
Open Journal of Optimization, 2021, 10, 71-87
https://www.scirp.org/journal/ojop

ISSN Online: 2325-7091
ISSN Print: 2325-7105

DOI: 10.4236/ojop.2021.103006 Sep. 1, 2021 71 Open Journal of Optimization

Model for Anticipating Failures by Omission in
Calculation Grids

Ramadane Adamou Yougouda1, Marcellin Nkenlifack2, Vivient Corneille Kamla1,
Laurent Bitjoka1

1ENSAI, University of Ngaoundere, Ngaoundere, Cameroon
2URIFIA, Department of Mathematics and Computer Science, Faculty of Science, University of Dschang, Dschang, Cameroon

Abstract
Computer grids are infrastructures in which heterogeneous and distributed
resources offer very high computing or storage performance. If they offer ex-
treme computing performance, they are also subject to the appearance of
many failures related to this type of architecture. While performing tasks, if
the response time of a node in the system incomprehensibly exceeds the re-
quirements of the specifications, the node experiences an omission failure.
The task running in the failed node will be unavailable until the node resumes
normal activity. Waiting not being a possible solution, many fault tolerance
methods have been proposed. Despite this large number of fault tolerance
methods on offer, computer grids are still prone to many failures by omis-
sion. In this work, a numerical study of the failures by omission which occur
in the calculation grids during the execution of the tasks was carried out and
a model allowing anticipating its failures was proposed with the formalism
PDEVS (Parallel Discret EVent system Specification).

Keywords
Calculation Grids, Fault Tolerance, Failures by Omissions, PDEVS, DEVS,
Modeling, Simulation, DEVSJAVA

1. Introduction

The need to have more and more computing or storage power for projects has
pushed humans to create increasingly efficient infrastructures [1]. Since the ap-
pearance of the first computers, passing by supercomputers, then clusters to
computer grids, the objective has always been the search for ever higher perfor-
mance. Computer networks are today the most efficient infrastructures in terms
of power [2]. IT grid is a virtual infrastructure made up of a set of potentially

How to cite this paper: Yougouda, R.A.,
Nkenlifack, M., Kamla, V.C. and Bitjoka, L.
(2021) Model for Anticipating Failures by
Omission in Calculation Grids. Open Jour-
nal of Optimization, 10, 71-87.
https://doi.org/10.4236/ojop.2021.103006

Received: June 15, 2021
Accepted: August 29, 2021
Published: September 1, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojop
https://doi.org/10.4236/ojop.2021.103006
https://www.scirp.org/
https://doi.org/10.4236/ojop.2021.103006
http://creativecommons.org/licenses/by/4.0/

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 72 Open Journal of Optimization

shared, distributed, heterogeneous, delocalized and autonomous IT resources.
This distributed, heterogeneous and delocalized architecture that computer grids
possess is at the origin of many failures, including failures by omission [3]. A
failure known as “by omission” is a failure in which the component temporarily
ceases its activity and then resumes its normal activity [4]. The origins of failures
by omission are numerous, we can cite: The increase in processor temperature
because when the processor temperature approaches the maximum temperature
allowed on the processor’s Integrated Heat Distributor (IHS) is also referred to
as the chassis temperature. Congestion when the RAM occupancy rate approaches
100%. Many fault tolerance methods have been implemented so that the com-
puter network can function despite the presence of faults [5] [6] [7]. There are
several fault tolerance methods that are proposed in the literature [6]:

1) Fault tolerance based on the replication method. Different works have pre-
sented several replication methods: active, passive, semi-active, coordinator/co-
hort and adaptive. All of these methods consist of creating a set of replicas in
different nodes. These replicas communicate with each other and with the sys-
tem. When a failure occurs, one of the different replicas is chosen after consen-
sus to return the result of the final processing [8]. But the fact that each of the
replicas uses the resources and decreases the overall power of the grid, is not a
suitable method for computing grids which require the maximum of resources.

2) Recovery-based fault tolerance. Two categories of restoration-based fault to-
lerance methods are proposed in the literature: backward recovery which consists
of making system backups and, in the event of node failure, restoring from the
last backup. And recovery by pursuit, which consists in the event of a failure of a
node, reconstructs the failed job from a consensus between the other jobs [4].

Despite the evolution of fault tolerance methods, there are still many failures
that occur in the performance of tasks in computer grids [9] [10]. For us, there-
fore, it is a question of answering the following question “Can we not propose a
model that can anticipate failures by omission?”. The goal of this article is to
propose a model which makes it possible to anticipate failures by omission in the
calculation grids during the execution of the tasks. The plan for this article is as
follows. In Section 2, we will present the corrected and failing models of a com-
puting grid and in Section 3, we will present the models that allow anticipating
failures by omission in computing grids.

2. Modeling and Simulation of a Computer Grid

To model and simulate omission failures in computational grids, we use the
PDEVS formalism to represent 100 nodes. In the following we present a calcula-
tion grid and the formalism used

2.1. Description of a Computer Grid

Ian Foster and Carl Kesselman were the first to use the word “grid” in their book
“The Grid: Blueprint for a New Computing infrastructure” published in 2003
[11]. They compare a computer network to an electrical network in terms of the

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 73 Open Journal of Optimization

availability of resources. In an electrical network, all you have to do is plug an
outlet into an outlet and electricity is supposed to flow. In a computer grid, it is
enough to connect to the network to have the resources of the grid. a computer
grid is defined as a set of shared, distributed, heterogeneous, delocalized and au-
tonomous hardware and software resources in which large-scale scientific prob-
lems can be solved [6] [12]. The life cycle of a job in a grid IT begins when the
user obtains a certificate from a certificate authority trusted by the grid. The user
then registers in a virtual grid organization and obtains their user certificate
[13]. The user can then connect to the platform from a particular machine acting
as a user interface from which he can launch a job. This job is submitted from
the user interface to the job management system (WMS) through its “tache” in-
put port. The WMS searches for the calculation elements (CE) or nodes available
to process the job. The system if job finds the grid at rest, ie in a “attente” state, it
goes into an “active” state during which it processes the job. If the job finds the
system in an “active” state, the job is just waiting for its turn to be processed. If a
fault by omission is committed during the execution of the job. For example,
jobs are sent to a node faster than it can process them, the node gets congested
and an omission failure occurs on that node and its state goes to omission until
the node decongests itself [14]. Once the processing of the parts of the job is fi-
nished, the WMS reconstructs the processed task and the processed job is re-
turned by the “error” port [12].

2.2. The PDEVS Formalism

To model and simulate failures by omission in computing grids, we used the
PDEVS formalism. A computing grid being a very complex autonomous system
seen as a single computer but which is a connection of several computers which
share their resources in order to provide a very high power [15]. This modeling
cannot be done with standard modeling formalisms because the latter are less
suited to the modeling of complex and autonomous systems [9]. The modeling
was done with the PDEVS modeling formalism. The PDEVS formalism allows
modeling of causal and deterministic systems [10]. Its role is to provide a simple
technique of parallelization of calculations [13]. A PDEVS atomic model is based
on continuous time, inputs, outputs, states and functions [16]. More complex
models are built by connecting several atomic models in a hierarchical fashion.
The interactions are ensured by the input and output ports of the models, which
favors modularity [17]. A computing grid is a set of interconnected nodes with
the same goal. To model a computer grid, we therefore start by proposing the
model of a node as an atomic model. Then we propose a grid model as being a
coupled model which interconnects atomic models.

2.2.1. Model Description with Formal Specifications
The following model presents the formal specifications of an atomic model with
PDEVS [18], which is an extension of the DEVS formalism [19]

, , , , , , ,int ext conMA X Y S taδ δ δ λ=

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 74 Open Journal of Optimization

With:
• the set of input ports and values:

(){ }, | ,X p v p Pe v Vx= ∈ ∈

where Pe and Vx are two finite sets representing the set of ports and input val-
ues;
• the set of output ports and values:

(){ }, | ,Y p v p Ps v Vy= ∈ ∈

where Ps and Vy are two finite sets representing the set of output ports and the
values carried by the events generated at the output;
• the set of sequential states:

{ }|iS s i R+= ∈

• the internal state transition function

()int S Sδ →

• the external state transition function

()ext Q X Sδ × →

where, Xb all input bags belonging to X, and Q the total state set,
() (){ }, | ,0Q s e s S e ta s= ∈ ≤ ≤ , e is the time elapsed since last transition;

• the confluent transition function

()con S X Sδ × →

• the output function:

()S Yλ →

• the time advance function:

() 0ta S R+→ ∞∪

The following model presents the formal specifications of a model coupled
with PDEVS

, , , , , ,MC X Y D EOC IC EIC Select=

With:
• the set of input ports and values:

(){ }, | ,X p v p Pe v Vx= ∈ ∈

where Pe and Vx are two finite sets representing the set of ports and input val-
ues;
• the set of output ports and values:

(){ }, | ,Y p v p Ps v Vy= ∈ ∈

where Ps and Vy are two finite sets representing the set of output ports and the
values carried by the events generated at the output;
• the set of the component names:

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 75 Open Journal of Optimization

{ }|D mi i R+= ∈

• external output couplings connect component outputs to external Out-
puts:

() ()(){ }, , , | , , ,EOC mi psj MC psk i j s k R+= ∈

• internal couplings connect component outputs to component inputs:

() ()(){ }, , , | , , ,IC mi psj mk pel i j s k R+= ∈

• external input couplings connect external inputs to component inputs

() ()(){ }, , , | , , ,EIC MC pei mj pek e i j k R+= ∈

• The selection function allowing to resolve the model activation conflict:

() []Select D mi i→

2.2.2. Graphic Model
The model shown in Figure 1 shows a description of the graphical model with
PDEVS.

, , , , , , ,int ext conMA X Y S taδ δ δ λ=

2.3. Simulation

For the simulations, we use the devs-suite simulator version 4.0.0 developed by
the arizona center for modeling and integrative simulation using DEVSJAVA as
a language [20]. To simulate the model below, 100 nodes were used to model a
calculation grid with the parameters listed in Table 1:

Figure 1. Graphical model with PDEVS.

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 76 Open Journal of Optimization

Table 1. Characteristics of the nodes used.

Node CPU Cores Tcase RAM size

1 2 × Intel Xeon Gold 6130 16 cores/CPU 87˚C 192 GiB

3 2 × Intel Core i5-3320M 4 cores/CPU 73˚C 12GiB

1 2 × POWER8NVL 1.0 10 cores/CPU 74˚C 128 GiB

1 2 × Intel Xeon Gold 5218 16 cores/CPU 87˚C 1.5 TiB

3 Intel Xeon Gold 6130 16 cores/CPU 87˚C 768 GiB

1 2 × Intel Xeon E5-2630 v4 10 cores/CPU 74˚C 256 GiB

2 2 × AMD EPYC 7301 16 cores/CPU 65˚C 128 GiB

4 2 × Intel Xeon E5-2680 v4 14 cores/CPU 86˚C 768 GiB

1 4 × Intel Xeon Gold 6126 12 cores/CPU 86˚C 192 GiB

3 2 × Intel Xeon E5-2630L 6 cores/CPU 69.8˚C 32 GiB

1 2 × Intel Xeon E5-2698 v4 20 cores/CPU 90˚C 512 GiB

5 Intel Xeon E5-2620 6 cores/CPU 77.4˚C 32 GiB

5 AMD EPYC 7642 48 cores/CPU 66˚C 512 GiB

1 2 × Intel Xeon E5-2620 v4 8 cores/CPU 74˚C 64 GiB

2 2 × Intel Xeon E5-2630 6 cores/CPU 77.4˚C 32 GiB

6 ThunderX2 99xx 32 cores/CPU 74˚C 256 GiB

1 2 × AMD Opteron 250 1 core/CPU 65˚C 2 GiB

1 2 × Intel Xeon E5-2630 6 cores/CPU 77.4˚C 32 GiB

1 2 × Intel Xeon Silver 4110 8 cores/CPU 77˚C 128 GiB

1 8 × Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB

1 2 × Intel Xeon E5-2620 v3 6 cores/CPU 72.6˚C 64 GiB

1 2 × Intel Xeon E5-2650 8 cores/CPU 77.4˚C 256 GiB

10 Intel Xeon Gold 5218R 20 cores/CPU 87˚C 96 GiB

1 2 × Intel Xeon E5-2650 8 cores/CPU 77.4˚C 64 GiB

2 Intel Xeon E5-2650 v4 12 cores/CPU 80˚C 128 GiB

1 2 × Intel Xeon E5-2603 v3 6 cores/CPU 72.8˚C 64 GiB

2 Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB

6 Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB

1 Intel Xeon Gold 5220 18 cores/CPU 87˚C 96 GiB

4 2 × AMD EPYC 7452 32 cores/CPU 65˚C 128 GiB

5 AMD EPYC 7351 16 cores/CPU 66˚C 128 GiB

1 2 × Intel Xeon Gold 6130 16 cores/CPU 87˚C 192 GiB

1 2 × Intel Xeon E5-2660 8 cores/CPU 73˚C 64 GiB

7 2 × Intel Xeon E5-2630L v4 10 cores/CPU 62˚C 128 GiB

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 77 Open Journal of Optimization

Continued

1 2 × Intel Xeon E5-2660 v2 10 cores/CPU 75˚C 128 GiB

1 3 × Intel Xeon X5570 4 cores/CPU 75˚C 24 GiB

1 2 × AMD Opteron 6164 HE 12 cores/CPU 65˚C 48 GiB

1 2 × Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB

8 Intel Xeon E5-2630 v3 8 cores/CPU 72.1˚C 128 GiB

1 2 × Intel Xeon X5670 6 cores/CPU 81.3˚C 96 GiB

The 100 nodes are distributed as in the table above. For this modelization, it is

considered that the distribution of tasks is perfectly balanced [16] that is to say:

()
()

()
()

total total
total

NbFlops Noeud1 NbFlops Noeudn
Time

Flops/s Noeud1 Flops/s Noeudn
= = =�

With: NbFlops the number of operations performed on all the processors of a
node. Flops/s the computing power of a node and Time the execution time of
each node of the grid and the tasks are submitted to the system in an identical
time interval.

3. Results and Discussion
3.1. Modeling a Correct Node

A good node is a node that cannot receive failures. The specifications of such a
node are shown in Figure 2.

The model starts in an initial “attente” state. when it receives a job via the
“tache” port which is an external transition (continuous arrows), the node goes
into an “active” state during which the job is processed. At the end of processing,
the processed job is returned by the “resultat” port. If several jobs have been sent
to the node, the jobs are processed one after the other. Once a job has been
processed, the node continues to process the next job thanks to an internal tran-
sition (interrupted arrows). If during the processing of a job, another job is sent
by the “tache” port, a confluence function will select which of the jobs will be
executed between the internal and external transition. The representation of
Figure 3 is a formal description of the model of a correct node with the PDEVS
formalism

The model having the above formal specifications of a correct node has been
simulated and the results of this simulation are shown in the Figure 4.

The simulation of Figure 4 is structured as follows: graph a represents the
time of the last event, that is to say the time of the state being processed. Graph b
represents the execution time of the next event. The graph c-1 represents the
evolution of the states of the system during the execution of the jobs and the
graph c-2 represents the state of the system before the arrival of the jobs. The
graphs d and e represent the two input ports “tache” and “faute”, when a job is
submitted for processing to the grid, it enters by the port “tache” and when a

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 78 Open Journal of Optimization

fault is committed it enters by the “faute” Port. The graphs f and g respectively
represent the output ports “resultat” and “erreur”. When a job is successfully
processed, the result is returned through the “resultat” port and when the system
encounters a failure, the result is returned through the “erreur” port.

The job that are sent to the node are run for 100 seconds. The first tasks that
are sent to the node are the first to be executed. The system boots into an “at-
tente” state. When a transition occurs, the node executes the job for the defined
execution time. When processing is complete, the corresponding output port
takes the corresponding value. In this node, no failure ever occurs so no matter
what port entered, the out port “resultat” will always receive an out value on
each transition. In the rest of this work, we model a node that can receive fail-
ures by omission.

Figure 2. Model of a correct node.

Figure 3. Formal description of a correct node.

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 79 Open Journal of Optimization

Figure 4. Simulation of a correct node.

3.2. Modeling a Failed Node

A node may receive failures by omission from time to time. The specifications of
such a node capable of receiving failures by omission are shown in Figure 5 and
Figure 6.

A failed node is a good node until a failure occurs, in which case a failure by
omission. in this model, the node is in an “active” state until an omission failure
occurs and the node enters an omission state. The node remains for a random
period which can range from less than a second to infinity. After this period
during which the node has remained in an “omission” state, it resumes its nor-
mal service and passes to the “active” state. The simulation of Figure 7 represents

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 80 Open Journal of Optimization

that of a model failing by omission.
Jobs sent to the node run for 100 seconds. The first jobs sent to the node are

the first to be executed. The system starts up in an initial “attente” state. When a
transition occurs, the node executes the task for the defined execution time.
When processing is complete, the corresponding output port takes on the cor-
responding value. In this node, when failure by omission occurs in the node (red
band), either by overheating of the processor or by overload of the RAM, the
node goes into an “omission” state for a random period. In this simulation the
failure by omission lasts 90 seconds. After this period, the node resumed its ac-
tivity as it should. Task 4 will therefore run for 190 seconds and there is now a 90
second lag on all subsequent processed jobs.

Figure 5. Model of a node that can receive failures by omission.

Figure 6. Formal description of a node failing by omission.

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 81 Open Journal of Optimization

Figure 7. Simulation of a failed node by omission.

3.3. Modeling of a Calculation Grid

A computing grid is a set of heterogeneous, interconnected nodes considered as
a single computer to provide great computing power. The modeling of a compu-
ting grid is therefore, with the PDEVS formalism, a coupled model where the
various atomic models which constitute it are the various nodes. The formal
specifications of a grid are presented in Figure 8.

In this modelization, the model N represents the calculation grid. Jobs can be
submitted through two ports to the grid, “stain” and “fault”. The submitted jobs
arrive at the “WMSI” task manager, which is responsible for finding available
nodes and sending parts of the job to them. Once the jobs have been processed

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 82 Open Journal of Optimization

by the various nodes, the parts of the job are sent back to the “WMSO” task
manager to be reconstructed, restored and sent back to the output port. The si-
mulation of this model is shown in Figure 9.

In this simulation of a computing grid, every 150 seconds the system makes
sure that the nodes are still all connected to the network (green bands) by ex-
changing messages while performing a system backup. In the event of a failure
(red band), a fault tolerance technique is applied to the next message exchange.
In the case of our simulation during the processing of job5, a failure occurs. fail-
ure detection occurs at t = 450 sec. The fault tolerance technique is applied and
the job is processed. In this simulation, the restart recovery caused by node fail-
ure is general, that is to say all nodes are restored. Of which at t = 500, the sys-
tem restarts where the failure occurred.

3.4. Proposed Correction Model

In this part we propose a model which makes it possible to anticipate failures by
omission in the calculation grid. Unlike the current method of performing sys-
tem backups at a set frequency and restoring the last backup in the event of a
failure, this model looks for signs that can lead to omission failure in every node.
The principle is to observe the components of each node using the node’s sen-
sors and exchanged messages. For example, if the temperature sensor of the
processor signals a temperature which is approaching due to the temperature of
the processor chassis, the failure is reported to the task manager who will no
longer send jobs to the node likely to have a failure, the model is therefore
represented in Figure 10.

Figure 8. Formal description of the calculation grid.

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 83 Open Journal of Optimization

Figure 9. Simulation of fault tolerances by omission in calculation grids.

Figure 10. Failure-by-omission anticipation model.

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 84 Open Journal of Optimization

The formal description of this model is presented in Figure 11.
The above model presents a model which allows failures by omission to be an-

ticipated. Once the node begins to receive jobs, it goes into the “active” state.
During job processing, if the node begins to receive too many jobs beyond what
it can handle, the RAM occupancy rate increases to saturation causing failure by
omission. Or if, during job processing, the processor temperature rises to ap-
proach the temperature of the processor chassis, the node temporarily stops op-
erating indefinitely and causes an omission failure. These values being measured
continuously, the principle is to send information on the temperature of the
processor and the rate of occupation of the RAM to the task manager which will
determine whether it should always forward jobs to this node or not based on
the state of RAM and processor. In general, a safe range during normal workload
is between 40˚C and 65˚C (or 104˚F - 149˚F) [17]. The Intel Xeon E5-2630L v4
processor has a chassis temperature of Tcase = 62˚C. In this model, if the pro-
cessor temperature reaches 62˚C, the node reports an “omitted state”. Or if the
RAM occupancy rate reaches 90% of the usable RAM, the node reports the fail-
ure and the grid task manager will no longer send tasks to the node (Figure 12).

This simulation is that of a calculation grid which makes it possible to antic-
ipate failures by omission. In this simulation, three nodes are likely to be bad
and the rest are good nodes. If one of the nodes goes down, its processor tem-
perature rises 15 degrees after each task. In this simulation, if the temperature of
the Tcase processor chassis minus the T processor temperature is less than 10
degrees (Tcase-T ≤ 10) then a failure is reported in the node and the message is
transmitted to the task manager which will ignore thereafter. Here this case oc-
curs after the processing of job4, a node is reported as bad and the task manager

Figure 11. Formal description of the failure anticipation
model by omission.

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 85 Open Journal of Optimization

Figure 12. Simulation of a calculation grid that can anticipate failures by omission.

ignores it and the system continues to execute the jobs. Unlike other fault toler-
ance protocols which wait for the failure to occur before tolerating it, this model
allows you to anticipate the failure by probing the various components of the
node and determining if there may be a failure. This detection time and recovery
of the system are almost zero with this model. But this model is only effective if
the failure is normal, ie failures which are not linked to the attacks.

4. Conclusions

Failures by omission in computational grids have been studied numerically in
the present work. The numerical methodology is based on the PDEVS modeling
formalism in the devs-suite simulator version 4.0.0. The main results are sum-
marized as follows:

https://doi.org/10.4236/ojop.2021.103006

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 86 Open Journal of Optimization

1) We first present a correct node model which is a node which cannot receive
failures and a node model which can receive failures by omission.

2) Next, we present a computational grid model which is a set of intercon-
nected nodes. This grid which is a set of correct nodes and nodes that can re-
ceive failures by omission.

3) Finally, we propose a model which makes it possible to anticipate failures
by omission in the calculation grids. This model is based on the behavior of cer-
tain components of the node to anticipate failures. Using this model will help
limit omission failures that are caused by the hardware components of the node.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Kalfadj, F., Belabbas, Y. and Meddeber, M. (2009) Conception d’un Simulateur de

Grilles Orienté Gestion d’Équilibrage. Proceedings of the 2nd Conférence Interna-
tionale sur l’Informatique et ses Applications, Saida, 3-4 May 2009, 1-11.

[2] Barchet-Estefanel, L.A. (2005) LaPIe: Communications Collectives adaptées aux Gril-
les de Calcul. Institut National Polytechnique De Grenoble, Grenoble.

[3] Taïani, F., Killijian, M.O. and Fabre, C.J. (2006) Intergiciels pour la tolérance aux
fautes. RSTI-TSI, 25, 599-630. https://doi.org/10.3166/tsi.25.599-630

[4] Monnet, S. (2006) Gestion des données dans les grilles de calcul: Support pour la
tolérance aux fautes et la cohérence des données. Université Rennes 1, Rennes.

[5] Rebbah, M. (2015) Tolérance aux fautes dans les grilles de calcul. Université des
Sciences et de la Technologie d’Oran, Oran.

[6] Ndiaye, N.M. (2013) Techniques de gestion des défaillances dans les grilles infor-
matiques tolérantes aux fautes. Université Pierre et Marie Curie, Paris.

[7] Akoka, J. and Comyn-Wattiau, I. (2006) Encyclopédie de l’informatique et des sys-
tèmes d’information. Vuibert, Paris.

[8] Krakoviak, S. (2004) Tolerences aux fautes, Université Joseph Fourier.

[9] Ramat, É., Duboz, R. and Quesnel, G. (2012) Theorie de la modélisation et de la
simulation, fondements formels et operationnels de record/VLE, INRA-Cirad-
ULCO/LISIC.

[10] Zeigler, B.P., Kim, T.G. and Praehofer, H. (2000) Theory of Modeling and Simulation.
Academic Press, Orlando.

[11] Foster, I. and Kesselman, C. (2003) The Grid: Blueprint for a New Computing Infra-
structure. Morgan Kaufmann, Burlington.

[12] Avizienis, A., Laprie, J.-C. and Randell, B. (2001) Fundamental Concepts of Depen-
dability. Newcastle University, Newcastle.

[13] Zeigler, B., Gon Kim, T. and Praehofer, H. (2000) Theory of Modeling and Simu-
lation. 2nd Edition, Academic Press, New York.

[14] Perez, J. (2009) Apprentissage Artificiel pour l’ordonnancement des tâches dans les
grilles de calcul. Université Paris-Sud, Paris.

[15] Zeigler, B.P. (2005) Introduction to DEVS Modeling and Simulation with JAVA:

https://doi.org/10.4236/ojop.2021.103006
https://doi.org/10.3166/tsi.25.599-630

R. A. Yougouda et al.

DOI: 10.4236/ojop.2021.103006 87 Open Journal of Optimization

Developing Component-Based Simulation Models. Arizona Center for Integrative
Modeling and Simulation, Tucson.

[16] Kadri, W. (2012) Placement dynamique des tâches dépendantes dans une grille de
calcul. Université d’oran, Oran.

[17] Villinger, S. (2021) Comment surveiller la température de votre processeur.
https://www.avast.com/fr-fr/c-how-to-check-cpu-temperature

[18] Ouedraogo, D., Wendsida Igo, S., Sawadogo, G.L., Compaore, A., Zeghmati, B. and
Chesneau, X. (2020) Modeling and Numerical Simulation of Heat Transfers in a
Metallic Pressure Cooker Isolated with Kapok Wool. Modeling and Numerical Simu-
lation of Material Science, 10, 15-30. https://doi.org/10.4236/mnsms.2020.102002

[19] Guessoum, Z., Briot, J.P., Faci, N. and Marin, O. (2004) Un mécanisme de répli-
cation adaptative pour des SMA tolérants aux pannes. JFSMA.

[20] Zeigler, B. (1976) Theory of Modeling and Simulation. Academic Press, London.

https://doi.org/10.4236/ojop.2021.103006
https://www.avast.com/fr-fr/c-how-to-check-cpu-temperature
https://doi.org/10.4236/mnsms.2020.102002

	Model for Anticipating Failures by Omission in Calculation Grids
	Abstract
	Keywords
	1. Introduction
	2. Modeling and Simulation of a Computer Grid
	2.1. Description of a Computer Grid
	2.2. The PDEVS Formalism
	2.2.1. Model Description with Formal Specifications
	2.2.2. Graphic Model

	2.3. Simulation

	3. Results and Discussion
	3.1. Modeling a Correct Node
	3.2. Modeling a Failed Node
	3.3. Modeling of a Calculation Grid
	3.4. Proposed Correction Model

	4. Conclusions
	Conflicts of Interest
	References

