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Abstract 
In this paper, a new method for adding parameters to a well-established dis-
tribution to obtain more flexible new families of distributions is applied to the 
inverse Lomax distribution (IFD). This method is known by the flexible re-
duced logarithmic-X family of distribution (FRL-X). The proposed distribu-
tion can be called a flexible reduced logarithmic-inverse Lomax distribution 
(FRL-IL). The statistical and reliability properties of the proposed models are 
studied including moments, order statistics, moment generating function, 
and quantile function. The estimation of the model parameters by maximum 
likelihood and the observed information matrix are also discussed. In order 
to assess the potential of the newly created distribution. The extended model 
is applied to real data and the results are given and compared to other mod-
els. 
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1. Introduction 

Survival analysis is the branch of statistics that uses as a random variable the 
study of time. Before the event of the analysis occurs, such as mortality in species 
and breakdown of mechanical structures or facilities, this subject is referred to in 
engineering as reliability theory or reliability analysis, duration analysis or dura-
tion modeling in economics, and analysis of event history in sociology. Accor-
dingly, A variety of distributions have been suggested to serve as templates for 
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wide-ranging implementations of real-life data. Lomax [1] suggested a model for 
lifetime analysis, and actuarial science, known as Lomax or Pareto Type II, is a 
special case of the second type of generalized beta distribution. Wide applica-
tions such as the study of business failure lifetime data, income and wealth dis-
parity, urban size, actuarial science, medical and biological sciences, engineering, 
lifetime and reliability modeling have been described in this distribution. Also, it 
has been shown its utilities for modeling and analyzes lifetime data in medical 
and biological sciences, engineering, etc. So, it has gained the greatest attention 
from theoreticians and statisticians because of its numerous uses. Hassan and 
Al-Ghamdi [2] developed step stress accelerated life testing for Lomax distribu-
tion. Although Corbelini et al. [3] used it to model firm size and queuing prob-
lems. Some authors, such as Bryson [4] used this distribution as an alternative to 
the exponential distribution when the data is heavy-tailed and has been proposed. 

The Lomax distribution with two parameters, α  and β  has a random va-
riable X if it has a cumulative distribution function (CDF) given by 

( ) 1 1 , 0,xF x x
α

β

−
 

= − + > 
 

                   (1) 

where, 0β >  and 0α >  are the shape and scale parameters respectively. The 
probability density function (PDF) is 

( )
( )1

1 , 0, , 0.xf x x
α

α β α
β β

− +
 

= + > > 
 

               (2) 

The inverse Lomax distribution is one of the significant lifetime models, and it 
is used in economic sciences, geography, econometrics and clinical fields; the 
inverse Lomax distribution was used by Kleiber [5] to obtain the Lorenz ranking 
relationship between the ranked stats. This distribution was used for reliability 
estimation based on censored Type II observations by Yadav et al. [6]. Rahman 
et al. [7] discussed the estimated and predicted values using Bayesian approach 
under various loss functions. The reliability estimators of the inverse Lomax dis-
tribution under Type II censoring were tested by Singh and Singh [8]. The Bayesian 
estimate of the two-component inverse Lomax distribution mixture based on the 
Type-I censoring scheme was discussed by Reyad and Othman [9]. 

The cumulative distribution function (CDF) of inverse Lomax distribution ILD 
with parameters α  and β  are given by 

( ) 1 , 0, , 0,F x x
x

αβ β α
−

 = + > >  
                 (3) 

and the corresponding probability density function (PDF) is 

( ) ( )
( )1

2

d 1 , 0, , 0.
d

f x F x x
x xx

ααβ β β α
− +

 = = + > >  
          (4) 

Recently, Shanker and Shukla [10] introduced the generalization of genera-
lized Gamma distribution. The Gamma-Weibull G family of distributions was 
introduced by Oluyede et al. [11] with applications to real-life data. Maiti and 
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Pramanik [12] proposed a new class of distributions called odds XGamma-G 
family of distributions for modeling lifetime data. Korkmaz et al. [13] proposed 
a new class of lifetime distributions called the generalized odd Weibull generated 
family. Aslam et al. [14] proposed a new family of distributions, namely a mod-
ified T-X family of distributions with three most attractive features: flexibility, 
efficiency and parsimony. The applications of generalized distributions have 
been discussed with many researchers, and the reader can refer to Gallardo et al. 
[15], Al-Saiary et al. [16], Bantan et al. [17], Al-Babtain et al. [18], and Al-Babtain 
et al. [19]. 

Yinglin Liu et al. [20] proposed a new family of distributions with medical 
data sets. The family that is proposed may be named as a flexible reduced loga-
rithmic-X family. Reparameterization of the exponentiated Kumaraswamy G-lo- 
garithmic family and the alpha logarithmic distribution family can be used to 
obtain the proposed family. In modeling complex types of data, the proposed 
distribution would be quite flexible. Thus, the reason for proposing the FRL-X 
family is to decrease the number of parameters and to relax the boundary condi-
tions of the parametric values so that the hazard rate function is more flexible 
than the classical monotone behavior. Also, this provides us more knowledge 
about the behavior of the hazard rate function in the tail end to improve the de-
scription that calls for complexity by adding the parameters in the class of dis-
tributions. A random variable X is said to have the FRL-X distribution if it 
(CDF) is given by 

( )
( )

[ ]
log 1 ;

; , 1 , 0, ,
log 1

F x
G x x

λ λ ξ
λ ξ λ

λ
+ −  = − > ∈

+
           (5) 

where depending on the parameter ξ , ( );F x ξ  is CDF of the baseline random 
variable and λ  is an additional parameter. The term in Equation (5) is also true 
for 1λ = . The probability density function (PDF) corresponding to Equation 
(5) is given by 

( ) ( ) ( )
( ) [ ]

;d; , , .
d 1 ; log 1

f x
g x F x x

x F x
λ ξ

λ ξ
λ λ ξ λ

= = ∈
+ − +  

        (6) 

The reliability or survival function ( )S x  and failure rate or hazard rate 
function ( )S x , of the flexible reduced logarithmic-X (FRL-X) distribution, is 
given by 

( ) ( ) ( )
( )

( )
log 1 ;

; , 1 ; , , ,
log 1

F x
S x P X x G x x

λ λ ξ
λ ξ λ ξ

λ
+ −  = > = − = ∈

+
   (7) 

and 

( ) ( )
( )

( )
( ) ( )

; , ;
; , , .

; , 1 ; log 1 ;
g x f x

h x x
S x F x F x

λ ξ λ ξ
λ ξ

λ ξ λ λ ξ λ λ ξ
= = ∈

+ − + −      
  (8) 

In addition to the above, the main reasons for using the FRL-X family in prac-
tice are: 

1) The possibility of adding additional parameters in a simple way to modify 
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the existing distributions. 
2) To improve the features and flexibility of existing distributions. 
3) To show the extended version of the baseline distribution having closed 

forms for cumulative distribution function, hazard rate function, and survival 
function. 

4) To provide better measurements than the corresponding modified models. 
5) To add new distributions having nonmonotonic shaped hazard rate func-

tions. 
6) To insert the best fit to unimodal medical care data sets. 
This paper is structured as follows: The FRL-X family, called the flexible loga-

rithmic-inverse Lomax (FRL-IL) distribution, was introduced in Section 2. The 
structural characteristics of the distribution of FRL-IL include the behavior of 
the function of probability density, the reliability or survival function, the func-
tion of the hazard rate, the function of the reversed hazard rate, the residual (re-
versed) life. The moments and the moments generating function, quantile func-
tion, and skewness and kurtosis are given in Section 3. Section 4 provides order 
statistics and extreme values. The maximum likelihood estimation of the un-
known parameters is discussed in Section 5. Finally, in Section 6, a real data life 
application has shown up the potential of FRL-IL distribution relative to other 
distributions. 

2. The Flexible Reduced Logarithmic-Inverse  
Lomax (FRL-IL) Distribution 

It is said that the random variable X has flexible reduced distribution logarith-
mic-inverse Lomax (FRL-IL) denoted by FRL-IL ( ), ,α β λ . Let ( );F x ξ  and 
( );f x ξ  be cumulative distribution function (CDF) and probability density 

function (PDF) of the two-parameter inverse Lomax distribution. Using ( )F x  
and ( )f x  from Equations (3) and (4), respectively, in Equations (5) and (6) to 
obtain, the (CDF) of the FRL-IL distribution is given by 

( ) [ ]

log 1 1
; , , 1 , 0, , , 0.

log 1

x
F x x

αβλ λ

α β λ α β λ
λ

−  + − +  
   = − > >
+

      (9) 

The probability density function (PDF) corresponding to Equation (6) is given 
by 

( )

( )

[ ]

1

2 1
; , , , 0, , , 0,

1 1 log 1

xxf x x

x

α

α

αβλ β

α β λ α β λ
βλ λ λ

− +

−

 +  = > >
  + − + +  

   

   (10) 

The survival function or reliability ( )S x , failure rate or hazard rate function 
( )h x , reversed-hazard rate function ( )r x , and cumulative hazard rate function 
( )H x  of the flexible reduced logarithmic-inverse Lomax (FRL-IL) distribution 

are given by 
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( ) ( )

log 1 1
; , , , 0,

log 1

x
S x x

αβλ λ

α β λ
λ

−  + − +  
   = >
+

           (11) 

( )
( )1

2

; , ,

1
, 0,

1 1 log 1 1

h x

xx x

x x

α

α α

α β λ

αβλ β

β βλ λ λ λ

− +

− −

 + 
 = >

      + − + + − +      
         

        (12) 
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( )

( )

1
2

; , ,

1
, 0,

log 1 log 1 1 1 1

r x

x
x x

x x

α

α α

α β λ

βαβλ

β βλ λ λ λ λ

− +
−

− −

 + 
 = >

        + − + − + + − +       
           

  (13) 

and 

( ) ( ) ( )

( )

0
; , , d log ; , ,

log 1 1
log ,

log 1

x
H x h u u S x

x

α

α β λ α β λ

βλ λ

λ

−

= = −

    + − +  
    = −  + 

 
 

∫

          (14) 

respectively, 0x >  and , , 0α β λ > . 
Figures 1-6 show the PDF, CDF, survival function ( )S x , hazard rate func-

tion ( )h x , reversed hazard rate function ( )r x  and cumulative hazard rate 
function ( )H x  of the FRL-IL ( ), ,α β λ  distribution for some parameter val-
ues. 

 

 
Figure 1. The pdf of the FRL-IL for different values of parameters. 
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Figure 2. The CDF of the FRL-IL for different values of parameters. 
 

 
Figure 3. The S(x) of the FRL-IL for different values of parameters. 

 

 
Figure 4. The h(x) of the FRL-IL for different values of parameters. 
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Figure 5. The r(x) of the FRL-IL for different values of parameters. 

 

 
Figure 6. The H(x) of the FRL-IL for different values of parameters. 

3. Some Statistical Properties 

In this section, we give some statistical properties of FRL-IL distribution. 

3.1. Quantile Function and Median 

The quantile function has a number of important applications, for example, it 
can be used to obtain the median, skewness, kurtosis and can be also used to 
generate random variables. Suppose X a random variable from the FRL-IL dis-
tribution with CDF from Equation (10), the quantile function of X, is given by 

( ) ( )
( )( )log 1 1

1 1 1 e ,
u

x Q u F u F
λλ

λ

+ −
− −  + −

= = =   
 

           (15) 
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where ( )0,1u uniform  from the FRL-IL distribution, random numbers can 
easily be generated using 

( ) ( )( )

1

1 1
1 log 1

.
1 e u

x
α

λ α α

βλ

λ λ

−

− −− +

=

+ − −

                (16) 

It is possible to derive the median of the FRL-IL distribution by setting 
0.5u =  in Equation (16) to be 

( )( )

1

1 1
0.5log 1

.
1 e

median
α

λ α α

βλ

λ λ

−

− −+

=

+ − −

              (17) 

3.2. Mode of the FRL-IL Distribution 

The mode of the flexible reduced logarithmic-inverse Lomax (FRL-IL) distribu-
tion is derived by differentiating the probability density function in Equation 
(10) with respect to random variable 0x >  and equal it to zero. 

So, then the mode is the solution of the following equation 

( ) ( )
( ) ( )

[ ]

( )

2 1

2 2 3

2

1

2

21 1 log 1 1 1 1

1 1 log 1

1

x x xx x x

x

xx

α α α

α

α

β αβλ β β β αβλλ λ λ α

βλ λ λ

αβλ β

− − + − +

−

− +

                + − + +  + + − +                                       
    + − + +       

      +          −

( )
( )

[ ]

1

2

2

log 1 1

0.

1 1 log 1

xx

x

α

α

αβλ βλ

βλ λ λ

− +

−

       + +            =
    + − + +       

 

(18) 

3.3. Skewness and Kurtosis 

One of the most common methods to measure the skewness and kurtosis of a 
distribution is to consider measures defined with moments. However, moments 
cannot always be found. This applies true for heavy-tailed distributions such as 
the Lomax or inverse Lomax distribution. For this reason, the use of the quantile 
function offers some alternatives. The shortcomings of the conventional meas-
ure of kurtosis are well known. Kenney and Keeping [21] provides the skewness 
of Bowely on the basis of quantities as 

( ) ( ) ( )

( ) ( )

0.75 0.5 0.25

0.75 0.25

2
.k

q q q
S

q q

− +
=

−
                   (19) 

Moors [22] gave the Moors quantile based Kurtosis as 

( ) ( ) ( ) ( )

( ) ( )

0.875 0.625 0.375 0.125

0.75 0.25

,u

q q q q
K

q q

− − −
=

−
              (20) 
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with the ( ).q  representing quantile function. 
The sign of S is informative on the direction of the skewness of the distribu-

tion 0S >  for right-skewed, 0S =  for symmetric, and 0S <  for left-skewed. 
The value of K measures the tail-heaviness of the distribution; in general, the 
bigger is the value of K is the heavier is the tail of the distribution. 

3.4. Moments 

Given the importance of the rth moments in any statistical analysis in applica-
tions, as they can be used to study the most important features and characteris-
tics of the distribution (such as slope, dispersion, skew and kurtosis), in this 
subsection we will discuss how to find the rth moments of the FRL-IL distribu-
tion, which are derived is be given by 

( )
( )

0
; , , d .

r
r

r

E x

x f x x

µ

α β λ
∞

′ =

= ∫
                  (21) 

By replacing Equation (10) with Equation (21), we get 

( )

( )

1

2

0

1
d ,

1 1 log 1

r
r

xxx x

x

α

α

αβλ β

µ
βλ λ λ

− +

∞

−

 + 
 ′ =

  + − + +     

∫

 

where ( )1 1 1 1 1
1x x

α αβ λ βλ λ λ
λ

− −      + − + = + − +         +      
 

( )

( ) ( ) ( )

1
2 1

0

1
1 1 1 d ,

1 log 1 1
r

r

x
xx x

x

α

α
βαβλ

λ βµ λ
λ λ λ

− +
− −−

∞

 +     ′ = + − +   + + +   
∫

 

where ( )
1 1

1

1
1 1 1 1

1 1

i i
i

i ix x

α λλ β λ β
λ λ

−− + −∞

=

  −      − + = − +         + +       
∑ , by using bi-

nomial expansion, where binomial expansion is giving by equation 

( )
0

nn k n k

k

n
a b a b

k
−

=

 
+ =  

 
∑

 

( ) ( )

( )1 1 1
2

0
1

1
1 1 d .

1 log 1

i i
i r

r
i

x x
i x

αλ αβ βµ
λ λ

+ − + −∞ ∞ −

=

−    ′ = − +    + +    
∑ ∫

 

Let z
x
β

=  and 1x zβ −=  then 2d dx z zβ −= −  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1
1 11

0
1

1
1

1

1
1 1 d

1 log 1

1
1 1, 1 .

1 log 1
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i r
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3.5. The Moment Generating Function 

The moment generating function (MGF) of the flexible reduced logarithmic- 
inverse Lomax (FRL-IL) distribution is follows 

( ) ( )
0

e ; , , d .tx
XM t f x xα β λ

∞
= ∫                  (23) 

Hence, expanding ( )XM t  using Taylor series yields 

( ) ( )
0

1
; , , d

!

r
r

X
r

tM t x f x x
r

α β λ
∞ ∞

=

= ∑ ∫                               (24) 

( ) ( )
( ) ( )( )

1
1

, 1

1
1 1, 1 .

1 !log 1

ri
i

r i

t
B r i r

i r
α βλ α

λ λ

+∞
+

=

−  = − − + + +  + +  
∑    (25) 

4. The Order Statistics 

Assuming that ( ) ( ) ( )1 2, , , nX X X
 are the order statistics of a random sample 

follows a continuous distribution with cumulative distribution function (CDF) 
( )F x  and probability density function (PDF) ( )f x , then the PDF of ( )kX  is 

given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
:

! 1 , 1, 2, , .
1 ! !

k n k
k n

nf x f x F x F x k n
k n k

− −
= − =      − −

   (26) 

Let X be a random variable of FRL-IL distribution, then the density function 
of the k-th order statistics of the FRL-IL distribution is 

( ) ( ) ( ) ( )

( )

[ ]

[ ] [ ]

1
2

:

1

1
!

1 ! !
1 1 log 1

log 1 1 log 1 1
1 .

log 1 log 1

k n

k n k

x
n xf x

k n k
x

x x

α

α

α α

βαβλ

βλ λ λ

β βλ λ λ λ

λ λ

− +
−

−

− −− −

 
  +   =  − −    + − + +       

         + − + + − +         
            × −   + +   

   
   

 (27) 

If 1k = , the pdf of order statistics is 

( ) ( )

( )

[ ]

[ ]

1

1: 2

1

1

1 1 log 1

log 1 1
.

log 1

n

n

n xf x
x

x

x

α

α

α

β
αβλ

βλ λ λ

βλ λ

λ
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−
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  +   =     + − + +       

   + − +   
    ×  + 

 
   

If k n= , the pdf of order statistics is 
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( ) ( )
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Distribution of Maximum, Minimum and Median 

Suppose 1 2, , , nX X X  be independent, identically distributed random va-
riables from FRL-IL 
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and 
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5. Parameter Estimation 

There are many estimation methods for estimating unknown parameters in prob-
ability distributions, but the most commonly used is the maximum likelihood 
probability technique. In addition, the MLEs have desirable properties and can 
be used to establish confidence intervals. The normality estimate for these esti-
mators is easily addressed either numerically or analytically in the large sample 
distribution theory. In this section, the point and interval estimation of the un-
known FRL-IL distribution parameters is derived using the maximum likelihood 
method based on a complete sample. 

Assuming that 1 2, , , nx x x  denote a random sample of complete data from 
the FRL-IL distribution. 

The likelihood function is given by 

( )
1

; , , ,
n

i
i

L f x α β λ
=

=∏                      (31) 

If we substituting Equation (10) for Equation (31), we have 
( )
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The corresponding log-likelihood function for the parameters ,α β  and λ  is 

( )
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        (32) 

The first partial derivatives are calculated of   with respect to ,α β  and λ  
and equating each to zero, we get the likelihood equations as 

1 1
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By solving the nonlinear Equations (33)-(35), MLEs can be obtained numeri-
cally for ,α β  and λ . 

Asymptotic Confidence Bounds 

We obtain the asymptotic variances and covariances of the MLEs of ,α β  and 
λ , by using variance-covariance matrix 1I −  (Lawless [23]), which is defined as 
follows 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

12 2 2

2

2 2 2
1

2

2 2 2

2
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α β α λα
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α α β α λ

β α β β λ

λ α λ β λ

−

−

 ∂ ∂ ∂
− − − ∂ ∂ ∂ ∂∂ 
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and 
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The ( )1 100%δ−  intervals of ,α β  and λ , can be obtained by using va-
riance-covariance matrix as the following forms 

( ) ( ) ( )
2 2 2

ˆ ˆ ˆ ˆˆ ˆ , , ,Z var Z var Z varδ δ δα α β β λ λ± ± ±
 

where 
2

Zδ  is the percentile of the standard normal distribution with right-tail 
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probability 
2
δ . 

6. Application 

This section illustrates the usefulness of FRL-IL distribution using a set of real 
data. The following data set represents the length of time to recover (in months) 
for a randomized sample of 128 patients with bladder cancer. Medically, bladder 
cancer is defined as the place where the abnormal tissue grows. As more can-
cerous tissues and cells develop, they can turn into a tumor, and with a period of 
time without detection, they will spread to other parts of the body (see Lee and 
Wang [24]). The data are: 

 
0.08 

2.26 

2.54 

3.88 

4.23 

5.49 

11.79 

4.51 

13.29 

12.63 

2.09 

3.57 

3.70 

5.32 

5.41 

7.66 

18.10 

6.54 

0.40 

22.69 

3.48 

5.06 

5.17 

7.39 

7.62 

11.25 

1.46 

8.53 

25.82 

9.02 

4.87 

7.09 

7.28 

10.34 

10.75 

17.14 

4.40 

12.03 

0.51 

14.24 

6.94 

9.22 

9.74 

14.83 

16.62 

79.05 

5.85 

20.28 

32.15 

14.77 

8.66 

13.80 

14.76 

34.26 

43.01 

1.35 

8.26 

2.02 

2.64 

36.66 

13.11 

25.74 

26.31 

0.90 

1.19 

2.87 

11.98 

3.36 

1.05 

1.26 

23.63 

0.50 

0.81 

2.69 

2.75 

5.62 

19.13 

6.76 

2.69 

4.34 

0.20 

2.46 

2.62 

4.18 

4.26 

7.87 

1.76 

12.07 

2.83 

12.02 

2.23 

3.64 

3.82 

5.34 

5.41 

11.64 

3.25 

21.73 

4.33 

8.65 

3.52 

5.09 

5.32 

7.59 

7.63 

17.36 

4.50 

2.07 

5.71 

3.31 

4.98 

7.26 

7.32 

10.66 

17.12 

1.40 

6.25 

3.36 

7.93 

 

6.97 

9.47 

10.06 

15.96 

46.12 

3.02 

8.37 

6.93 

2.02 

 

 
The data has been used by Kumar et al. [25], El-Gohary et al. [26], Chandra 

[27], De Andrade and Zea [28] and Selim [29]. 
We fitted the above-mentioned data sets using MLE to the flexible reduced 

logarithmic-inverse Lomax (FRL-IL), inverse Nadarajah-Haghighi (INH), inverse 
Weibull (IW), inverse exponential (IE) and Inverse Generalized Power Weibull 
IGPW distributions. The MLEs for IGPW, INH, IW, IE and FRL-IL distributions 
are displayed in Table 1. Kolmogorov-Smirnov (K-S), -Log likelihood (-L), Akaike 
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), 
Bayesian Information Criterion (BIC) and Hannan-Quinn Information Crite-
rion (HQIC) were used to compare the fitted models. Based on these criteria, the 
best model is the one that achieves the lowest values for the information criteria 
and goodness-of-fit statistics. Hence, it is clear from the numerical results in Table 
2, The FRL-IL model presents a better fit than other compared models. Figure 7 
displays the empirical and fitted cumulative for the FRL-IL. 

Also, Figure 7 graphically illustrates that FRL-IL distribution provides the 
best fit to our data sets, as compared to the other considered models. Therefore, 
the FRL-IL model can be used as a possible alternative to the well-known models  
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Figure 7. The empirical and fitted for the FRL-IL. 

 
Table 1. The estimates ,α β  and λ . 

Model α  β  λ  

IL - 0.6248 - 

IR - 0.0395 - 

IW - 0.8625 0.7585 

INH 0.5130 2.6070 - 

IGPW 0.2356 12.3717 2.0876 

FRL-IL 0.006725 1.95653 2.25472 

 
Table 2. The estimates of the goodness-of-fit for data 

Model K-S -L AIC CAIC BIC HQIC 

IL 0.2311 460.382 922.765 922.796 925.617 923.923 

IR 0.7502 774.342 1550.683 1550.715 1553.535 1551.842 

IW 0.1408 444.001 892.002 892.098 897.706 894.319 

INH 0.1636 431.059 866.118 866.214 871.822 868.436 

IGPW 0.1364 426.910 859.819 860.013 868.375 863.296 

FRL-IL 0.111778 425.34 856.681 856.874 865.237 860.157 

 
like inverse exponential and inverse Weibull models. 

7. Conclusion 

This paper presents a new three-parameter distribution, called the flexible re-
duced logarithmic-inverse Lomax distribution. Some of the statistical properties 
of the (FRL-IL) distribution include the moments, hazard rate function, quantile 
function and order statistics are derived. To estimate the model parameters, the 
maximum likelihood approach is used. The practical applications have estab-
lished that the proposed distribution is quite useful for dealing with reliable data 
and behaves better. Also, the figure graphically illustrates that FRL-IL distribu-
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tion provides the best fit to our data sets, as compared with the other considered 
models. Therefore, the FRL-IL model can be used as a possible alternative to the 
well-known models like inverse exponential and inverse Weibull models. In the 
future, it will be developed and studied the generalized FRL-IL distribution un-
der progressively type II and hyper type II censored. 
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