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Abstract 
The Bertalanffy-Pütter (BP) five-parameter growth model provides a versatile 
framework for the modeling of growth. Using data from a growth experiment 
in literature about the average size-at-age of 24 species of tropical trees over 
ten years in the same area, we identified their best-fit BP-model parameters. 
While different species had different best-fit exponent-pairs, there was a 
model with a good fit to 21 (87.5%) of the data (“Good fit” means a norma-
lized root-mean-squared-error NRMSE below 2.5%. This threshold was the 
95% quantile of the lognormal distribution that was fitted to the NRMSE val-
ues for the best-fit models for the data). In view of the sigmoidal character of 
this model despite the early stand we discuss whether the setting of the 
growth experiment may have impeded growth. 
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1. Introduction 

There are multiple factors that influence the growth of trees and forest stands [1] and 
therefore also a variety of growth equations used in forest science [2] [3] [4] and [5]. 
Practitioners often use simple three-parameter models, e.g. of Brody [6], Gompertz 
[7], or Verhulst [8], as these are numerically tractable. The four-parameter Chap-
man-Richards growth function [9] is popular, too (110,000 hits in Google Scho-
lar). However, the use of many different growth models makes the comparison 
of the outcomes difficult. Therefore, here we consider the five-parameter Berta-
lanffy-Pütter (BP) model, as it generalizes these models and provides a more 
unified approach using growth curves with better fits to the data. 
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We ask, if a further unification is possible, provided that the environment is 
the same: Is there a three-parameter BP-model that fits well to most growth data 
(with different optimal parameters for each data), provided that the growth con-
ditions for all trees are the same? We illustrate this question for growth data 
from Devaranavadgi [10] about the average heights of 24 species of tropical trees 
that were grown on dry and shallow soil. Table 1 provides the data. The data 
represent the first 11 years of an early forest stand with final mean heights for 
the species between 2.56 and 9.60 m. We therefore assume that for each species 

 
Table 1. Species and data. 

No. 
Name Max1 

in m 

height at age data (height in cm, rounded to 0 decimals; year at bottom)2 

common Species h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 

T01 ear-pod wattle Acacia auriculiformis 15 - 30 52 81 141 241 319 370 450 532 590 640 680 

T02 black cutch Acacia catechu 15 46 61 123 185 251 292 349 391 416 421 430 

T03 gum-arabica tree Acacia nilotica 20 - 25 48 68 123 175 271 324 383 440 470 522 544 

T04 river tamarind Leucaena leucocephala 2 - 10 38 63 166 272 381 491 572 761 864 920 960 

T05 Indian siris Albizzia lebbeck 18 - 30 15 83 181 281 372 469 530 572 601 644 663 

T06 neem Azadirachta indica 15 - 20 34 83 126 189 253 329 388 421 456 497 521 

T07 orchid tree Bahunia purpurea 5 64 83 149 201 251 321 376 419 455 471 489 

T08 bastard teak Buteo monosperma 6 - 12 11 29 69 101 150 184 211 231 249 259 269 

T09 beach oak Casuarina equisitefolia 6 - 35 95 114 134 178 230 281 312 350 372 390 404 

T10 ironwood Senna siamea 18 69 91 138 181 223 275 337 372 419 457 481 

T11 Indian rosewood Dalbergia sissoo 10 - 15 52 85 149 201 265 313 351 399 431 442 451 

T12 red flame-tree Delonix regia 12 - 17 16 31 69 121 163 193 231 252 273 281 302 

T13 Indian goose-berry Emblica officianalis 8 - 23 83 135 188 279 343 406 511 568 603 612 624 

T14 
lemon-scented 

eucalyptus 
Eucalyptus citriodara 30 79 176 283 373 465 589 641 742 812 864 885 

T15 some eucalyptus Eucalyptus hybrid - 82 123 184 282 341 494 529 572 589 621 649 

T16 anjan tree Hardwickia binata 25 - 30 31 73 146 209 259 311 355 478 539 562 591 

T17 axle-wood Anogeissus latifolia 20 38 62 124 182 239 331 388 446 486 519 591 

T18 sweet inga Pithecellobium dulce 5 - 20 81 123 179 221 279 334 386 429 461 499 519 

T19 yellow flame-tree Peltoferrum ferrugeneum 15 - 25 22 31 172 317 395 463 472 457 481 508 529 

T20 Indian beech Millettia pinnata 15 - 25 13 49 109 182 234 289 356 406 442 477 496 

T21 mesquite Prosopsis juliflora 12 96 135 197 262 311 362 399 441 471 492 503 

T22 raintree Samanea saman 15 - 25 68 101 159 206 266 313 354 391 423 454 468 

T23 black plum Syzygium cumini 6 - 20 58 72 98 136 165 172 192 209 233 246 256 

T24 tamarind Tamarindus indica 30 37 49 89 129 178 209 237 270 296 313 321 

year  ‘90 ‘91 ‘92 ‘93 ‘94 ‘95 ‘96 ‘97 ‘98 ‘99 ‘00 

mean annual temperature (˚C)3  26.5 27.1 27.6 27.5 27.4 27.8 28.2 28.1 28.2 27.9 27.6 

Note: 1typical maximal heights (from diverse sources); 2data from Devaranavadgi [10], 3data from Belgaum airport (VABM weather station, 200 km SW of 
Vijaya Pura) and retrieved using Mathematica 12.1 for “Bijapur, Karnataka, India”. 
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the data represent the initial growth phase of the trees, whence BP-models are 
suitable. Note that all mentioned models have none or one inflection point; in 
the latter case the growth curves are sigmoidal (S-shaped). The growth curve of a 
tree may display several inflection points, each representing another sigmoidal 
growth phase, c.f. [11] and [12], whence a single sigmoidal growth curve is capa-
ble of modeling only one of these phases. 

For each species we identify the best-fit parameters for the BP-model, from 
which we compute additional parameters with a silvicultural relevance, such as 
the location of the inflection point (maximal yearly growth) and asymptotic 
height (final expected size of the first growth phase). As to the above-mentioned 
research question, we speculate that the experimental setup of the growth study, 
from which we have taken the data, may have impeded the growth of most trees. 
For, the analysis of the inflection points indicates an early slowing down of growth 
(unexpected at this early phase) and we identified a single three-parameter model 
that had a “good fit” (defined later) to most data. 

As for another application, we use these models to check if temperature has af-
fected tree growth. For, in temperate climate, higher temperatures enhance growth, 
while in tropical climate growth slows down [13] [14]. 

2. Materials and Methods 
2.1. Data 

We used the literature data of Table 1 (see also Figure 5) from Devaranavadgi 
[10]: An unspecified number of trees from 24 species was planted in 1990 and 
tree heights were measured annually till 2000 (11 data per species). The table in-
forms about the species T01 - T24 and reports their average-height-at-age data 
(The source paper provides additional information, such as soil composition. 
There is no information about the standard deviation of the heights). The data 
are of additional interest, as often tree size is measured by other parameters [15]. 
Table 1 also informs about the annual mean temperatures (for 1990, …, 1999) 
for the larger region around Vijaya Pura. We used Mathematica to retrieve them 
from the Wolfram Alpha database. 

The growth data were obtained during a study at the Regional Agricultural 
Research Station of Vijaya Pura (district Bijapur, Karnataka, India), located in 
the Deccan plateau. Figure 1 pinpoints the study site. It has a semi-arid climate 
with temperatures ranging from 15˚C to 42˚C and average annual rainfall of 594 
mm with 39 rainy days. The region suffers from deforestation owing to poor 
management practices, low fertility of soil, and a harsh climate [16]. The study 
therefore searched for species with added economic or ecological value that were 
suitable for re-forestation. Note that some of the species that the study consi-
dered may become invasive in more humid areas (e.g. mesquite). 

2.2. Growth Model 

The Bertalanffy-Pütter (BP) model describes tree growth by means of the differential  
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Figure 1. Plot of India and of Karnataka state (shades of beige), and in red the study site 
Vijaya Pura, the airport at Belaum, and of the state capital Bengaluru (Bangalore). Plot 
using Mathematica 12.1, based on Open Street Map (the plotted boundaries are neither 
endorsed by the authors nor may they be correct). 

 
Equation (1) of Pütter [17] for the tree height h(t) at time t. The differential equ-
ation can be solved analytically, though in general not by means of elementary 
functions [18]. 

( ) ( ) ( )a b
h t p h t q h t′ = ⋅ − ⋅                     (1) 

Tree growth models for temperate climates often use difference equations, i.e. 
the derivative ( )h t′  in Equation (1) is replaced by the difference ( ) ( )1h t h t+ − . 
In temperate climates this assumption is warranted, as the sharp seasonal changes 
are apparent from the growth rings. We use the differential equation, as we con-
sider tropical trees. Further, the yearly growth data showed random fluctuations, 
while the height-at-age data used for the fitting of model (1) were comparably 
smooth. 

The model parameters of Equation (1) have no meaning a priori. They are to 
be determined from fitting the model to height-at-age data: Four parameters are 
displayed in the equation, namely the exponent-pair a < b and the scaling con-
stants p and q. An additional parameter is the initial value at age 1, meaning 
h(1) = c > 0. While in forestry literature also negative exponents were consi-
dered (a < 0, b = 1), as thereby a growth model of Schnute [19] would fit into the 
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BP-framework [20], this paper assumes non-negative exponents. 
In this form, the BP-model was popularized by Bertalanffy [21] [22] [23] as a 

model of ontogenetic growth. According to Bertalanffy, the growth of animals, 
plants and biomass would be governed by certain biophysical principles, which 
in their most general form would be embodied by Equation (1). Specifically, the 
growth of trees would be based on an allometric relation between living biomass 
and photosynthetic area [24], whereby the exponent-pair (a, b) would be related 
to plant metabolism. 

Each exponent-pair (a, b) defines a unique three-parameter model BP(a, b), 
using the parameters p, q, c. For comparison, Figure 2 plots the exponent-pairs 
of well-known models and compares them with the exponent-pairs that this pa-
per scanned in an initial search for the optimal model parameters. 

Common named three-parameter models are the Brody [6] (monomolecular) 
model BP(0, 1) of bounded exponential growth, the Verhulst [7] model of logis-
tic growth BP(1, 2), the model BP(2/3, 1) of von Bertalanffy [21], or the model 
BP(3/4, 1) of West [25]. Four-parameter models that are special cases of equa-
tion (1) are the generalized Bertalanffy model (b = 1, a < 1) and the Richards [9] 
model (a = 1, b > 1). The Gompertz [7] model is the limit case BP(1, 1) with a 
different differential equation, where b converges to a = 1 from above [26]; simi-
larly for the generalized Gompertz model (model class a = b) with Equation (2): 

( ) ( ) ( )( ) ( )ln
a a

h t p h t q h t h t′ = ⋅ − ⋅ ⋅                 (2) 

Note that BP(1, 1) is attractive amongst botanists, as the same model (with 
different parameters c, p, q) is capable of describing different dimensions of 
plant-growth (e.g. height, basal area, volume), provided that there exists an al-
lometric relation between these dimensions. The other models do not have this 
property (i.e. different exponent-pairs are needed for different dimensions). 

Alternative parametrizations of the model use empirically meaningful para-
meters, such as the asymptotic height hmax (limit of the height at infinite time) or  

 

 
Figure 2. Special models (blue dots), model classes (grey lines), and the initial search grid 
(yellow). Plot using Mathematica 12.1. 
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the inflection point (height hinfl reached at age tinfl). Asymptotic height is an im-
portant silvicultural measure, as it allows to assess the ultimate yield. It depends 
both on the species and on the environment, where the tree was planted. The in-
flection point informs when growth was fastest. The maximal annual growth rate 
is important for plant biology, as it informs about the basal metabolic rate [27]. 
These parameters are computed from the parameters of Equation (1) as follows; 
for tinfl numerical equation solving is used. Growth is unbounded, if q = 0 and it 
is not sigmoidal, if a = 0. 

1
b a

max
ph
q

− 
=  
 

 and 
1

b a

infl max
ah h
b

− = ⋅ 
 

               (3) 

Some authors [28] were concerned that asymptotic length would be unreliable 
if it exceeded the maximal observed length substantially. We therefore compared 
hmax with typical tree heights. 

2.3. Goodness of Fit and Method of Calibration 

We sought for parameters that minimized SSE, the sum of squared errors for fit-
ting the BP-growth function to height-at-age-data. If h(t) is a solution of Equa-
tion (1), using certain exponents a < b and parameters p, q, c, and if hi are the n 
= 11 average weights, then SSE is defined by Equation (4): 

( )( )
11 2

1
i

i
SSE h h i

=

= −∑                       (4) 

The data-fitting exercise for the BP-model is more challenging than for the 
Richards model, where standard optimization routines may run into difficulties 
[29]. In recent papers a method of data-fitting was developed for the BP-model 
[30] [31] [32] and [33]. This method was based on a grid-search, whereby we 
searched the best-fitting exponent-pairs (a, b) on a grid with step size 0.01 in 
both directions (Figure 1). For each grid point we identified the best fitting 
model parameters (p, q, c) that minimized SSE using a custom-made variant of 
the method of simulated annealing [34]. Simulated annealing alone could be 
used to optimize for all five parameters (a, b, p, q, c) at once, but often the so 
computed parameters achieved a suboptimal fit. Note that we optimized also for 
the initial values c, whence in Table 2 the best-fit values for c slightly differed 
from the observed initial heights h1 in Table 1. 

For each time series, the best-fit parameters (amin, bmin, pmin, qmin, cmin) achieved 
the least value of SSE, namely SSEmin. Thereby, for the exponents we aimed at an 
accuracy of 0.01 (defined from the grid), while the other parameters were identi-
fied with a higher accuracy. 

Our method of obtaining the five best-fit parameters of the BP-model requires 
for each dataset the consideration of many three-parameter models whereby for 
all these models the best-fit parameters need to be computed. We utilize the sur-
plus information from this approach and ask, if one three-parameter model would 
fit for all (or for most) species, if the notion of “fit” was somewhat relaxed; i.e.  
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Table 2. Parameters of the best-fit models and measures for the goodness of fit (rounded to 3 decimals). 

No. 
Best-fit parameters1 Derived parameters2 Goodness of fit3 

a b c P q hmax hinfl tinfl SSE RMSE NRMSE 

T01 0.83 1.02 0.435 1.720 1.137 8.839 2.987 4.909 0.101 0.096 1.4% 

T02 1.09 1.51 0.399 1.066 0.568 4.477 2.060 4.393 0.048 0.066 1.5% 

T03 1.04 1.15 0.387 2.824 2.312 6.165 2.472 4.888 0.069 0.079 1.5% 

T04 0.30 11.12 0.242 0.756 0+ 9.601 6.876 7.594 0.309 0.167 1.7% 

T05 0.48 1.35 0.153 1.119 0.203 7.095 2.161 3.352 0.032 0.054 0.8% 

T06 0.94 1.17 0.381 1.585 1.056 5.831 2.251 4.500 0.037 0.058 1.1% 

T07 0.60 3.18 0.590 0.429 0.007 5.060 2.651 5.126 0.031 0.053 1.1% 

T08 0.87 1.10 0.097 1.969 1.549 2.843 1.025 3.915 0.007 0.025 0.9% 

T09 1.70 2.17 0.893 0.476 0.245 4.128 2.455 5.413 0.026 0.049 1.2% 

T10 0.69 2.50 0.667 0.358 0.016 5.566 2.733 5.915 0.017 0.040 0.8% 

T11 0.39 2.81 0.485 0.509 0.012 4.773 2.110 4.158 0.027 0.05 1.1% 

T12 0.80 1.02 0.100 1.943 1.499 3.251 1.078 3.800 0.018 0.040 1.3% 

T13 0.32 10.25 0.813 0.527 0+ 6.200 4.373 6.203 0.062 0.075 1.2% 

T14 0.00 6.90 0.805 0.980 0+ 9.238 NA NA 0.095 0.093 1.0% 

T15 1.25 1.85 0.789 0.662 0.216 6.444 3.353 4.641 0.271 0.157 2.4% 

T16 0.21 16.74 0.352 0.524 0+ 5.876 4.509 7.880 0.235 0.146 2.5% 

T17 0.86 1.03 0.326 1.845 1.313 7.393 2.558 5.081 0.109 0.099 1.7% 

T18 0.34 3.26 0.813 0.434 0.003 5.769 2.660 4.748 0.010 0.030 0.6% 

T19 0.68 1.31 0.003 2.095 0.761 4.992 1.763 3.031 0.314 0.169 3.2% 

T20 0.22 2.88 0.102 0.586 0.006 5.499 2.091 4.589 0.024 0.047 0.9% 

T21 0.94 1.33 0.929 0.927 0.476 5.515 2.265 3.503 0.015 0.037 0.7% 

T22 0.99 1.12 0.653 2.268 1.824 5.342 2.068 3.966 0.011 0.031 0.7% 

T23 0.69 0.87 0.531 1.357 1.096 3.273 0.903 2.452 0.034 0.056 2.2% 

T24 1.05 1.21 0.313 2.120 1.732 3.528 1.454 4.391 0.020 0.043 1.3% 

Notes: 10+ means a positive number rounded to 0; 2hmax is asymptotic height, (tinfl, hinfl) is the inflection point (NA for a = 0); 3RMSE is root-mean- 
squared-error, NRMSE = RMSE/h11. 
 

“good fit” rather than best fit. We thereby identify, for each species, those expo-
nent-pairs, where the corresponding three-parameter growth model has a 
“good fit”, and then we form the intersection of these 24 (or of fewer) sets. Our 
definition of a “good fit” is based on the normalized root-mean-squared-error 
NRMSE, as it allows to compare the fit across different species of different 
height. NRMSE expresses the root-mean-squared-error (RMSE; 11 is the num-
ber of data-points) as a percentage of the maximal observed height (h11 of the 
last data-point): 

11
SSERMSE =  and 

11

RMSENRMSE
h

=               (5) 
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Further, to define a “good fit” we use a threshold for NRMSE, based on a sta-
tistical analysis of the distribution of the observed NRMSE-values of the best-fit 
models. We found that a lognormal distribution would fit to these values (Sec-
tion 3.2) and we therefore use the threshold corresponding to the 95% quantile 
of this distribution. As explained below, for the present data this threshold is 
2.5%. 

2.4. Materials 

We used Mathematica 12.1 (Wolfram Research) for computer algebra, including 
optimization and statistical analysis, and to access meteorological data (Wolfram 
repository). We used nonparametric methods, as not all data were normally dis-
tributed: Spearman rho for rank correlation and Spearman rank test for nonzero 
correlation (using the permutation method with 1000 Monte-Carlo simulation 
steps). Where we used a parametric distribution (lognormal distribution), we 
first tested the distribution assumption using the Anderson-Darling statistic [35] 
and the threshold of p = 0.05 (95% confidence). 

3. Results 
3.1. Best Fit Parameters 

The size-at-age data of Table 1 (c.f. Figure 5) inform about 11 annual height 
measurements. It started in 1990 with average heights h1 = 11 cm for “bastard 
teak” T08 to 96 cm for mesquite T21 and it ended in 2000 with h11= 2.56 m for 
black plum T23 to 9.60 m for river tamarind T04. Table 2 informs about the 
growth data, the parameters of the best-fit models, and the goodness of fit. 

The best-fit exponent-pairs (a, b) in Table 2 identify those three-parameter 
models BP(a, b) that achieved the best fit to the data for T01 to T24. Figure 3  

 

 
Figure 3. Line a = b (blue) in the region a < 1.05, b < 3 and best-fit exponent-pairs (red), 
exponent-pairs with NRMSE below 5% for all data (green), and with NRMSE below 2.5% 
for at least 21 data (blue); plot using Mathematica 12.1. 
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plots those 15 exponent-pairs that were in the region a ≤ 1.05, b ≤ 3 (Not in the 
plot were three exponent-pairs with 1.05 < a ≤ 1.7 and six exponent-pairs with 3 
< b ≤ 16.74). 

As is evident from this picture, none of these exponent-pairs defined a best-fit 
model for all data, nor did the exponent-pairs concentrate anywhere. Further, the 
best-fit exponent-pairs differed clearly from those of the named three-parameter 
models (i.e. Brody, Gompertz etc.). The distances of these exponent-pairs were 
smaller to the lines of exponent-pairs defining the four-parameter models, but 
none of these models was best-fit, either. 

Table 2 informs also about derived parameters, asymptotic height hmax and 
age tinfl and size hinfl of the inflection point. Three-parameter models have the 
disadvantage that by Equation (3) there is a fixed ratio between the height at the 
inflection point and asymptotic height, e.g. 50% ratio tinfl/hmax for logistic growth. 
By contrast, for the best-fit models either there was no inflection point for one 
data (lemon-scented eucalyptus T14) or this ratio varied widely between 27.6% 
for black plum T23 and 76.7% for anjan tree T16. 

When compared with the sample data, asymptotic height of the best-fit model 
was in the range of 94% - 130% of the maximal observed height h11 of Table 1. 
In view of the Anderson-Darling test, for the present data the quotient hmax/h11 
was lognormally distributed (no refutation of this hypothesis: p = 0.26). Using 
the maximum-likelihood estimates for its location and shape parameters (0.082 
and 0.079, respectively) we concluded that with 99.5% probability the maximal 
projected height of any tree was below 133% of h11. However, except for three 
species (gum-arabica tree T04, orchid tree T07 and sweet inga T18) the usual 
heights for trees of the considered species (by Table 1 in most cases 20 m or 
more) exceeded the asymptotic heights considerably (e.g. by the factor 3 - 5 for 
rain tree T22). 

3.2. Defining the Threshold for a Good Fit 

For the best-fit models NRMSE varied between 0.6% for sweet inga T18 and 
3.2% for yellow flame-tree T19 (Table 2). The good fit was also illustrated by 
Figure 4, plotting the BP-model curves for gooseberry T13 and yellow flame tree 
T19. 

Using the Anderson-Darling test, the NRMSE-values of Table 2 followed a 
lognormal distribution (no refutation owing to p = 0.93). We used the maxi-
mum-likelihood method to estimate its location and shape parameters (−4.38 
and 0.42, respectively). The 95% quantile of this lognormal distribution led to 
the threshold NRMSE = 2.5%. We used it to define “good fit”. In this sense, the 
fits of anjan tree T16 and yellow flame-tree T19 were not good. For instance, 
based on the lognormal distribution, yellow flame-tree T19 was an outlier with a 
probability of only 1.3% for NRMSE > 3.2%. Indeed (Figure 4), the growth data 
for T19 were insofar atypical, as height did not always increase (for average data 
this can occur if e.g. the largest trees are removed) and as growth finally seemed  
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Figure 4. Data and the growth curve for T13 (blue) and T19 (red); plot using Mathema-
tica 12.1. 

 
to accelerate (e.g. more light for the smaller trees, when the largest ones are re-
moved). 

There was no exponent-pair (a, b), where a single model BP(a, b) could have a 
good fit to all 24, to 23, or to 22 of our data. The maximal number of data with a 
common good-fitting model was 21: Figure 3 (blue region) plots the expo-
nent-pairs corresponding to models with good fits to 21 of our data (whereby for 
each data different best-fit parameters c, p, q were used). Most of the best-fit ex-
ponent-pairs were outside this region (but for their data NRMSE in general was 
below 2.5%). Further, none of the exponent-pairs of the named three-parameter 
models (e.g. Brody, Gompertz, etc.) was in the blue region of Figure 3. However, 
the West-model had a good fit to 19 models and amongst the named three-parameter 
models this was the best outcome. 

For comparison, we also considered the threshold 5%. Using it there were ex-
ponent-pairs whose BP-models could be fitted to all data with NRMS < 5%; the 
green region in Figure 3 plots them. The exponent-pairs (1, 2), (2/3, 1), and 
(3/4, 1) of the Verhulst-model, the von-Bertalanffy-model, and the West-model 
were in the green area, but the exponent-pairs (0, 1) and (1, 1) of the Bro-
dy-model and the Gompertz-model were not. 

3.3. Growth and Temperature 

In order to explore, to what extent the growth was affected by environmental 
factors (there was no information to this end in the source paper), we used the 
annual mean temperatures from Table 1 (for 1990, …, 1999) and compared 
them with the relative growth rates per year: ( )1k k kh h h+ −  using hk from 
Table 1 ( 1, ,10k =  ). The Spearman rho was negative for all species with val-
ues between −0.879 for axle-wood T17 and −0.514 for black plum T23. This 
was significant for all except four data (Spearman rank test: p < 0.05); the ex-
ceptions were ear-pod wattle T01, beach oak T09, anjan tree T16, and black 

https://doi.org/10.4236/ojmsi.2020.84006


N. Brunner, M. Kühleitner 
 

 

DOI: 10.4236/ojmsi.2020.84006 83 Open Journal of Modelling and Simulation 
 

plum T23. 
Using the BP-model curves allowed to strengthen this finding, namely that for 

all species there was a highly significant correlation relating higher temperatures 
to lower percentual growth h´/h (but with a delay of one year). Spearman rho 
had the same value for all data, namely −0.842, and it was nonzero with high 
significance for all growth curves (Spearman rank test: p-value 0.002). 

4. Discussion and Speculation 

The results of this paper invite two opposite threads for further speculation, 
namely that perhaps the West model is a universal tree growth model or, alter-
natively, that perhaps something is wrong with the data. 

The former speculation has been forwarded repeatedly in different contexts. 
For, West [25] [36] [37] [38] [39] developed biophysical arguments in support of 
the universality of the three-parameter model BP(0.75, 1) for the growth of ani-
mals, plants and forests. This claim was often contested as e.g. for trees the bio-
physical arguments were contingent on additional requirements [40]. 

However, even using an obviously false universal model may have a rationale, 
as is illustrated by the practice in fishery science, where the model BP(0, 1), 
which in general is not the best-fitting model, is used de facto as a universal 
model for the growth of fish length. A database [41] and [42] collects informa-
tion about the best-fit parameters for BP(0, 1) for various species of fish in vari-
ous environments. It has led to new insights, e.g. relating the growth parameters 
to natural mortality and mean environmental temperature [43]. Because there is 
no consensus about a common model for the growth of trees, there is no such 
database yet for the estimated 40,000 species of trees [44]. Considering the present 
data, the model of West would appear to be suitable for such a database, as it was 
almost universal in a weak sense: If practitioners consider a trade-off between a 
slightly lower accuracy of their models and much less effort for data-fitting 
(compared e.g. to the general BP-model); then for 19 of our 24 data the 
West-model was a good choice as it had a good fit. The typical heights differed 
much between the twenty-four species considered in this paper. Could such dif-
ference be still compatible with the universality hypothesis? 

This question leads to the second speculation mentioned above. One reason 
for the common growth pattern may be the setting of the growth experiment, as 
it could have impeded the growth of the trees in about the same way. For, the 
growth of all trees was sensitive to environmental factors, such as ambient tem-
perature (see above: negative correlation). That the growth may have been im-
peded is suggested from the fact that for all species, except one. Table 2 displays 
an inflection point. This means that from this moment on, for most species 
within tinfl = 2 to 6 years, growth began to stagnate. This is atypical for the mean 
heights that are normally observed for young stands with all trees still in the 
early growth phase. Further, the typical heights for most species (Table 1) clear-
ly indicate much higher trees than reported in Table 2 as asymptotic heights hmax  
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Figure 5. Data and the growth curves for all trees; plot using Mathematica 12.1. 

 

of the 11-year time series. Thus, growth was impeded. 
We therefore scrutinized the experimental setting as described in the original 

data sources [10] [16]. The trees have been planted in 2 m distance from each 
other on very dry red soil with 30 - 35 cm depth. A main concern was the pre-
servation of soil moisture, which was achieved by the method of planting. Thus, 
there are two obvious reasons, why the growth of the trees may have beende-
cayed: Moisture preservation may have failed, or the selected species were not 
sufficiently adapted to drought. We refute these hypotheses, as such observa-
tions would have been reported in the source paper as major findings. Another 
conceivable explanation is competition between trees for sunlight, which might 
reduce height growth of suppressed trees at later stages, affecting the mean 
height. However, 2 m distance between trees below 10 m height usually does not 
affect height growth much. Thus, in an arid region there remains the explana-
tion of competition belowground. Indeed, soil was shallow and 2 m distance at 
30 cm depth result in 4 m2 per tree and about 1 m3 soil for its roots, which may 
not be enough for trees that have the potential to grow to heights and crown 
diameters of 10 - 30 m. Of course, this proposed “bonsai effect” needs to be tested, 
but the source paper does not provide sufficient information. 

We conclude that BP-models are a useful tool to analyze the height growth of 
trees and stands. However, the growth curves depend not only on the species but 
also on the environmental situation. Thereby, as for the present data, the expe-
rimental setting may curb the growth to an extent that the same model may fit to 
many different species. 

Finally, we have added Figure 5 as a graphical summary of the paper, plotting 
the data in different colors and the best-fitting growth curves. 
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