we will present the corrected and failing models of a com-
puting grid and in Section 3, we will present the models that allow anticipating 
failures by omission in computing grids. 

2. Modeling and Simulation of a Computer Grid 

To model and simulate omission failures in computational grids, we use the 
PDEVS formalism to represent 100 nodes. In the following we present a calcula-
tion grid and the formalism used 

2.1. Description of a Computer Grid 

Ian Foster and Carl Kesselman were the first to use the word “grid” in their book 
“The Grid: Blueprint for a New Computing infrastructure” published in 2003 
[11]. They compare a computer network to an electrical network in terms of the 
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availability of resources. In an electrical network, all you have to do is plug an 
outlet into an outlet and electricity is supposed to flow. In a computer grid, it is 
enough to connect to the network to have the resources of the grid. a computer 
grid is defined as a set of shared, distributed, heterogeneous, delocalized and au-
tonomous hardware and software resources in which large-scale scientific prob-
lems can be solved [6] [12]. The life cycle of a job in a grid IT begins when the 
user obtains a certificate from a certificate authority trusted by the grid. The user 
then registers in a virtual grid organization and obtains their user certificate 
[13]. The user can then connect to the platform from a particular machine acting 
as a user interface from which he can launch a job. This job is submitted from 
the user interface to the job management system (WMS) through its “tache” in-
put port. The WMS searches for the calculation elements (CE) or nodes available 
to process the job. The system if job finds the grid at rest, ie in a “attente” state, it 
goes into an “active” state during which it processes the job. If the job finds the 
system in an “active” state, the job is just waiting for its turn to be processed. If a 
fault by omission is committed during the execution of the job. For example, 
jobs are sent to a node faster than it can process them, the node gets congested 
and an omission failure occurs on that node and its state goes to omission until 
the node decongests itself [14]. Once the processing of the parts of the job is fi-
nished, the WMS reconstructs the processed task and the processed job is re-
turned by the “error” port [12]. 

2.2. The PDEVS Formalism 

To model and simulate failures by omission in computing grids, we used the 
PDEVS formalism. A computing grid being a very complex autonomous system 
seen as a single computer but which is a connection of several computers which 
share their resources in order to provide a very high power [15]. This modeling 
cannot be done with standard modeling formalisms because the latter are less 
suited to the modeling of complex and autonomous systems [9]. The modeling 
was done with the PDEVS modeling formalism. The PDEVS formalism allows 
modeling of causal and deterministic systems [10]. Its role is to provide a simple 
technique of parallelization of calculations [13]. A PDEVS atomic model is based 
on continuous time, inputs, outputs, states and functions [16]. More complex 
models are built by connecting several atomic models in a hierarchical fashion. 
The interactions are ensured by the input and output ports of the models, which 
favors modularity [17]. A computing grid is a set of interconnected nodes with 
the same goal. To model a computer grid, we therefore start by proposing the 
model of a node as an atomic model. Then we propose a grid model as being a 
coupled model which interconnects atomic models. 

2.2.1. Model Description with Formal Specifications 
The following model presents the formal specifications of an atomic model with 
PDEVS [18], which is an extension of the DEVS formalism [19] 

, , , , , , ,int ext conMA X Y S taδ δ δ λ=  
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With: 
• the set of input ports and values:  

( ){ }, | ,X p v p Pe v Vx= ∈ ∈
 

where Pe and Vx are two finite sets representing the set of ports and input val-
ues; 
• the set of output ports and values:  

( ){ }, | ,Y p v p Ps v Vy= ∈ ∈
 

where Ps and Vy are two finite sets representing the set of output ports and the 
values carried by the events generated at the output; 
• the set of sequential states:  

{ }|iS s i R+= ∈  

• the internal state transition function  

( )int S Sδ →  

• the external state transition function 

( )ext Q X Sδ × →  

where, Xb all input bags belonging to X, and Q the total state set,  
( ) ( ){ }, | ,0Q s e s S e ta s= ∈ ≤ ≤ , e is the time elapsed since last transition; 

• the confluent transition function  

( )con S X Sδ × →  

• the output function: 

( )S Yλ →  

• the time advance function:  

( ) 0ta S R+→ ∞∪  

The following model presents the formal specifications of a model coupled 
with PDEVS 

, , , , , ,MC X Y D EOC IC EIC Select=  

With: 
• the set of input ports and values:  

( ){ }, | ,X p v p Pe v Vx= ∈ ∈  

where Pe and Vx are two finite sets representing the set of ports and input val-
ues; 
• the set of output ports and values:  

( ){ }, | ,Y p v p Ps v Vy= ∈ ∈  

where Ps and Vy are two finite sets representing the set of output ports and the 
values carried by the events generated at the output; 
• the set of the component names:  
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{ }|D mi i R+= ∈  

• external output couplings connect component outputs to external Out-
puts: 

( ) ( )( ){ }, , , | , , ,EOC mi psj MC psk i j s k R+= ∈  

• internal couplings connect component outputs to component inputs: 

( ) ( )( ){ }, , , | , , ,IC mi psj mk pel i j s k R+= ∈  

• external input couplings connect external inputs to component inputs 

( ) ( )( ){ }, , , | , , ,EIC MC pei mj pek e i j k R+= ∈  

• The selection function allowing to resolve the model activation conflict:  

( ) [ ]Select D mi i→  

2.2.2. Graphic Model 
The model shown in Figure 1 shows a description of the graphical model with 
PDEVS. 

, , , , , , ,int ext conMA X Y S taδ δ δ λ=  

2.3. Simulation 

For the simulations, we use the devs-suite simulator version 4.0.0 developed by 
the arizona center for modeling and integrative simulation using DEVSJAVA as 
a language [20]. To simulate the model below, 100 nodes were used to model a 
calculation grid with the parameters listed in Table 1: 

 

 
Figure 1. Graphical model with PDEVS. 
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Table 1. Characteristics of the nodes used. 

Node CPU Cores Tcase RAM size 

1 2 × Intel Xeon Gold 6130 16 cores/CPU 87˚C 192 GiB 

3 2 × Intel Core i5-3320M 4 cores/CPU 73˚C 12GiB 

1 2 × POWER8NVL 1.0 10 cores/CPU 74˚C 128 GiB 

1 2 × Intel Xeon Gold 5218 16 cores/CPU 87˚C 1.5 TiB 

3 Intel Xeon Gold 6130 16 cores/CPU 87˚C 768 GiB 

1 2 × Intel Xeon E5-2630 v4 10 cores/CPU 74˚C 256 GiB 

2 2 × AMD EPYC 7301 16 cores/CPU 65˚C 128 GiB 

4 2 × Intel Xeon E5-2680 v4 14 cores/CPU 86˚C 768 GiB 

1 4 × Intel Xeon Gold 6126 12 cores/CPU 86˚C 192 GiB 

3 2 × Intel Xeon E5-2630L 6 cores/CPU 69.8˚C 32 GiB 

1 2 × Intel Xeon E5-2698 v4 20 cores/CPU 90˚C 512 GiB 

5 Intel Xeon E5-2620 6 cores/CPU 77.4˚C 32 GiB 

5 AMD EPYC 7642 48 cores/CPU 66˚C 512 GiB 

1 2 × Intel Xeon E5-2620 v4 8 cores/CPU 74˚C 64 GiB 

2 2 × Intel Xeon E5-2630 6 cores/CPU 77.4˚C 32 GiB 

6 ThunderX2 99xx 32 cores/CPU 74˚C 256 GiB 

1 2 × AMD Opteron 250 1 core/CPU 65˚C 2 GiB 

1 2 × Intel Xeon E5-2630 6 cores/CPU 77.4˚C 32 GiB 

1 2 × Intel Xeon Silver 4110 8 cores/CPU 77˚C 128 GiB 

1 8 × Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB 

1 2 × Intel Xeon E5-2620 v3 6 cores/CPU 72.6˚C 64 GiB 

1 2 × Intel Xeon E5-2650 8 cores/CPU 77.4˚C 256 GiB 

10 Intel Xeon Gold 5218R 20 cores/CPU 87˚C 96 GiB 

1 2 × Intel Xeon E5-2650 8 cores/CPU 77.4˚C 64 GiB 

2 Intel Xeon E5-2650 v4 12 cores/CPU 80˚C 128 GiB 

1 2 × Intel Xeon E5-2603 v3 6 cores/CPU 72.8˚C 64 GiB 

2 Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB 

6 Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB 

1 Intel Xeon Gold 5220 18 cores/CPU 87˚C 96 GiB 

4 2 × AMD EPYC 7452 32 cores/CPU 65˚C 128 GiB 

5 AMD EPYC 7351 16 cores/CPU 66˚C 128 GiB 

1 2 × Intel Xeon Gold 6130 16 cores/CPU 87˚C 192 GiB 

1 2 × Intel Xeon E5-2660 8 cores/CPU 73˚C 64 GiB 

7 2 × Intel Xeon E5-2630L v4 10 cores/CPU 62˚C 128 GiB 
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Continued 

1 2 × Intel Xeon E5-2660 v2 10 cores/CPU 75˚C 128 GiB 

1 3 × Intel Xeon X5570 4 cores/CPU 75˚C 24 GiB 

1 2 × AMD Opteron 6164 HE 12 cores/CPU 65˚C 48 GiB 

1 2 × Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB 

8 Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB 

1 2 × Intel Xeon X5670 6 cores/CPU 81.3˚C 96 GiB 

 
The 100 nodes are distributed as in the table above. For this modelization, it is 

considered that the distribution of tasks is perfectly balanced [16] that is to say: 

( )
( )

( )
( )

total total
total

NbFlops Noeud1 NbFlops Noeudn
Time

Flops/s Noeud1 Flops/s Noeudn
= = =�  

With: NbFlops the number of operations performed on all the processors of a 
node. Flops/s the computing power of a node and Time the execution time of 
each node of the grid and the tasks are submitted to the system in an identical 
time interval. 

3. Results and Discussion 
3.1. Modeling a Correct Node 

A good node is a node that cannot receive failures. The specifications of such a 
node are shown in Figure 2. 

The model starts in an initial “attente” state. when it receives a job via the 
“tache” port which is an external transition (continuous arrows), the node goes 
into an “active” state during which the job is processed. At the end of processing, 
the processed job is returned by the “resultat” port. If several jobs have been sent 
to the node, the jobs are processed one after the other. Once a job has been 
processed, the node continues to process the next job thanks to an internal tran-
sition (interrupted arrows). If during the processing of a job, another job is sent 
by the “tache” port, a confluence function will select which of the jobs will be 
executed between the internal and external transition. The representation of 
Figure 3 is a formal description of the model of a correct node with the PDEVS 
formalism 

The model having the above formal specifications of a correct node has been 
simulated and the results of this simulation are shown in the Figure 4. 

The simulation of Figure 4 is structured as follows: graph a represents the 
time of the last event, that is to say the time of the state being processed. Graph b 
represents the execution time of the next event. The graph c-1 represents the 
evolution of the states of the system during the execution of the jobs and the 
graph c-2 represents the state of the system before the arrival of the jobs. The 
graphs d and e represent the two input ports “tache” and “faute”, when a job is 
submitted for processing to the grid, it enters by the port “tache” and when a 
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fault is committed it enters by the “faute” Port. The graphs f and g respectively 
represent the output ports “resultat” and “erreur”. When a job is successfully 
processed, the result is returned through the “resultat” port and when the system 
encounters a failure, the result is returned through the “erreur” port. 

The job that are sent to the node are run for 100 seconds. The first tasks that 
are sent to the node are the first to be executed. The system boots into an “at-
tente” state. When a transition occurs, the node executes the job for the defined 
execution time. When processing is complete, the corresponding output port 
takes the corresponding value. In this node, no failure ever occurs so no matter 
what port entered, the out port “resultat” will always receive an out value on 
each transition. In the rest of this work, we model a node that can receive fail-
ures by omission. 

 

 
Figure 2. Model of a correct node. 

 

 
Figure 3. Formal description of a correct node. 

https://doi.org/10.4236/ojop.2021.103006


R. A. Yougouda et al. 
 

 

DOI: 10.4236/ojop.2021.103006 79 Open Journal of Optimization 
 

 
Figure 4. Simulation of a correct node. 

3.2. Modeling a Failed Node 

A node may receive failures by omission from time to time. The specifications of 
such a node capable of receiving failures by omission are shown in Figure 5 and 
Figure 6. 

A failed node is a good node until a failure occurs, in which case a failure by 
omission. in this model, the node is in an “active” state until an omission failure 
occurs and the node enters an omission state. The node remains for a random 
period which can range from less than a second to infinity. After this period 
during which the node has remained in an “omission” state, it resumes its nor-
mal service and passes to the “active” state. The simulation of Figure 7 represents 

https://doi.org/10.4236/ojop.2021.103006


R. A. Yougouda et al. 
 

 

DOI: 10.4236/ojop.2021.103006 80 Open Journal of Optimization 
 

that of a model failing by omission. 
Jobs sent to the node run for 100 seconds. The first jobs sent to the node are 

the first to be executed. The system starts up in an initial “attente” state. When a 
transition occurs, the node executes the task for the defined execution time. 
When processing is complete, the corresponding output port takes on the cor-
responding value. In this node, when failure by omission occurs in the node (red 
band), either by overheating of the processor or by overload of the RAM, the 
node goes into an “omission” state for a random period. In this simulation the 
failure by omission lasts 90 seconds. After this period, the node resumed its ac-
tivity as it should. Task 4 will therefore run for 190 seconds and there is now a 90 
second lag on all subsequent processed jobs. 

 

 
Figure 5. Model of a node that can receive failures by omission. 

 

 
Figure 6. Formal description of a node failing by omission. 

https://doi.org/10.4236/ojop.2021.103006


R. A. Yougouda et al. 
 

 

DOI: 10.4236/ojop.2021.103006 81 Open Journal of Optimization 
 

 
Figure 7. Simulation of a failed node by omission. 

3.3. Modeling of a Calculation Grid 

A computing grid is a set of heterogeneous, interconnected nodes considered as 
a single computer to provide great computing power. The modeling of a compu-
ting grid is therefore, with the PDEVS formalism, a coupled model where the 
various atomic models which constitute it are the various nodes. The formal 
specifications of a grid are presented in Figure 8. 

In this modelization, the model N represents the calculation grid. Jobs can be 
submitted through two ports to the grid, “stain” and “fault”. The submitted jobs 
arrive at the “WMSI” task manager, which is responsible for finding available 
nodes and sending parts of the job to them. Once the jobs have been processed 
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by the various nodes, the parts of the job are sent back to the “WMSO” task 
manager to be reconstructed, restored and sent back to the output port. The si-
mulation of this model is shown in Figure 9. 

In this simulation of a computing grid, every 150 seconds the system makes 
sure that the nodes are still all connected to the network (green bands) by ex-
changing messages while performing a system backup. In the event of a failure 
(red band), a fault tolerance technique is applied to the next message exchange. 
In the case of our simulation during the processing of job5, a failure occurs. fail-
ure detection occurs at t = 450 sec. The fault tolerance technique is applied and 
the job is processed. In this simulation, the restart recovery caused by node fail-
ure is general, that is to say all nodes are restored. Of which at t = 500, the sys-
tem restarts where the failure occurred. 

3.4. Proposed Correction Model 

In this part we propose a model which makes it possible to anticipate failures by 
omission in the calculation grid. Unlike the current method of performing sys-
tem backups at a set frequency and restoring the last backup in the event of a 
failure, this model looks for signs that can lead to omission failure in every node. 
The principle is to observe the components of each node using the node’s sen-
sors and exchanged messages. For example, if the temperature sensor of the 
processor signals a temperature which is approaching due to the temperature of 
the processor chassis, the failure is reported to the task manager who will no 
longer send jobs to the node likely to have a failure, the model is therefore 
represented in Figure 10. 

 

 
Figure 8. Formal description of the calculation grid. 
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Figure 9. Simulation of fault tolerances by omission in calculation grids. 

 

 
Figure 10. Failure-by-omission anticipation model. 
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The formal description of this model is presented in Figure 11. 
The above model presents a model which allows failures by omission to be an-

ticipated. Once the node begins to receive jobs, it goes into the “active” state. 
During job processing, if the node begins to receive too many jobs beyond what 
it can handle, the RAM occupancy rate increases to saturation causing failure by 
omission. Or if, during job processing, the processor temperature rises to ap-
proach the temperature of the processor chassis, the node temporarily stops op-
erating indefinitely and causes an omission failure. These values being measured 
continuously, the principle is to send information on the temperature of the 
processor and the rate of occupation of the RAM to the task manager which will 
determine whether it should always forward jobs to this node or not based on 
the state of RAM and processor. In general, a safe range during normal workload 
is between 40˚C and 65˚C (or 104˚F - 149˚F) [17]. The Intel Xeon E5-2630L v4 
processor has a chassis temperature of Tcase = 62˚C. In this model, if the pro-
cessor temperature reaches 62˚C, the node reports an “omitted state”. Or if the 
RAM occupancy rate reaches 90% of the usable RAM, the node reports the fail-
ure and the grid task manager will no longer send tasks to the node (Figure 12). 

This simulation is that of a calculation grid which makes it possible to antic-
ipate failures by omission. In this simulation, three nodes are likely to be bad 
and the rest are good nodes. If one of the nodes goes down, its processor tem-
perature rises 15 degrees after each task. In this simulation, if the temperature of 
the Tcase processor chassis minus the T processor temperature is less than 10 
degrees (Tcase-T ≤ 10) then a failure is reported in the node and the message is 
transmitted to the task manager which will ignore thereafter. Here this case oc-
curs after the processing of job4, a node is reported as bad and the task manager  
 

 
Figure 11. Formal description of the failure anticipation 
model by omission. 
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Figure 12. Simulation of a calculation grid that can anticipate failures by omission. 
 
ignores it and the system continues to execute the jobs. Unlike other fault toler-
ance protocols which wait for the failure to occur before tolerating it, this model 
allows you to anticipate the failure by probing the various components of the 
node and determining if there may be a failure. This detection time and recovery 
of the system are almost zero with this model. But this model is only effective if 
the failure is normal, ie failures which are not linked to the attacks. 

4. Conclusions 

Failures by omission in computational grids have been studied numerically in 
the present work. The numerical methodology is based on the PDEVS modeling 
formalism in the devs-suite simulator version 4.0.0. The main results are sum-
marized as follows: 
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1) We first present a correct node model which is a node which cannot receive 
failures and a node model which can receive failures by omission. 

2) Next, we present a computational grid model which is a set of intercon-
nected nodes. This grid which is a set of correct nodes and nodes that can re-
ceive failures by omission. 

3) Finally, we propose a model which makes it possible to anticipate failures 
by omission in the calculation grids. This model is based on the behavior of cer-
tain components of the node to anticipate failures. Using this model will help 
limit omission failures that are caused by the hardware components of the node. 
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