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Abstract 
We propose a new unified path to approximately smoothing the nonsmooth 
exact penalty function in this paper. Based on the new smooth penalty 
function, we give a penalty algorithm to solve the constrained optimization 
problem, and discuss the convergence of the algorithm under mild condi-
tions. 
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1. Introduction 

We consider the following constrained optimization problem  

(P) 
( )
( )

min
s.t. 0, 1, 2, , ,j

f x
g x j m≤ = 

               (1) 

where , : , 1, 2, ,n
jf g j mℜ →ℜ =   are continuously differentiable functions. 

This model has important applications in many fields such as industry, engi-
neering, and computational science. There are many optimization methods to 
solve this kind of problem, and the penalty function method is one of the most 
important methods. In the penalty function method, the original constraint 
conditions are reflected to the new objective function by constructing penalty 
function, and then the original constrained optimization problem is transformed 
into a series of unconstrained optimization problems. 

In the many penalty functions that have been proposed, the exact penalty 
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function is often discussed, such as the 1l  penalty function and the pl  penalty 
function. 

The classical 1l  penalty function (Zangwill [1]) is given as  

( ) ( ) ( ){ }1
1

, max ,0 ,
m

j
j

L x f x g xβ β
=

= + ∑                 (2) 

where 0β >  is a penalty parameter. The pl  penalty function is given as  

( ) ( ) ( ){ }
1

, max ,0 ,
p

m

p j
j

L x f x g xβ β
=

 
= +  

 
∑               (3) 

where 0β >  is a penalty parameter and 0 1p< < . But these exact penalty func-
tions are often nonsmooth, which hampers the use of fast convergent algorithms 
such as the conjugate gradient method, the Newton method, and the quasi-New- 
ton method. Many scholars have proposed smooth approximations to the clas-
sical exact penalty functions, which can be found in the references ([2]-[14]), and 
different penalty algorithms have been given to solve different optimization prob-
lems. In [10] [11] and [14], smooth approximations to 1l  penalty function were 
proposed for nonlinear inequality constrained optimization problems. Different 
smoothing penalty functions were also proposed in [13] to solve the global op-
timization problems. To solve the problem (P), [7] proposed two smooth ap-
proximations to the exact penalty function  

( ) ( ) ( )1
12

, .
m

j
j

L x f x g xβ β +

=

= + ∑  

In [6] and [12], some smoothing techniques for the above exact penalty func-
tion were also given. 

Smoothed penalty methods can also be applied to solve the optimization prob-
lems with large scale such as the network-structured problems and the minimax 
problems in [3], and the traffic flow network models in [8]. 

[5] gave a family of smoothing penalty functions to the 1l  penalty function 
and established a simple penalty algorithm. 

In this paper, a new unified smooth approximation path to the pl  penalty 
function is proposed for the problem (P). On the basis of the proposed smooth-
ing penalty functions, a new approximate algorithm is established, and the con-
vergence of the algorithm is discussed under appropriate conditions. 

Remark 1 we assume in this paper that 

( )0inf 0.
nx

f x
∈ℜ

>                           (4) 

The above assumption is common since if it is not satisfied, then we can take 
the place of ( )0f x  by ( )0e 1f x + . 

2. Approximately Smoothing Exact Penalty Functions 

For the pl  penalty function (3), we give a new family of smooth approximation 
in this section as follows,  
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( ) ( ) ( )
1

1
, , ,

p

pm
j

p
j

g x
L x r f x r

r
β

β ψ
=

  
  

= +   
  
   

∑              (5) 

where 0r >  is a parameter and the function :ψ +ℜ→ℜ  is a continuously 
differentiable function, and for any t∈ℜ , ( ) 0tψ ≥ . 

Here we assume the function ψ  satisfies the following properties: 
(a1) ( )ψ ⋅  is monotonically increasing, and ( )0 0ψ ′ > ; 

(a2) ( )
lim 1

t

t
t

ψ
→+∞

= . 

It is easy to show that the following functions are all examples of the function 
( )tψ .  

( ) ( )1
2e , if 0;

log 1 2, if 0;

t t
t

t t t
ψ

 <= 
+ + + ≥

 

( )
2

2

1

0, if 0;
2 , if 0 1;
3

1 e , if 1;
3

t

t

t tt

t t

ψ

−

<

 ≤ ≤= 

 − >


 

( ) ( )3 log 1 e ;ttψ = +  

( )
2

4
4 ;

2
t ttψ + +

=  

( )5

1 e , if 0;
2
1 e , if 0;
2

t

t

t
t

t t
ψ

−

 ≤= 
 + >


 

( )6
e 1, if 0;

2, if 0;

t tt
t t

ψ
 + ≤

= 
+ >

 

( ) ( )2

7

0, if 1;

1
, if 1 1;

4
, if 1.

t

t
t t

t t

ψ

< −


+= − ≤ ≤


>


 

From (a1) and (a2), it is easy to know that  

0
lim ,
r

tr t
r

ψ
+

+

→

  = 
 

 

where { }max 0, t t+ = . 
It follows that  

( ) ( ) ( ) ( ) ( ) ( )
1

=1 =1
, , , 0 .

p

ppm m
j

p j
j j

g x
L x r f x r f x g x r

r
β

β ψ β + +

  
    

= + → + →    
   

   

∑ ∑  
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We move on to the properties of the function ( )ψ ⋅  and look at the following 
proposition. 

Proposition 2.1 If ( )ψ ⋅  satisfies the properties (a1) and (a2), then for any 

mu∈ℜ , ( ) ( )
1

m

j
j

u uσ ψ
=

= ∑  satisfies the following properties. 

(b1) For any real number 0ε > , there exists a positive real number 0εη >  
such that  

( )
liminf inf ,

k

k

c u k

c u
c ε

ε

σ
η

+→+∞ ≥
≥  

where { }max 0, j ju u+ =  and ( )T

1 2, , , mu u u u+ + + +=  . 

(b2) For ( )kc k→ +∞ →∞ , there exist ( )0k kε +→ →∞  such that  

( )
limsup sup 0.

k

k

k u k

c u
cε

σ
+→∞ ≤

=  

(b3) There exists a constant 0σ  such that  

( ) 0 ,  for any .mu uσ σ≥ ∈ℜ  

(b4) There exists a constant 1σ  such that  

( ) 1,  for any 0.u uσ σ≤ ≤  

Proof. We first show that ( ) ( )
1

m

j
j

u uσ ψ
=

= ∑  satisfies the property (b1). 

For u ε+ ≥ , there exists a 0j  such that ju
m
ε

≥ . Otherwise, if j∀ , 

ju
m
ε

< , then ( )2

1
m

jju u ε+ +
=

= <∑ . Since ( )ψ ⋅  is a monotonically in-

creasing positive function, we have that  

( ) ( )

( )0
0

1

1inf inf

1inf

1 ,

j

m
k

k j
u u jk k

k j
u km

k
k

c u
c u

c c

c u
c

c
c m

ε ε

ε

σ
ψ

ψ

εψ

+ +≥ ≥ =

≥

=

≥

 
=  

 

∑

 

where the inequality is got by the positiveness of ( )ψ ⋅ , and the last equality is 
got by that ( )ψ ⋅  is increasing. 

Again by the property (a2) of ( )ψ ⋅ , we obtain that  

( ) 1liminf inf liminf

liminf

.

k k

k

k
kc cu k k

kc
k

c u
c

c c m

m c
c m m

m

ε

σ εψ

ε εψ
ε

ε

+→+∞ →+∞≥

→+∞

 
≥  

 

 
=  

 

=
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Let 
mε
εη = , then we prove that ( )uσ  satisfies the property (b1). 

We now show that ( ) ( )
1

m

j
j

u uσ ψ
=

= ∑  satisfies the property (b2). 

For ( )kc k→ +∞ →∞ , set 1
k

kc
ε = , and ( )1 1mσ ψ= . Since ( )ψ ⋅  is in-

creasing, we have  

( ) ( )

( )
( )
( )

1

, 1, , 1

sup sup

sup

1 .

k k

j k

m

k k j
ju u

m

k j
u j m j

k k

c u c u

c u

m c

m

ε ε

ε

σ ψ

ψ

ψ ε

ψ

+ + =≤ ≤

≤ = =

=

≤

=

=

∑

∑


 

Since ( ) 0ψ ⋅ ≥ , ( )uσ  satisfies the property (b2). 
Since ( ) 0ψ ⋅ ≥  and ( )ψ ⋅  is increasing, we can easily get the properties (b3) 

and (b4).   

3. Smooth Penalty Algorithm and Its Convergence 

We propose an algorithm based on the penalty function ( ), ,pL x rβ  and dis-
cuss its global convergence. 

Algorithm 3.1 Step 0. Let 0 1β = , 0 1r = , 0 1ω = , and set : 0k = . 
Step 1. Find an  

( )arg min , , ,
n

k
p k k

x
x L x rβ

∈ℜ
∈                      (6) 

or kx  satisfies the following inequality  

( ) ( ), , inf , , .
n

k
p k k p k k k

x
L x r L x rβ β ω

∈ℜ
≤ +                 (7) 

Step 2. Let  

( )
1

1 , if 0 ;
2

, otherwise.

k
k k

k

k

r g x r
r

r

+

+

 ≤ ≤= 


 

( )
1

, if 0;

2 , otherwise.

k
k

k

k

g xβ
β

β

+

+

 == 


 

Step 3. Set 1
1
2k kω ω+ = , : 1k k= + , and return to Step 1. 

Now we study the global convergence of the algorithm. For an 0ε ≥ , we de-
fine the relaxed feasible set of the problem (P) by  

( ){ }| ,1, , .n
jx g x mε εΩ = ∈ℜ ≤   

Thus 0Ω  can denote the feasible set of (P). In this paper we always suppose 
that 0Ω ≠ ∅ . We denote the optimal solution set of (P) by *

0Ω . 
The perturbation function of (P) is defined as  

https://doi.org/10.4236/ojop.2021.103005


B. Z. Liu 
 

 

DOI: 10.4236/ojop.2021.103005 66 Open Journal of Optimization 
 

( ) ( )inf .f x
f x

ε
θ ε

∈Ω
=  

Then the optimal value of (P) is  

( ) ( )
0

0 inf .f x
f xθ

∈Ω
=  

It can be easily showed that ( )fθ ε  is upper semi-continuous at 0ε = . Thus 
the continuity of ( )fθ ε  at 0ε =  is equivalent to the lower semi-continuity of 

( )fθ ε  at 0ε = . Set  

( ) ( ){ }| 0n
fF x f xε θ ε= ∈ℜ ≤ +  

and  

( ) ( ) ( ){ }| , , inf , , .n
k k k k knz

S x L x r L z rε β β ε
∈ℜ

= ∈ℜ ≤ +  

Now we give the following lemma. 
Lemma 3.1 The sequence { }kr  generated by Algorithm 3.1 converges to 0. 
Proof. Assume to the contrary that { }kr  does not converge to 0, then by that 

{ }kr  decreases monotonically, there exists a 0k  such that 0k k∀ ≥ , 
0k kr r= . It 

follows from Step 2 of Algorithm 3.1 that 0k k∀ ≥ , 
0k kr r= , ( ) 0

k
k kg x r r+ > = , 

and lim kk
β

→∞
= +∞ . 

Let 0x ∈Ω , then ( ) 0g x ≤ . By Proposition 2.1, we know that 0k k∀ ≥ ,  

( ) ( )

( )

( ) ( )

( )

0

0

0
0

0

1

1

, , inf , ,

, ,

.

n

k
p k k p k k k

x

p k k k

p

p
k

k k
k

p

k k

L x r L x r

L x r

g x
f x r

r

f x r

β β ω

β ω

β
σ ω

σ ω

∈ℜ
≤ +

≤ +

  
  

= + +  
  

  

 ≤ + + 

            (8) 

where 1σ  is given by Proposition 2.1. 
For sufficiently large 0k k≥ , by Proposition 2.1, we have that  

( ) ( ) ( )

( )

( )

( )

0 0
0

0
0

0

0 0

0

1

1

1

1

, ,

inf

1 .
2

k

k

p

kp
kk k

p k k k
k

p

kp
k

k
k

p

p
k k

k
g x r kp

k

p
k r

g x
L x r f x r

r

g x
r

r

r g x
r

β
β σ

β
σ

β
β σ

β

β η

+ >

  
  

= +   
      

  
  

≥   
      

  
  

≥   
  

  

≥

 

https://doi.org/10.4236/ojop.2021.103005


B. Z. Liu 
 

 

DOI: 10.4236/ojop.2021.103005 67 Open Journal of Optimization 
 

The last inequality can be got by the property (b1) of Proposition 2.1, where 
1

0

p
k

k
k

c
r
β

= . By that lim kk
β

→∞
= +∞ , the right side of the above last inequality goes to 

∞ , which contradicts with (8). So { }kr  generated by Algorithm 2.1 converges 

to 0.   
Lemma 3.2 0ε∀ > , for all sufficiently large k, it holds that ( )kS εε ⊆ Ω . 

Proof. Assume to the contrary that there exists an 0 0ε >  and a subsequence 

K N⊂  such that k K∀ ∈ , ( )0
k

kz S ε∃ ∈ , but 
0

kz ε∉Ω . Then there exists a 

subsequence 0K K⊆  and an index { }0 1, 2, ,j m∈   such that 0k K∀ ∈ ,  

( )0 0 .k
jg z ε>                           (9) 

Then by Lemma 3.1, we have for sufficiently large 0k K∈  that  

( ) 0
k

kg z rε+ > ≥ . Then it follows from Step 2 of Algorithm 3.1 that lim kk
β

→∞
= +∞ . 

By (9) and the property (b1) of Proposition 2.1, for sufficiently large k, we 
have that  

( ) ( )

( ) ( )

( )

( )0

0 0

0

0

1

1

1

inf , , , ,

inf

1 .
2

n

k
p k k p k k

x
p

kp
kk

k
k

p

p
k k

k
g x kp

k

p
k

L x r L z r

g z
f z r

r

r g x
rε

ε

β ε β

β
σ

β
β σ

β

β η

+

∈ℜ

≥

+ ≥

  
  

= +   
      

  
  

≥   
  

  

≥

       (10) 

Then by lim kk
β

→∞
= +∞ , the right side of the last inequality of (10) goes to ∞ . 

Let 0x ∈Ω , then ( ) 0g x ≤ . By Proposition 2.1, we know that 0k k∀ ≥ ,  

( ) ( )

( ) ( )

( ) [ ]

0 0

1

0

1 0

inf , , , ,

,

n p k k p k k
x

p

p
k

k
k

p
k

L x r L x r

g x
f x r

r

f x r

β ε β ε

β
σ ε

σ ε

∈ℜ
+ ≤ +

  
  

= + +  
  

  

≤ + +

       (11) 

which contradicts with (10).   
Theorem 3.1 (Perturbation Theorem) Assume that { }kx  is a sequence gen-

erated by Algorithm 3.1, then it holds that 
1) ( ) ( )

0
lim lim ;k

fk
f x

ε
θ ε

+→∞ →
=  

2) ( ) ( )
0

lim , , lim ;k
p k k fk

L x r
ε

β θ ε
+→∞ →

=  
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3) 
( )

1

lim 0.

p

kp
k

kk
k

g x
r

r

β
σ

→∞

  
  

=  
      

 

Proof. Since the perturbation function ( )fθ ε  is monotonically decreasing 

on 0ε > , and k K∀ ∈ , ( ) ( )0f fθ ε θ≤ , it holds that ( )
0

lim f
ε

θ ε
+→

 exists and is 

finite. By Proposition 2.1, for ( )1

k

k
r
→ +∞ →∞ , 0kε

+∃ → , such that  

limsup sup 0.
k

k
k u k

ur
rε

σ
+→∞ ≤

 
= 

 
                   (12) 

Choose an 0kε ′ >  such that 
1
p

k k kβ ε ε′ ≤ , and set k
k m

ε
ε

′
= , then we have  

( ) ( )
0

lim lim .f k fk ε
θ ε θ ε

+→∞ →
=                    (13) 

Then we again choose 0kδ >  and ( )0k kδ → →∞ . By the definition of in-
fimum, for each k, there exists a 

k

kz ε∈Ω  such that  

( ) ( ) .k
f k kf z θ ε δ≤ +  

Since 
k

kz ε∈Ω , we have that ( ) , 1, ,k k
j kg z i m

m
ε

ε
′

≤ = =  , then we can ob-

tain that  

( ) .k
k k k kg zβ β ε ε+ ′≤ ≤                     (14) 

On the other side, for any 0ε > , by the proof of Lemma 3.2, we have for all 
sufficiently large k that  

.kx ε∈Ω  (15) 

Thus, for any 0ε > , by the property (b3) and Proposition 2.1, we have that  

( ) ( )

( ) ( )
[ ]

( ) [ ]
( ) [ ]

( ) ( )
[ ]

( ) [ ]

1

0

0

0

1

0

0

, ,

inf , ,

sup .

n

k

k
f

p

kp
k pk

k k
k

pk
p k k k

p
p k k k k

x
p

kp
k pk

k k k
k

p

p
f k k k k k

u k

f x

g x
f x r r

r

L x r r

L x r r

g z
f z r r

r

ur r
rε

θ ε

β
σ σ

β σ

β ω σ

β
σ ω σ

θ ε δ σ ω σ
+

∈ℜ

≤

≤

  
  

≤ + −  
      

= −

≤ + −

  
  

≤ + + −  
      

  
 ≤ + + + − 
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Let k →∞ , and put two sides of the above inequality to the limit, we obtain 
that 1)-3) hold.   

Theorem 3.2 Assume that { }kx  is a sequence generated by Algorithm 3.1, 
then every accumulation point of { }kx  is an optimal solution of the problem 
(P)  

Proof. By Lemma 3.2, for sufficiently large k, we have  

.kx ε∈Ω                        (16) 

Suppose that *x  is an accumulation point of { }kx , by the continuity of 
( )1, ,jg i m=   and (16), we know that *x ε∈Ω . Again by the arbitrariness of 

ε , we have that *
0x ∈Ω . 

By the Perturbation Theorem, we obtain that  

( ) ( ) ( ) ( )*

0
lim lim 0k

f fk
f x f x

ε
θ ε θ

+→∞ →
= = ≤ .   

4. Conclusions 

In this paper, we propose a uniform path of smooth approximation for the clas-
sical nonsmooth penalty function. Our model contains some of the existing 
models. In addition, we also give a class of relaxed smooth penalty algorithm, 
and prove the convergence of the algorithm under some weak conditions. 

In the future work, we will use the model and algorithm of this paper to carry 
out numerical experiments and compare with some existing methods. We also 
consider applying the model and algorithm in this paper to the study of power 
market equilibrium optimization problem. 
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