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Abstract 
This paper discussed Bayesian variable selection methods for models from 
split-plot mixture designs using samples from Metropolis-Hastings within the 
Gibbs sampling algorithm. Bayesian variable selection is easy to implement 
due to the improvement in computing via MCMC sampling. We described the 
Bayesian methodology by introducing the Bayesian framework, and explaining 
Markov Chain Monte Carlo (MCMC) sampling. The Metropolis-Hastings 
within Gibbs sampling was used to draw dependent samples from the full 
conditional distributions which were explained. In mixture experiments with 
process variables, the response depends not only on the proportions of the 
mixture components but also on the effects of the process variables. In many 
such mixture-process variable experiments, constraints such as time or cost 
prohibit the selection of treatments completely at random. In these situations, 
restrictions on the randomisation force the level combinations of one group of 
factors to be fixed and the combinations of the other group of factors are run. 
Then a new level of the first-factor group is set and combinations of the other 
factors are run. We discussed the computational algorithm for the Stochastic 
Search Variable Selection (SSVS) in linear mixed models. We extended the 
computational algorithm of SSVS to fit models from split-plot mixture design 
by introducing the algorithm of the Stochastic Search Variable Selection for 
Split-plot Design (SSVS-SPD). The motivation of this extension is that we 
have two different levels of the experimental units, one for the whole plots and 
the other for subplots in the split-plot mixture design.  
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1. Introduction 

Bayesian methods are important approaches due to their ability to quantify un-
certainty. In such an approach, prior distributions that represent subjective be-
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liefs about parameters are assigned to the regression coefficients. By applying 
Bayes’ rule, prior beliefs are updated by the data and transformed into posterior 
distributions, on which all inference is based. 

An important task in regression building is to determine which variables 
should be included in the model. Therefore, the principle of Bayesian variable 
selection is to get the large and the small effects distinctive, and effective prior 
essences mass around zero and distribute the remaining over the parameter 
space. Such a prior represents the fact that there are small coefficients close to 
zero on one hand and larger coefficients on the other hand. These priors can be 
built as a combination of two distributions, along with a narrow normal conti-
nuous distribution centred at zero with a small variance called a “spike”, and the 
other with a flat normal continuous distribution with a large variance to spread 
over a wider range of parameter values called a “slab”. This type of priors is 
called “Spike-and-Slab” priors (see Figure 1). Practically saying, those priors are 
beneficial for purposes of variable selection because they permit the classifica-
tion of the regression coefficients into two groups: one group with large, signifi-
cant effects, and the other group with small, negligible effects. 

As reviewed by [1] [2] introduced Bayesian variable selection via “spike-and-slab” 
prior distributions. The spike prior that they used was a probability mass at zero 
to remove the non-significant variables. Their slab is the uniform distribution 
with a large symmetric range in order to keep the significant variables. Following 
their work, many priors were proposed to implement the spike-and-slab prop-
erty. [3] proposed the Stochastic Search Variable Selection (SSVS) in which the 
coefficients are sampled from a mixture of two normal distributions with different 
variances. The spike part is the distribution with a small variance while the slab 

 

 
Figure 1. Gaussian mixture prior for β . 
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part is the distribution with a much larger variance. Also, [4] proposed positive 
mass at zero for the spike part and a normal distribution for the slab part. In ad-
dition, [5] proposed a Bayesian approach for model selection in fractionated 
split-plot experiments with application to “robust-parameter design”. In their 
work, they extend the SSVS algorithm of [6] to account for the split-plot error 
structure. They derive an expression for the posterior probability of a model that 
requires the computation of, at most, two unidimensional integrals, and employ 
this quantity for model selection. They were able to integrate the coefficients and 
the variance components from the joint posterior distribution of all parameters 
because they use the conjugate normal-inverse gamma prior for these parame-
ters. The integrals are computed with Gaussian quadrature, and Global and Lo-
cal search algorithms to find models with high posterior probabilities.  

The above review summarised the former research and analyzed the problems 
in the Bayesian variable selection field. On the other side, we notice that the fre-
quentist methods analysis of this kind of experimental design would fail in high 
Type I error rate [7]. The difficulty of using the frequentist analysis to estimate 
the variance components is explained in [8]. To overcome this issue, we apply 
the Bayesian variable selection as this method introduces prior distribution about 
the variance component in the linear mixed models. 

The novel contribution of this paper to Bayesian variable selection is moti-
vated by a very specific experimental design of data from experiments subject to 
restricted randomisation. We have two different levels of the experimental units 
one for the whole plots and the other for the subplots in the split-plot design; see, 
for example, [9]. To address this issue, we adapt the SSVS algorithm in which we 
sample the subplot coefficients using a mixture of normal posterior distributions 
with a slab variance different from the slab variance which will be used in the 
mixture of normal posterior distributions for the whole-plot coefficients. This 
method reduces Type I and II error rates as well as reduces the prediction error 
for split-plot design rather than applying the SSVS algorithm in which all coeffi-
cients will be sampled from a mixture of normal posterior distributions with one 
slab variance. We called the approached method the Stochastic Search Variable 
Selection for Split-Plot Design (SSVS-SPD). The frequentist analysis is depen-
dent on the estimates of the variance components, yet these estimates cannot be 
precisely calculated because of the deficiency of the degrees of freedom for the 
random effects in the split-plot design. This issue was discussed by [8]. Intro-
ducing a prior distribution for the variance components in the linear mixed 
model provides additional information to overcome the problem of variance es-
timation.  

This paper differs from [10] in which the dataset used in this paper is the 
Vinyl Thickness experiment, which had not been used in variable selection. Also, 
it differs in the choice of the shape parameter of the correlation parameter as in 
this paper we used 2a b= =  to fit this data. A preprint has previously been 
published [11]. 
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2. Split-Plot Design and Sample Model 

The model for the block experiments includes two types of errors: block error 
and residual error. Hence, linear mixed models (LMMs) are used to analyse res-
ponses from the blocked experiments.  

Linear mixed-effects models (LMMs) introduce correlations between observa-
tions using random effects. This leads to the use of generalised least squares 
(GLS) estimation, combined with restricted maximum likelihood estimation 
(REML) of the variance components as will be discussed. This type of analysis is 
used by the most design of experiments textbooks that deal with blocked designs. 
In matrix notation, the model corresponding to a blocked design is written as  

,= + +Y X Zβ γ ε                        (1) 

where Y is 1n×  vector of observations on the response of interest, X is the 
n p×  model design matrix containing the polynomial expansions of the m fac-
tor levels at the n experimental runs, β  is the 1p×  vector of unknown fixed 
parameters, Z is an n b×  random design matrix which represents the allocation 
of the runs to blocks, and whose ( ),i j th element is one where the ith observation 
belongs to the jth blocks, and zero otherwise. If the runs of the experiment are 
grouped per block, then Z is of the form  

1 2
diag , , , ,

bk k k =  Z 1 1 1                      (2) 

where k1  is a k vector of ones, and 1 2, , , bk k k  are the blocks sizes. The random 
effects of the b blocks are contained within the 1b×  vector γ , and the random 
errors are contained within the 1n×  vector ε . It is assumed that γ  and ε  are 
independent and normally distributed, i.e. ( )Cov , b n×= 0γ ε , where b n×0  is the 
b n×  matrix of zeros. Hence, ( )2~ N ,b bγσ0 Ιγ , and ( )2~ N ,n nεσ0 Iε , where 

b0  and n0  are the b and n column vectors of zeros respectively, and bI  and 

nI  are the b-dimensional and n-dimensional identity matrices respectively. 
Under these assumptions, Y is a normally distributed random variable with 

mean ( ) = Y Xβ , and the variance-covariance matrix of the response Y can be 
written as  

( ) ( )Var Var= = + +V Y X Zβ γ ε                   (3) 

( ) ( )Var Var= +Zγ ε                        (4) 

( ) 2Var nεσ′= +Z Z Iγ                        (5) 

2 2 .nγ εσ σ′= +ZZ I                         (6) 

V can be given as a block diagonal,  

1

2

0 0
0 0

,

0 0 b

 
 
 =
 
 
 





   



V
V

V

V

 

where  
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2 2 ,
i i ii k k kε γσ σ ′= +V I 1 1  

and  
2 2 2 2

2 2 2 2

2 2 2 2

.i

ε γ γ γ

γ ε γ γ

γ γ ε γ

σ σ σ σ
σ σ σ σ

σ σ σ σ

 +
 

+ =  
 

+  





   



V  

As a result, the variance-covariance matrix iV  of all observations within one 
block is compound symmetric: the main diagonal of the matrix contains the va-
riances of the observations, while the off-diagonal elements are covariances. 
However, iV  can be rewritten as  

2
2

2i i i ii k k k k
γ

ε
ε

σ
σ

σ×

 
′= +  

 
V I 1 1                     (7) 

( )2 ,nεσ η ′= +I ZZ                         (8) 

where 2 2
γ εη σ σ=  is a measure for the extent to which observations within the 

same block are correlated. The larger this variance ratio, the stronger observa-
tions within the same block are correlated. 

When the random error terms as well as the group effects are normally dis-
tributed, the maximum likelihood estimate of the unknown model parameter β  
in Equation (1) is the generalised least squares (GLS) estimate. Detecting the es-
timator β̂  of β , requires to minimise  

( ) ( )1 1 1 12− − − −′ ′ ′ ′ ′ ′− − = − +y X V y X y V y X V y X V Xβ β β β β         (9) 

with respect to β , which is tantamount to detecting β̂ , so that  

( )1 1ˆ .− −′ ′=X V X X V yβ                       (10) 

Therefore, the generalised least squares (GLS) estimator of β  is 

( ) 11 1ˆ ,
−− −′ ′= X V X X V Yβ                      (11) 

and the variance-covariance matrix of the estimators is given by  

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )
( ) ( )( )
( )

11 1

1 11 1 1 1

1 11 1 1 1

1 11 1 1

11

ˆVar Var

Var

.

−− −

− −− − − −

− −− − − −

− −− − −

−−

′ ′=

′
′ ′ ′ ′=

′ ′ ′=

′ ′ ′=

′=

X V X X V Y

X V X X V Y X V X X V

X V X X V VV X X V X

X V X X V X X V X

X V X

β

       (12) 

Often, the variances 2
γσ  and 2

εσ  are not known and therefore, Equation (11) 
and Equation (12) cannot be used directly. Instead, the estimates of the variance 
components, 2ˆγσ  and 2ˆεσ , are substituted in the GLS estimator as in Equation 
(11), yielding  
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( ) 11 1ˆ ,
−− −′ ′= X V X X V Yβ                     (13) 

where  
2 2ˆ ˆ .nε γσ σ ′= +V I ZZ                       (14) 

In that case, the variance-covariance matrix in Equation (12) can be approx-
imated by  

( ) ( ) 11ˆVar .
−−′= X V Xβ                      (15) 

The generalised least square (GLS) estimator is unbiased, meaning that 

( )ˆ = β β , and is equal to the maximum likelihood estimator (MLE). The like-
lihood function defined as it is the joint probability density function for the ob-
served data examined as a function of the parameters. Hence, the likelihood 
function for Y in Equation (1) is 

( ) ( ) ( ) ( )1 22 11| 2 exp ,
2

nL Y π − −−  ′= − − −  
V Y X V Y Xβ β β      (16) 

where π  is a constant which does not depend on β . The maximum likelihood 
estimator (MLE) is the estimator that maximises the likelihood function, which 
is tantamount to detecting the β̂  as  

( )ˆ | 0,L∂
=

∂
Yβ

β
                       (17) 

which is equal to  

( )ˆln | 0,L∂
=

∂
Yβ

β
                      (18) 

where ( )ˆln |L Yβ  is the log likelihood function. As Equation (9) is proportio-
nate to log of Equation (16), the GLS estimator in Equation (11) is the result of 
Equation (17) and Equation (18).  

The restricted maximum likelihood (REML) used to estimate 2
εσ  and 2

γσ  is  

( ) ( ) ( )2 2 1 1
REML

1 1 1 ˆ ˆ, ; ln ln ,
2 2 2

l ε γσ σ − −′′= − − − − −Y V X V X Y X V Y Xβ β  (19) 

where β̂  is defined in Equation (13). The restricted log-likelihood  

( )2 2
REML , ;l ε γσ σ Y  is minimised with respect to the variance components 2

εσ  
and 2

γσ  to obtain an unbiased estimate for the variance components. 

3. The Bayesian Methodology 
3.1. Bayesian Framework 

The essential philosophy behind Bayesian inference is to update a prior distribu-
tion for an unidentified parameter to a posterior distribution by Bayes’ theorem. 
Bayes’ theorem can be used to estimate the conditional distributions. While the 
frequentist approach treats the parameters as unknown and fixed, the Bayesian 
approach regards them as random variables. We can define the prior distribu-
tion ( )p θ  as the probability density (or mass) function which reflects our be-
liefs about θ  in the parameter space Θ . For given data ( )1 2, , , ny y y ′= y , 
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the likelihood function ( )|f y θ  can then be defined given the parameter θ  
for the data y. Also, we can define the posterior density (or mass) function 
( )1 2| , , , np y y yθ  which represents our updated belief about θ  given the 

observed data y. 
Using Bayes’ theorem, the posterior density of θ  given y is:  

( ) ( ) ( )
( ) ( )

|
| .

| d
f p

p
f p

=
∫

y
y

y
θ θ

θ
θ θ θ

Θ

                  (20) 

Bayesian inference continues from this distribution. The denominator of Eq-
uation (20) is the marginal likelihood of y, and it often does not need to be cal-
culated because it is independent of θ . Bayes’ rule can then be written as:  

( ) ( ) ( )| | .p f p∝y yθ θ θ                      (21) 

Equation (21) defines the unnormalised posterior density. The posterior then 
is proportional to the likelihood × the prior. For more details on Bayesian infe-
rence, see [12] and [13]. 

A prior distribution can be selected based on past information or experimen-
tal practice. It can be informative or uninformative. The informative distribution 
is given numerical information to estimate the parameter of concern. The unin-
formative reflects equilibrium among outcomes when weak information about 
the parameter is presented. There are two types of uninformative priors: proper 
prior and improper prior. The density for proper prior distribution integrates to 
1 whereas the integral of the density for an improper distribution is not finite. If 
the prior integrates to any positive finite value, it is called an unnormalised den-
sity and can be renormalised-multiplied by a constant to integrate to 1 [12] [13]. 

3.2. Markov Chain Monte Carlo (MCMC) Methods 

Markov Chain Monte Carlo simulation is a general method based on drawing 
values of the θ  from approximate distributions, and then correcting those 
draws to better approximate the target posterior distribution ( )|p yθ  [12] [13] 
[14]. A Markov chain can be defined as a sequence of random variables 

1 2, ,θ θ  for which for any iteration t, the distribution of tθ  depends only on 
the most recent value 1t−θ  [12] [13] [14]. A Markov chain is generated by sam-
pling ( )1~ |t tp −θ θ θ . This p is called the transition kernel of the Markov chain. 
Therefore, tθ  depends only on 1t−θ , not on 0 1 2, , , t−

θ θ θ .  
As t →∞ , the sampling from Markov chain converges to the posterior for 

the right choice of transition kernel ( )|p yθ . Thus, we should run the simula-
tion long enough so that the distribution of the current draws is close enough to 
( )|p yθ . 

3.2.1. Metropolis-Hastings Sampling 
Metropolis-Hastings sampling was proposed by [15] and [16]. The theory of this 
sampling is based on rejection sampling. The acceptance-rejection method is a 
technique of getting samples from a distribution with an unknown form. The 
Metropolis-Hastings algorithm is a common expression for a family of Markov 

https://doi.org/10.4236/ojmsi.2022.104022


S. M. A. Aljeddani 
 

 

DOI: 10.4236/ojmsi.2022.104022 398 Open Journal of Modelling and Simulation 
 

chain simulation methods. It is worth describing the Metropolis algorithm first, 
then broadening it to discuss the Metropolis-Hastings algorithm. Let ( )|p yθ  
be the conditional posterior distribution where we want to sample from. Let tθ  
be the current parameter value, and let ( )π θ  be the proposal density. The 
proposal density is much like a conventional transition operator for a Markov 
chain, the proposal distribution depends only on the previous state in the chain. 
However, the transition operator for the Metropolis algorithm has a additional 
step that assesses whether or not the target distribution has a sufficiently large 
density near the proposed state to warrant accepting the chain.  

3.2.2. Gibbs Sampling 
A Gibbs sampler is the simplest of the Markov chain simulation algorithms, and 
it is used to sample from the conditional conjugate models, where we can directly 
sample from each conditional posterior [12] [13]. It is rare to find all the condi-
tional posteriors in a model in known forms. One may find some conditional 
posterior distributions that are possible to directly sample from. Furthermore, 
one may find some of the conditional posteriors that cannot be straightforwardly 
sampled from. Therefore, the procedure for this issue is to update the parameters 
one at a time with the Gibbs sampler used where possible, and one-dimensional 
Metropolis updating where necessary. This process is called the Metropolis- 
Hastings within Gibbs sampling and will be used in this work. 

4. A Hierarchical Mixture Model for Variable Selection 

The linear mixed model fitted to data from a split-plot experiment with n res-
ponses is 

( )0~ , ,nN β +y 1 X Vβ                      (22) 

where y is 1n×  vector of random responses, 0β  is the intercept, n1  is a 
1n×  vector of ones, X is the n p×  model matrix without the column of the 

intercept, β  is the 1p×  vector of fixed effect parameters and V is  
2

2
2 ,n
γ

ε
ε

σ
σ

σ

 
′= +  

 
V I ZZ  

where Z is the random effect design matrix. As 
2

2
γσρ

σ
= , and 2 2 2

ε γσ σ σ= + , 

then V can be written as  

( )2 1 .
1n
ρσ ρ
ρ

 ′= − + − 
V I ZZ                  (23) 

We need to find the highest posterior probability of an indicator vector 

( )1 2, , , pν ν ν= ν  such that  

0 if 0
=

1 if 0
j

j
j

β
ν

β

=
 ≠

 

for 1,2, ,j p=  . When 1jν =  the term is assumed to be active and will be in-
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cluded in the model, and when 0jν =  the term is assumed to be non-active 
and will not be included in the model. 

Following [6], and [5], we assume that ( )2 2
,| , , ~ ,p ccσ σN 0 Dνβ ν , where ν  

is the indicator vector, c is the prior variance of the slab distribution, and ,cDν  
is a diagonal matrix with the jth diagonal element  

( ) ( )1 0 , 1, ,j jcI dI j pν ν= + = =  . The parameters 2 ,σ ν  and c will be given 
prior distributions, and the parameter d is assumed to be a small fixed non- 
negative number because we want the spike distribution to have a smaller variance 
than the slab distribution. Formally the prior construction of β  is the following:  

( ) ( ) ( )2 2 2| , , ~ 1 0, 0, .j j j jc d cβ σ ν ν σ ν σ− +N N  

For every coefficient jβ , a Bernoulli variable jν  is defined taking values 1 and 
0 with probability of inclusion ω , as ( )1jp ν ω= =  and ( ) ( )0 1jp ν ω= = − . 
Often, jν ’s are taken as independent Bernoulli (ω ) random variables, where 
0 1ω< < . It is common to fix ω  in the normal mixture, however, we shall deal 
with ω  as a parameter to investigate different values of ω , and sample it from 
the Beta distribution as it will be explained in Section 6.3. 

5. Prior Distributions 

1) Following the prior distributions used by [5], we assume that the prior dis-
tribution for the fixed effects is ( )2

,~ 0, cσN Dνβ   

( ) ( ) 12 2
,

1 2 2
,

1| , , exp .
2c cp cσ σ σ

−−  ′∝ − 
 

D Dν νβ ν β β  

2) The prior distribution for the total variance is ( )2 ~ ,a bσ IG ,  

( ) ( ) 12 2
2exp .

a bp σ σ
σ

− −  ∝ − 
 

 

For this work, we used 0a =  and 0b =  following [5] as this yields the com-
mon non-informative prior for 2σ . This prior is improper, however we will sam-
ple from the posterior distribution, which should be a proper gamma distribution.  

3) The prior distribution for the correlation parameter is ( )~ ,a bρ ′ ′Beta  
with shape parameters , 0a b′ ′ > . We consider 2a b′ ′= =  following [8]. Ac-
cording to [8], “A ( ),a b′ ′Beta  prior distribution for a correlation parameter 
can be interpreted as indicating a prior point estimate of ( )a a b′ ′ ′+ , this prior 
information being worth a b′ ′+  observations”. Our prior was selected to be 
centred at ( )2 2 2 0.5+ =  and to be worth four observations in each block. For 
an experiment with a b′ ′+  observations, the posterior distribution would give 
equal weight to the prior and the likelihood [8]. Similar choice of the prior is in 
[6] as they set 2a b= =  so that the ( )p ρ  is symmetric with a mode of 0.5. 
This has the effect of pulling the posterior mode of ( )p ρ  towards 0.5 when the 
data are scarce. The prior density for ρ  is  

( ) ( ) ( )( )11 1 .bap ρ ρ ρ ′−′−∝ −  

4) The prior distribution for the elements of the indicator vector is  
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( )~jν ωBernoulli ,  

( )
if 1

1 if 0
j

j
j

p
ω ν

ν
ω ν

==  − =
 

where ω  is the prior probability that jβ  is active following [5].  
5) The prior distribution for the elements of the probability of inclusion is 

( )0 0~ ,c dω Beta ,  

( ) ( ) ( )( )00 11 1 .dcp ω ω ω −−∝ −  

[5] set 0.25ω = . However, we select 0c  and 0d  such that the prior of ω  
has a mode = 0.25. The choice of 0 2c =  and 0 4d =  results in a prior with a 
mode = 0.25 and the upper cumulative percentile at 5% equals 0.66. Meaning a 5% 
chance the observations have a probability density function ≥ 0.66.  

6) The prior distribution for the slab variance c is a discrete uniform prior 
distribution with support points T = {1/4, 9/16, 1, 4, 9, 16, 25} as given by [5]. 
They found that large values of c tend to favor sparse models with large effects 
and in this case small effects will be missed. On the other hand, small values of c 
tend to favor less sparse models. Moreover, very small values of c tend to favor 
sparse models again. They select the support points in T such that it covers small 
and large values of c. The prior distribution for c is  

( )
1 if T
7
0 otherwise

c
p c

 ∈= 


 

6. Full Conditional Distributions 

We use the prior distributions presented in Section 5 to derive the full condi-
tional distributions. The likelihood of the data depends on β , so we can derive 
the conditional distribution for β  using the prior distribution  

( )2 2
,| , , ~ ,p ccσ σN 0 Dνβ ν  and the likelihood for the model 22  

( ) ( ) ( )1 12 1| exp .
2

L y −−  ′∝ − − −  
V y X V y Xθ β β  

Note that we standardise both X and y so the fixed effect vector β  does not 
include the intercept. The conditional distribution for β  can be expressed as:  

( ) ( ) ( )
( ) ( )

( )

( )( )
( )

2 2 2

1

12 2
, ,

1

1 2

1 2

1 21 2 2 2
, ,

1 1 1 1

| , , , , , | , , , , , | , ,

1exp
2

1exp
2

1exp
2

1
2

c c

c c

p c p c p cσ ω ρ σ ω ρ σ

σ σ

σ σ

−

−

−

−

−

−

−−

− − −

∝

 ′∝ − − −  
 ′× − 
 

 ′∝ −
′ ′ ′ ′ ′ ′− − − + 

y y

V y X V y X

D D

V D D

y V y y V X X V y X V X

ν ν

ν ν

β ν β ν β ν

β β

β β

β β

β β β β
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( )( )
( ) ( )

( )( )
( ) ( )

( )( )

12 2 1
, ,

1 1

12 2 1
, ,

1 1

12 2 1
, ,

1 21 2

1 21 2

1 21 2

1exp
2

1 1exp exp
2 2

1exp
2

1 1exp
2 2

1exp
2

c c

c c

c c

σ σ

σ σ

σ σ

−−

−−

− −

− −

− −

− −

−− − −

 ′ ′∝ − +  
   ′ ′ ′× − − − −      

 ′ ′∝ − +  
 ′ ′ ′× +  

′ ′ ′∝ − + +

V D D X V X

y V X X V y

V D D X V X

y V X X V y

V D D X V X

ν ν

ν ν

ν ν

β β

β β

β β

β β

β β ( )1 .− ′  
X V yβ

 

The key to deriving the joint posterior distribution is to rewrite the expression 
in the exponential part in a more convenient form. This can happen by using the 
multivariate completion of squares:  

( ) ( )1 1 1U AU 2U U A A U A A ,− − −′′ ′ ′− = − − −α α α α α  

where A is a symmetric positive definite (hence invertible) matrix. We assume 
U = β , ( ) 12 1

,A cσ
− −′= +D X V Xν , and 1α −′= X V y . 

The conditional distribution for β  can be written as:  

( )
( )( ) ( )

( )( ) ( )

( ) ( )( ) ( )

( ) ( )

2

12 2 1 1
, ,

112 2 1 1
, ,

11 12 1 2 1 1
, ,

1 21 2

1 21 2

1

| , , , , ,

1exp 2
2

exp

1exp D
2

c c

c c

c c

p cσ ω ρ

σ σ

σ σ

σ σ

− − −

−− −

−

−

−− −−

−

−−

− −

−
∗ ∗ ∗

 ′ ′ ′ ′∝ − + −  
 ′  ′ ′∝ − +  

  ′ ′ ′× + − +      
 ′∝ − − −


y

V D D X V X X V y

V D D X V X X V y

D X V X D X V X X V y

ν ν

ν ν

ν ν

β ν

β β β

β

β

β β β β . 

 

Thus, we can sample β  from the conditional posterior ( )N ,D∗ ∗β , where  

( )( ) ( ) ( )( )1 11 12 1 1 2 1
, ,and D .c cσ σ

− −− −− − −
∗ ∗′ ′ ′= + = +D X V X X V y D X V Xν νβ (24) 

6.1. The Conditional Distribution for ρ 

The likelihood of the data depends on ρ , so the conditional distribution for ρ  
can be derived by  

( ) ( ) ( )

( ) ( ) ( ) ( )( )1 2

2 2

111

| , , , , , | , , , , ,

1exp 1 .
2

ba

p c p c pρ σ ω σ ω ρ ρ

ρ ρ ′−′−−−

∝

 ′∝ − − − × −  

y y

V y X V y X

β ν β ν

β β
 

We note here that the likelihood depends on ρ  through V  as in (4.6), so 
we can express V  as a function of ρ ,  

( )2V 1 .
1n
ρσ ρ
ρ

 ′= − + − 
I ZZ  
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The conditional distribution for ρ  is a non-standard distribution that can-
not be sampled directly. Therefore, we use the Metropolis-Hastings (M-H) re-
jection sampling. Our correlation parameter is ( ]0,1ρ ∈ , and has a prior 
( ),a bβ ′ ′ . We apply the Random-Walk Metropolis-Hastings algorithm, and se-

lect a proposal distribution of log-normal distribution for the variance ratio η   

where ( )
1

f ρη ρ
ρ

= =
−

 with a mean equal to the current value of tη  at itera-

tion t and variance 2s . The choice of 2s  affects the jumping rule in the ran-
dom walk proposal distribution. As we have one parameter to be updated in the  
random walk algorithm which is ρ , we follow [12] and [17] to set 2 2s g= Σ . 
The most efficient jump has a scale 2.4g h≈  where h is the number of pa-
rameters which will be updated. In this work, we set 2.4g =  and 1h =  fol-
lowing [17], and we set 100Σ =  as this yields an appropriate acceptance rate 
associated with the independent sampler of the ACF plot. Thus, ( )0,η ∈ ∞  and  

( ) ( )2

22

1 1exp ln
22

tg
ss

η η η
η π

 = − −  
 

We can use 
1
ρη
ρ

=
−

 as a transformation function between η  and ρ  as 

1
ηρ
η

=
+

 and the Jacobian function of ρ  is ( )
( )2

d 1
d 1

J ηρ
ρ ρ

= =
−

.  

We draw a proposal value η∗  from a log-normal( 2,t sη ) distribution, and 
the probability of accepting or rejecting η∗  is the minimum of 1 and the ratio r 
where r is  

( )
( )

( )
( )

|| all
,

| all |

t

t t

qp
r

p q

η ηρ

ρ η η
∗∗

∗

= ×  

which is equivalent to  

( )
( )

( ) ( )
( ) ( )

|| all
.

| all |

t t

t t

q Jp
r

p q J

ρ ρ ρρ

ρ ρ ρ ρ
∗∗

∗ ∗

= ×  

Our proposal ratio is  

( )
( )

( )

( )

2

2

2

2

1exp ln| 2 ,
1| exp ln

2

t
t

t
t t

q s
q

s

η η ηη η

η η η η η

∗ ∗
∗

∗
∗

 − −  =
 − −  

 

which is equivalent to  

( ) ( )
( ) ( )

( )

( )

2

2 2

2

2 2

1 1exp ln
1 11 1|

.
| 1 1exp ln

11 1 1

t

t tt t

t t t

t t

sq J

q J

s

ρ ρρ
ρ ρρ ρρ ρ ρ

ρ ρ ρ ρρ ρ
ρρ ρ ρ

∗ ∗

∗ ∗
∗

∗ ∗ ∗

∗ ∗

        − − ×       − −−       −  
=

        − − ×       −− −  −       

 

The ratio r can be expressed as  
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( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( )

( )

1 1 1

1 1 1

2
2

2

2

1 2

1 2

1exp 1
2
1exp 1
2

11 exp ln 1
11

11 exp ln
1 1

a b

a bt t t t

t
t t

t

t
t

t

r

s

s

ρ ρ ρ ρ

ρ ρ ρ ρ

ρρρ ρ ρ
ρρ

ρ ρρ ρ
ρ ρ

′ ′− − −
∗ ∗ ∗ ∗

′ ′− − −

−
∗

∗
∗

∗
∗

−

∗

−

 ′− − − × −  =
 ′− − − × −  
      − − − −     −−      ×

   
− − −   − −   

V y X V y X

V y X V y X

β β

β β

( )
2

2

.

1 ρ −
∗

  
  −     

(25) 

where ( ) ( )2V 1
1n
ρ

ρ σ ρ
ρ
∗

∗ ∗
∗

 
′= − + − 

I ZZ , and  

( ) ( )2V 1
1

t
t t

n t

ρρ σ ρ
ρ

 
′= − + 

− 
I ZZ . 

6.2. The Conditional Distribution for σ2 

The likelihood of the data depends on 2σ , so we can express the conditional 
distribution of 2σ  as  

( ) ( ) ( )
( ) ( ) ( )

2 2 2

11 21 2
2

| , , , , , | , , , , ,

1exp exp .
2

a

p c p c p

b

σ ρ ω σ ω ρ σ

σ
σ

− −−−

∝

   ′∝ − − − × −     

y y

V y X V y X

β ν β ν

β β
 

We know that ( )2V 1
1n
ρσ ρ
ρ

 ′= − + − 
I ZZ , so the conditional posterior 

for 2σ  can be written as  

( )

( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

2

12 2
2

1
2

1

12

1 2

2
2

| ,

1 exp
1

1exp 1
2 1

1
11exp .

2

a

n

n

nna

p

b

b

σ

ρρ σ σ
ρ σ

ρρ σ
ρ

ρρ
ρ

σ
σ

− −

−

−

 − + − 
 

−
   ′∝ − + × −   −   

   ′ ′× − − − + −  −    
    ′ ′ − − + −  −    ∝ − +  
  
  

  

y

I ZZ

y X I ZZ y X

y X I ZZ y X

β β

β β

 

This is the inverse gamma distribution with a shape parameter a∗  and a 
scale parameter b∗  such that  

( ) ( ) ( )
1

1
1

and .
2 2

nna a b b

ρρ
ρ

−

∗ ∗

  ′ ′− − + −  −  = + = +
y X I ZZ y Xβ β

(26) 

The indicator vector can be drawn conditionally on the regressor coefficient 
and computation of the marginal likelihood is not required. The prior probabili-
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ties for jν  are  

( )
if 1

1 if 0
j

j
j

p
ω ν

ν
ω ν

==  − =
 

where ω  is the prior probability that jβ  is active. The joint conditional post-
erior distribution for ν  has mass function 

( ) ( ) ( )
( ) ( )
( )
( ) ( )

| , | , ,

| ,

,

| .

p y p p

p p

p

p p

∝

=

∝

=

y

y

ν β β ν β ν

β β ν

β ν

β ν ν

 

The conditional density for β  given ν  is  

( ) ( ) ( )

( ) ( )( )

2

1

1

2

2
| diag I 1 I 0

1exp diag I 1 I 0 .
2

j j

j j

p c d

c d

σ ν ν

σ ν ν
−

−
 ∝ = + = 

  ′× − = + =   

β ν

β β
 

The conditional distribution for the jth component given jν  is  

( ) ( ) ( )

( ) ( )

1
2

2

2

2

| I 1 I 0

exp .
2 I 1 I 0

j j j j

j

j j

p c d

c d

β ν σ ν ν

β

σ ν ν

−
 ∝ = + = 

 
 × −
  = + =  

 

The conditional posterior probabilities for jν  are therefore  

( ) ( ) ( )
1 2

2
2

2

1 | , 1 | 1

exp ,
2

j j j j j

j

p p p

c
c

ν β ν β ν

β
ω σ

σ
−

= = = =

 
∝ − 

  

y

            (27) 

and  

( ) ( ) ( )

( )
2

1/22
2

0 | , 0 | 0

1 exp .
2

j j j j j

j

p p p

d
d

ν β ν β ν

β
ω σ

σ
−

= = = =

 
∝ − − 

  

y

      (eq:4.10) 

6.3. The Conditional Distribution for ω 

The probability of inclusion ω  can be drawn conditionally on the indicator 
and computation of the marginal likelihood is not required. Hence the condi-
tional distribution for ω  is  

( ) ( ) ( )
( ) ( )
( )
( ) ( )

( ) ( ) ( )( )

( )

01 1 0

0 01 1

2 2 2

2

11

1 1

| , , , , , | , , , , , , , , , ,

| , , , , ,

,

|

1 1

1 .

p p
j jj j

p p
j jj j

p dc

c p d

p c p c p c

p c p

p

p p
ν ν

ν ν

ω σ ρ ω σ ρ ω σ ρ

σ ρ ω

ω

ω ω

ω ω ω ω

ω ω

= =

= =

− −−

+ − − + −

∑ ∑

∑ ∑

∝

=

∝

=

∝ − × −

∝ −

y y

y

ν β ν β ν β

ν β ν

ν
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Hence,  

( )0 0
1 1 1 1

| ~ Beta , , where I 0 .
p p p p

j j j j
j j j j

c p d pω ν ν ν ν
= = = =

 
+ − + − = = 

 
∑ ∑ ∑ ∑ν (28) 

6.4. The Conditional Distribution for c 

The prior distribution for c is a discrete uniform distribution with support 
points T = {1/4, 9/16, 1, 4, 9, 16, 25}, and it can be drawn conditionally on the 
regressor coefficient. The computation of the marginal likelihood is not required. 
Hence, the conditional distribution for c  

( ) ( ) ( )
( ) ( )
( )
( ) ( )

2 2 2

2 2

2

2

| , , , , , | , , , , , ,

| , , , ,

, , ,

| , ,

p c p c p c

p p c

p c

p c p c

σ ω ρ σ σ

σ σ

σ

σ

∝

=

∝

=

y y

y

β ν β ν β ν

β β ν

β ν

β ν

 

( ) ( )

( ) ( )( )

( ) ( )

( ) ( )

2

1
2

1

1 2

1

1 0

2

1 diag I 1 I 0
7

1exp diag I 1 I 0
2

1 I 1 I 0
7

1 1exp I exp I
2 2j jj j

j j

j j

p

j j
j

c d

c d

c d

c dν ν

σ ν ν

σ ν ν

ν ν

−

−

−

=

= =∑ ∑

 ∝ = + = 

  ′× − = + =   

  ∝ = + =   
   ′ ′× − × −      

∏

β β

β β β β

 

( )
( )

( )

( )

( )

=1 =1

=1

=1

1

2 2
1

0

2
1

2

1 1 1exp I
7 7 2

1exp I
2
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7 2
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p p
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jj

jj

p
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p
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c d
c
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c
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c
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ν ν
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ν

ν

ν
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− − −

=
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−
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−

∑ ∑

∑

∑

∑

∑
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β β

β β
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β β

 

Therefore,  

( ) ( )
=1

21 1exp if T| , 7 2
0 otherwise

p
jj

c cp c c

ν−∑
  ′× − ∈ ∝   




y β β  

Then, the posterior probabilities of the conditional distribution ( )| ,p c y  are  

( )
=1

21 1 1 1| , exp ,
14 7 4 2
4

p
jj

p c

ν−∑  
      ′= ∝ × −         

    

y β β  
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( )
=1

29 1 9 1| , exp ,
916 7 16 2
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2
1 11| , 1 exp ,
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p
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2
1 14 | , 4 exp ,
7 2 4

p
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2
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p
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( ) ( ) ( ) ( )
=1

2
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p
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and 

( ) ( ) ( ) ( )
=1

2
1 125 | , 25 exp .
7 2 25

p
jj

p c
ν−∑  

′= ∝ × − 
  

y β β  

The conditional posterior ( )| ,p c y  can be written as  

( )

=1

=1

2

2

exp
2 if T

| , =
exp

2
0 otherwise

p
jj

p
jj

c T

c
c c

p c
c

c

ν

ν

−

−

∈

∑

∑

 ′  −    ∈
 ′  −  



∑
y

β β

β β         (29) 

7. Bayesian Variable Selection Algorithms 

In this section, we introduce the computational algorithms which we use in the 
Bayesian analysis for variable selection using the SSVS, and the SSVS-SPD. In 
this work, we choose an asymmetric proposal distribution, the log-normal den-
sity. We apply the Metropolis-Hastings algorithms to sample the variance ratio  

η  where ( )
1

f ρη ρ
ρ

= =
−

, and ρ  is the correlation parameter. This is be-

cause of the fact that in our experiments, observations from different subplots 

within the same wholeplot are positively correlated as 
2

2 2
γ

ε γ

σ
ρ

σ σ
=

+
; also obser-

vations from different wholeplots are independent [5].  

7.1. The Stochastic Search Variable Selection (SSVS) Algorithm 

We process the MCMC estimation of the parameters 2, , , ,ρ σ ωβ ν  and c. We 
use the priors of all these parameters as in Section 5. The following Metropo-
lis-Hastings within Gibbs sampling algorithm can be implemented. Let y be the 

1n×  vector of random responses, X is the n p×  model matrix without the 

https://doi.org/10.4236/ojmsi.2022.104022


S. M. A. Aljeddani 
 

 

DOI: 10.4236/ojmsi.2022.104022 407 Open Journal of Modelling and Simulation 
 

column of the intercept, β  is the 1p×  vector of fixed effect parameters, 
where p is the number of fixed effect parameters that need to be estimated. We 
set initial values for the parameters as ( )0

p= 1β , ( )0
p= 1ν , ( )0 0.5ρ = , 

( )02 10σ = , ( )0 1c = , ( )0 0.5ω = , 0.001d = . Starting at the tth iteration such 
that 1,2, ,t its=   where 10000its = , and setting 1,2, ,j p=  , the sampling 
algorithm is:  

1) For 1,2, ,j p=  , sample ( )t
jν  of the indicator vector ( )tν  using (27) for 

( )1t
jβ
− , ( )1tc − , ( )12 tσ − , and ( )1tω − .  

2) Sample the mixture weight ( )tω  using (28) for ( )tν .  
3) Sample the regressor coefficients ( )tβ  using (24) for X, y, ( )1t−V , ( )1t−D , 

( )1tc − , ( )tν , and ( )12 tσ − .  
4) Sample the total variance ( )2 tσ  using (26) for X, y, Z, ( )tβ , and ( )1tρ − .  
5) a) Sample ( )tρ∗  from ( ),a bβ ′ ′ ; 
b) Calculate ( )tα  using (25) for X, y, ( )( )tρ∗V , ( )( )1tρ −V , and ( )tβ ; 
c) Sample ( )tu  from ( )0,1U ; 
d) If ( ) ( )t tuα > , then set ( ) ( )t tρ ρ∗= , otherwise set ( ) ( )1t tρ ρ −= .  
6) Sample ( )tc  from the set T with probability mass function given in (29) for 
( )tβ , and ( )tν .  

7.2. The Stochastic Search Variable Selection for Split-Plot Design  
(SSVS-SPD) Algorithm 

We adapt the SSVS for the analysis of data from split-plot designs by taking into 
account the two types of factors, i.e. the whole-plot factors and the subplot fac-
tors which expected to have different effect sizes for the two strata in split-plot 
design [9]. This approach can be reported as the Stochastic Search Variable Se-
lection for Split-Plot Design (SSVS-SPD). While the SSVS samples all parame-
ters from one slab variance posterior distribution, the SSVS-SPD samples the 
whole-plot parameters and the subplot parameters from two different slab va-
riance posterior distributions given that the whole-plot and the subplot effects 
might have different sizes. While the SSVS samples all parameters from one slab 
variance posterior distribution, the SSVS-SPD samples the whole-plot parame-
ters and the subplot parameters from two different slab variance posterior dis-
tributions. We use the same priors as in the SSVS for all the parameters of inter-
est as in Section 5. Basically, the SSVS-SPD can be seen as running the SSVS 
twice in one process, one for subplot factors and the other one for whole-plot 
factors. The algorithm can be explained as follows: 

We process the MCMC estimation of the parameters 2, , , ,ρ σ ωβ ν  and c. 
The following Metropolis-Hastings within Gibbs sampling algorithm can be im-
plemented. Let y be the 1n×  vector of random responses, X is the n p×  
model matrix without the column of the intercept, X.S is the sn p×  model ma-
trix for subplot factors where sp  is the number of subplot fixed effect parame-
ters. 

Also, X.W is the wn p×  model matrix for whole-plot factors where wp  is 
the number of whole-plot fixed effect parameters. The ( ),s w=β β β  is the 
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1p×  vector of fixed effect parameters, where p is the number of fixed effect pa-
rameters that need to be estimated, sβ  is the 1sp ×  subplot effect parameters, 
and wβ  is the 1wp ×  whole-plot effect parameters.  

We set initial values for the parameters as ( )0
ss p= 1β , ( )0

ww p= 1β . The initial 
values for the indicator vectors for the subplot factor sν  and the whole-plot 
factor wν  are ( )0

s ps= 1ν  and ( )0
w pw= 1ν . Also, ( )0 0.5ρ = , ( )02 10σ = , and 

0.001d = . The initial values for the slab variance for the subplot factors sc  and 
for the slab variance for the whole-plot factors wc  are ( ) ( )0 0 1s wc c= = . Finally, 
the initial weights for the subplot factors sω  and for the whole-plot factors wω  
are ( ) ( )0 0 0.5s wω ω= = . 

Starting at the tth iteration such that 1,2, ,t its=   where 10000its = , and 
setting 1,2, , sj p=   and 1,2, , wk p=  , the sampling algorithm is:  

1) For 1,2, , sj p=  , and 1,2, , wk p=   sample ( )t
sjν  and ( )t

wkν  of the indi-
cator vectors ( )t

sν  and ( )t
wν  using (27) for ( )1t

sjβ − , ( )1t
wkβ − , ( )1t

sc − , ( )1t
wc − , ( )12 tσ − , 

( )1t
sω
− , and ( )1t

wω
− .  

2) Allocate ( ) ( ) ( )( ),t t t
s w=ν ν ν .  

3) Sample the mixture weights ( )t
sω  and ( )t

wω  using (28) for ( )t
sν  and ( )t

wν .  
4) Allocate ( ) ( ) ( )( ),t t t

s wω ω ω= .  
5) Sample the regressor coefficients ( )t

sβ  and ( )t
wβ  using (24) for X, y, 

( )1t−V , ( )1t
s
−D , ( )1t

w
−D , ( )1t

sc − , ( )1t
wc − , ( )t

sν , ( )t
wν , and ( )12 tσ − . Where the sD  is a 

diagonal matrix with the jth diagonal element ( ) ( ) ( )1 1 0t
s sj sjc I dIν ν− = + = , and 

wD  is a diagonal matrix with the kth diagonal element  
( ) ( ) ( )1 1 0t
w wk wkc I dIν ν− = + = .  
6) Allocate ( ) ( ) ( )( ),t t t

s w=ν ν ν  and ( ) ( ) ( )( )diag ,t t t
s w=D D D .  

7) Sample the total variance ( )2 tσ  using (26) for X, y, Z, ( )tβ , and ( )1tρ − .  
8) a) Sample ( )tρ∗  from ( ),a bβ ; 
b) Calculate ( )tα  using (25) for X, y, ( )( )tρ∗V , ( )( )1tρ −V , and ( )tβ ; 
c) Sample ( )tu  from ( )0,1U ; 
d) If ( ) ( )t tuα > , then set ( ) ( )t tρ ρ∗= , otherwise set ( ) ( )1t tρ ρ −= .  
9) Sample ( )t

sc  and ( )t
wc  from the set T with probability mass function given 

in (29) for ( )t
sβ , ( )t

wβ , ( )t
sν  and ( )t

wν .  
10) Allocate ( ) ( ) ( )( ),t t t

s wc c c= .  

8. Real Data Application 

[18] and [19] described an experiment in the production of vinyl for automobile 
seat covers. The experiment has 28 runs and is a modified version of an example 
in [19]. It involves the production of vinyl for automobile seat covers. In the ex-
periment, the effects of five factors on the thickness of the vinyl are investigated. 
Three of the factors are mixture components and two of them are so-called 
process variables. As in ordinary mixture experiments, the component propor-
tions sum to one. In this example, the response of interest does not only depend 
on these proportions, but also on the effects of the process variables. The mix-
ture components in the experiment are three plasticizers whose proportions are 
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represented by 1 2,s s  and 3s . The two process variables studied are rate of ex-
trusion ( 1w ) and temperature of drying ( 2w ). The experiment was conducted in 
a split-plot format. The process variables are the whole plot factors of the expe-
riment, whereas the mixture components are the sub-plot factors. The data are 
shown in Table 1. 
 
Table 1. Data for the Vinyl thickness for three-component mixture experiment with two 
process variable [20]. 

Obs. Block w1 w2 s1 s2 s3 y 

1 1 −1 −1 1 0 0 10 

2 1 −1 −1 0 1 0 4 

3 1 −1 −1 0 0 1 3 

4 1 −1 −1 0 0.5 0.5 9 

5 2 1 −1 0 0 1 7 

6 2 1 −1 1 0 0 10 

7 2 1 −1 0 1 0 7 

8 2 1 −1 0.5 0 0.5 12 

9 3 −1 1 0.5 0 0.5 9 

10 3 −1 1 0 1 0 5 

11 3 −1 1 0.5 0.5 0 8 

12 3 −1 1 0 0 1 2 

13 4 1 1 0 0.4 0.6 4 

14 4 1 1 0.5 0 0.5 7 

15 4 1 1 0 1 0 5 

16 4 1 1 1 0 0 6 

17 5 1 −1 0.5 0.5 0 5 

18 5 1 −1 1 0 0 12 

19 5 1 −1 0 0 1 16 

20 5 1 −1 0 0.6 0.4 9 

21 6 −1 1 0 0.5 0.5 11 

22 6 −1 1 1 0 0 12 

23 6 −1 1 0 0 1 2 

24 6 −1 1 0 1 0 9 

25 7 1 1 0.5 0.5 0 3 

26 7 1 1 0 1 0 5 

27 7 1 1 0 0 1 9 

28 7 1 1 1 0 0 5 
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A main effects plus two factor interactions model was assumed for the process 
variable 1w  and 2w . For the mixture components, the quadratic mixture mod-
el was used. The main effects of the process variables were crossed with the li-
near blending terms only, so the model estimated in [18] is given by 

3 1 2 2 2

1 2
1 1 1 1 1 1

m m

ij i i ij i j i i ij i j i ij
i i j i i i j

y s s s w w w s wβ β α α δ γ ε
−

= = = + = = =

= + + + + + +∑ ∑ ∑ ∑ ∑∑  

They computed the variance components 2 2 2
ε γσ σ σ= +  by R. The  

2ˆ 6.764εσ =  and the 2ˆ 0.00001γσ = . The factor effect estimates will be displayed 
in the next section to compare it with the proposed methods in this paper. 

9. Analysis of the Vinyl Thickness Experiment 

The real dataset for the vinyl thickness experiment has been used to apply the 
Bayesian variable selection approach. The model involves 5 main variables 
( 1 2 1 2 3, , , ,w w s s s ) and two factor interaction variables  
( 1 1 1 2 1 2 1 3 2 3 2 1 2 2 1 2, , , , , , ,w s w s s s s s s s w s w s w w ). We used the prior distributions above. 
Following [21], in a Bayesian framework the final model could be the median 
probability model consisting of those variables whose posterior inclusion proba-
bility ( )1| 0.5jp yν = ≥ . The posterior probability of parameter  

, 1, 2, ,j j pβ =   being active is approximated by  
( )

1
,

qits
j

q its
ν

=
∑                           (30) 

where ( )q
jν  is jν  sampled at iteration 1, ,q its=   of the Metropolis-Hastings 

within Gibbs sampling algorithm.  
We summarise the results of applying the Bayesian variable selection for the 

data from thickness vinyl experiment. The model which will be used is:  
3 1 2 2 2

1 2
1 1 1 1 1 1

m m

ij i i ij i j i i ij i j i ij
i i j i i i j

y s s s w w w s wβ β α α δ γ ε
−

= = = + = = =

= + + + + + +∑ ∑ ∑ ∑ ∑∑  

The estimates of the 13 parameters of the model have been reported using 
(SSVS) and (SSVS-SPD) for the response y which is displayed in Table 1 as well 
as the estimates by the generalised least estimator (GLS) for comparison pur-
pose. 

Figure 2 shows a comparison between SSVS and SSVS-SPD with respect to 
the resulting approximate posterior probability for the thickness vinyl experi-
ment. The parameters 

1 1 2 3 1 1 1 2
, , , , ,w s s s w s w sβ β β β β β  have the highest posterior 

probability of being active by both SSVS and SSVS-SPD. This indicates that the 
six associated variables to these terms play a significant role in this experiment. 
Followed by these terms, we find the parameters 

1 2 1 2 1 3 2 3
, , ,w w s s s s s sβ β β β  have an 

approximate posterior probability of about 0.5 and 0.6 by both SSVS and 
SSVS-SPD. We note that SSVS and SSVS-SPD tend to consider 

1 2 1 3 2 3
, ,s s s s s sβ β β  

to be significant at an approximate posterior probability of 0.5 and 0.6 while they 
are not significant by the GLS method. All methods consider 

2 2 1 2 2
, ,w w s w sβ β β  to 

be non significant with low approximate posterior probability in this experiment. 
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The Bayesian analysis for the real data of thickness vinyl experiment yielded 10 
significant variables. In contrast, the p value for the GLS estimates in Table 2 
shows there are 7 significant variables as it excludes the variables associated to 
the coefficients 

1 2 1 3 2 3
, ,s s s s s sβ β β . This means that the SSVS and SSVS-SPD 

yielded in extra 3 significant variables to the model. Table 2 represents the post-
erior means of the coefficients and standard deviation by both the SSVS and the 
SSVS-SPD methods and the GLS estimates with the p values for the thickness 
vinyl experiment. Table 3 shows the posterior mean of the correlation ρ̂  and 
the posterior mean of the total variance 2σ̂  for both SSVS and SSVS-SPD me-
thods. Figure 3, shows the ACF plots for Markov Chain using Metropolis Hast-
ings within Gibbs sampling algorithm used by SSVS and SSVS-SPD to sample 
the correlation ρ  and the variance 2σ . 

 

 

Figure 2. Approximate posterior probability for the thickness vinyl experiment. 
 

Table 2. The estimated coefficients and standard deviations (in parenthesis) for the thickness vinyl experiment by SSVS and 
SSVS-SPD. The first row is the estimates coefficeients and p-values (in parenthesis) for the GLS. 

Method 1w  2w  1s  2s  3s  1 2w w  1 2s s  1 3s s  2 3s s  1 1w s  1 2w s  2 1w s  2 2w s  

GLS 
2.7048 −1.4579 9.6836 5.7338 6.0306 −1.2478 −9.2955 5.0613 10.2519 −4.2558 −3.3837 0.5313 1.8096 

(0.006) (0.1416) (0) (0) (0) (0.0189) (0.1742) (0.4597) (0.0987) (0.0038) (0.0208) (0.7141) (0.2275) 

SSVS 
1.1231 −0.4047 8.7741 5.6278 6.2141 −0.5013 −3.8195 2.9947 3.5948 −2.1752 −1.6525 −0.0646 0.4176 

(1.5031) (0.8618) (1.4849) (1.4178) (1.3677) (0.8598) (5.5208) (5.0878) (5.0977) (2.0511) (1.8558) (0.6786) (0.9723) 

SSVS-SPD 
1.1101 −0.3762 7.1253 4.1025 4.7905 −0.5875 −3.5483 2.8006 3.2632 −1.9048 −1.4335 −0.0466 0.7020 

(0.9997) (0.9801) (2.7811) (2.5124) (2.4627) (1.0781) (5.5493) (5.5481) (5.5821) (1.9083) (1.6913) (1.0416) (1.2863) 

 
Table 3. Posterior means of the 2σ̂  and the ρ̂  by the SSVS and SSVS-SPD for the thickness vinyl experiment. 

Method 2σ̂  ρ̂  

SSVS 11.7622 0.3624 

SSVS-SPD 12.3379 0.4906 
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Figure 3. ACF plot for the Markov chain formed by sampling the total variance 2σ  and the correlation ρ  by 
SSVS and SSVS-SPD for the thickness vinyl experiment. 

10. Simulation Study Using the Design of the Vinyl Thickness  
Experiment 

We performed a simulation study by generating 1000 datasets, where each data-
set would ran for 10000 iterations using MCMC. The SSVS and the SSVS-SPD 
would be applied at two levels of 1η =  and 10η = . We assume that 

2 2 10ε εσ σ+ = . Thus, the true value of the total variance 2 10σ = . Also, the true 
value of ρ  is 0.5. We will calculate Type I and II error rates using the indicator 
vector ν  and the approximate posterior probability in 30. If the true variable is 
active but the algorithm yielded a corresponding approximation posterior prob-
ability of less than 0.5, this variable would then have Type II error rate. Also, if 
the true variable is non-active but the algorithm yielded a corresponding ap-
proximation posterior probability larger than or equal to 0.5, this variable would 
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then have Type I error rate. We also will calculate the precision of the point es-
timates by SSVS and SSVS-SPD by counting the median relative model error 
(MRME) for the estimates of the SSVS and SSVS-SPD. We focus on the proper-
ties of the estimated models by investigating the following properties:  

1) consistency in variable selection (frequency in selecting the active/non-active 
variable), and  

2) prediction performance.  
For point 1, at 5% significant level, we report Type I error rate (an effect that 

is truly not significant but the corresponding procedure estimate indicates that it 
is significant). We also report Type II error rate (an effect that is truly present 
but the corresponding procedure estimate indicates that it is not significant). 

For point 2, following [22] and [23], prediction accuracy is measured by 
computing the mean-squared error for each penalised estimate ˆ

λβ  as,  

( ) ( ) ( )ˆ ˆ ˆME .λ λ λ
′= − −X X X Xβ β β β β  

The relative model error (RME) is the ratio of the model error of the pena-
lised estimates to the model error for the GLS estimates of the fixed effects,  

( )
( )

ˆ
,

ˆ
GLS

λ
=

ME
RME

ME

β

β
 

where ˆ
GLSβ  in Equation (13) is the generalised least squares estimator of β . 

The median of the relative model error (MRME) over 1000 simulated data sets 
were reported. MRME values greater than one indicate that the methods esti-
mates perform worse than the GLS estimates, values near to one indicate that the 
methods estimates performs in a similar way to the GLS estimates, values less 
than one indicate that the methods estimates performs better than the GLS esti-
mates.  

We perform a simulation study to examine the performance of the SSVS and 
SSVS-SPD methods. Using the design of the thickness vinyl we generate the re-
sponse given the true model as: 

( ) 1 1 3 1 2 1 2 1 3 1 1 2 14 3 4 2 2 3w s s w w s s s s w s w s= − + + + − + + Y        (31) 

Type I and II error rates are displayed in Table 4 and Table 5, for two setting 
of 1η =  and 10η = . Also, Table 6 represents the estimated Posterior means of 

2σ̂  and ρ̂  by the SSVS and SSVS-SPD from the simulation by using the de-
sign of the thickness vinyl experiment. Figure 4 shows the MRME values at 

1η =  and 10η = . We notes that the SSVS at 1η =  have MRME greater than 
one which indicates that the estimates by the SSVS is worse than the GLS esti-
mates. While at 10η = , the SSVS perform better than the GLS estimates. The 
SSVS-SPD have similar performance with the GLS estimates at both level of η .  

Type II error rates at both level of η  generally are low indicating that the ac-
tive values are easy to detect by both SSVS and SSVS-SPD. Furthermore, Type II 
error rates by the SSVS-SPD are lower than Type II error rates by the SSVS. 
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With regard to Type I error rate, for both level of η , the SSVS-SPD have lower 
Type I error rates than the SSVS. Detecting active variables by both SSVS and 
SSVS-SPD is better than detecting the non active variables. In summary, we 
found that the SSVS-SPD detects the active and non-active effect factors with a 
lower error rate than the SSVS. The analysis of the Median Relative Model Error 
(MRME) for both SSVS and SSVS-SPD using the thickness vinyl design provides 
similar behaviour to the GLS except at 10η =  for the SSVS as detecting active 
effect factors was harder than the SSVS-SPD. 

 
Table 4. Type I error rate for the simulation by using the design of thickness vinyl experiment. 

True non active variable Method 2w  2s  2 3s s  1 2w s  2 2w s  

1η =  
SSVS 0.061 0.054 0.078 0.051 0.042 

SSVS-SPD 0.058 0.037 0.052 0.046 0.040 

10η =  
SSVS 0.045 0.069 0.055 0.077 0.082 

SSVS-SPD 0.050 0.030 0.056 0.069 0.058 

 
Table 5. Type II error rate for the simulation by using the design of thickness vinyl experiment. 

True active variable Method 1w  1s  3s  1 2w w  1 2s s  1 3s s  1 1w s  2 1w s  

  4 −3 1 4 2 −1 2 3 

1η =  
SSVS 0.004 0.005 0.002 0.005 0.007 0.005 0.004 0.007 

SSVS-SPD 0.003 0.005 0 0.003 0.004 0.003 0.008 0.019 

10η =  
SSVS 0.002 0 0 0.032 0.005 0 0.014 0.005 

SSVS-SPD 0 0 0 0.017 0 0 0.009 0.010 

 

 

Figure 4. Median relative model error (MRME) for the simulation by 
using the design of thickness vinyl experiment. 
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Table 6. Posterior means of the 2σ̂  and the ρ̂  by the SSVS and SSVS-SPD for the si-
mulation by using the design of thickness vinyl experiment. 

η  Method 2σ̂  ρ̂  

1 SSVS 10.9 0.56 

 SSVS-SPD 11.2 0.50 

10 SSVS 9.00 0.62 

 SSVS-SPD 9.32 0.68 

11. Conclusion 

This paper provided an analysis of data from split-plot mixture process experi-
ments using a motivating example from the industrial environment. Specifically, 
we recommend the use of the SSVS-SPD method for Bayesian variable selection. 
In our results, we observed that the SSVS-SPD can identify the active variables 
(linear and two-factors interaction), much better than the SSVS and the tradi-
tional used GLS method. However, as expected this comes with the expense of 
slightly higher Type I error rates. We also observed a better prediction perfor-
mance for the models chosen by the SSVS-SPD compared to the models chosen 
by the SSVS method. 
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