
Open Journal of Modern Linguistics, 2022, 12, 336-365 
https://www.scirp.org/journal/ojml 

ISSN Online: 2164-2834 
ISSN Print: 2164-2818 

 

DOI: 10.4236/ojml.2022.123025  Jun. 30, 2022 336 Open Journal of Modern Linguistics 
 

 
 
 

Internal Merge: Why Does It Work This Way? A 
Matrix Syntactic Approach to Argument Chain 

Koji Arikawa 

Department of English and Intercultural Studies, Momoyama Gakuin (St. Andrew’s) University, Osaka, Japan 

      
 
 

Abstract 
The computational processes of natural human language (CHL) form a physi-
cal object. The first axiom of matrix syntax (MS), which investigates linguistic 
structures on the complex plane using quantum mechanics-based mathemat-
ical tools, converts the [±N] and [±V] values of the Chomsky matrix to [±1] 
and [±i]. This study analyzes the potential developments of this axiom, which 
has been used previously for raising examples and to describe the grammati-
cality algebraically. Matrix calculations were performed on elaborate geome-
tries of grammatical and ungrammatical raising examples. Standard analysis 
based on the minimal computation (MC) principle of the minimalist program 
(MP) is on the correct track, but it can be combined with mathematical anal-
ysis to answer a fundamental question: Why does the internal merge create 
argument chains (A-chains) in this way, and not in other logically possible 
ways? With the context-sensitivity hypothesis in MP, MS provides a new 
perspective on A-chains. Results indicate that a chain-forming geometry 
contains three areas with distinct growth factors: 1) occurrences (i.e., syntac-
tic contexts of chain members) with a constant rate; 2) backbone-structure 
building with an exponential rate (i.e., larger φ ~ 1.618), and 3) superposed 
chain-member copies with a diminishing rate (i.e., little φ ~ −0.618 or σ1 = 
0.7071). The MP-MS collaboration is a viable approach to the struc-
ture-building dynamics of CHL and approaches linguistic physics. 
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1. Introduction: How Matrix Syntax Can Collaborate with  
Minimalist Program 

The principle of minimal computation (MC; perform efficient computations) 
(Chomsky, 2005) is a fundamental guideline of the minimalist program (MP) 
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(Chomsky, 1995). The MC includes, for example, the shortest move constraint 
(SMC) (Chomsky & Lasnik, 1993), no procrastination (Chomsky, 1995: chap. 3), 
Greed containing last resort (LR) principle (Chomsky, 1986a; Chomsky, 1995): 
Move raises α only if morphological properties of α itself would not otherwise be 
satisfied in the derivation (Chomsky, 1995: 261); italics added by the author; 
move α whenever it is possible to eliminate (check off) uninterpretable features 
(uF; φ (person, number, gender) and case) in α, no look-ahead (Chomsky, 2000), 
goal-accessibility restriction (i.e., phase impenetrability condition (PIC) 
(Chomsky, 2000: 108; Chomsky, 2001: 13-14).1 Let us consider (1). 

(1) a. Alice seems to like Bob. 
b. * Alice seems that it is certain to like Bob. 

Example (1a) is a grammatical A-internal merge (A-IM), whereas (1b) is an 
ungrammatical A-IM, namely, a “super-raising”.2 Let us assume that (1a) and 
(1b) have structures as shown in Figure 1 and Figure 2, respectively, where in-
dexes are added for clarity, and waved lines indicating parts that are externalized 
by the sensorimotor (SM) system, i.e., pronounced. 

Let us assume, with certain modifications, the essence of a probe-goal me-
chanism (Chomsky, 2000, 2001). In more detail, unlike the standard assumption, 
I assume that DP φs are uFs because they are arbitrary and lack natural (e.g., bi-
ological) bases.3 Therefore, I do not adopt a valuation, where DP φs value 
probe-uFs and remain. Let capital letters indicate probe-features, and small let-
ters goal-features. 

In (1a), Alice0 is externally merged at vP edge and assigned a θ role [expe-
riencer]. The probe uF [NULL] (null case) in the embedded-clause tense head 
T1 (infinitival to) attracts the closest goal Alice0 containing a matching uF [null] 
(Chomsky & Lasnik, 1993; Martin, 2001), which obeys PIC. [NULL] and [null] 
match and delete. Note that [3, sg] in Alice0 is still present. The matrix-clause 
tense head T2 (a suffix s) bears a probe uF [III, SG], which attracts the closest 
goal Alice1 bearing matching uF [3, sg] to the TP2 edge, obeying PIC. The 
T2-probe uF [III, SG] and uF [3, sg] in all Alice copies are eliminated because  

 

 

1There are two PIC definitions, where domain of H is a complement of H, and strong phases are 
v*P (v* = unergative v) and CP.  
(i) a. PIC-I: In phase α with head H, the domain of H is not accessible to operations outside α, only 
H and its edge are accessible to such operations (Chomsky, 2000: 108).  
b. PIC-II: The domain of H [a strong phase head] is not accessible to operations at ZP [a next high-
er strong phase]; only H and its edge are accessible to such operations (Chomsky, 2001: 13-14). 
PIC-II loosened PIC-I, i.e., PIC-II allows procrastination. In PIC-I, once an immediately lower 
strong phase HP is formed, any operation from outside is restricted to H and HP edge. PIC-II in-
vokes such a restriction only after the immediately higher strong phase is formed. See Arikawa 
(2020) for a graph-theoretical analysis proposing that weak phases (VP, TP) are catalysts for strong 
phrases (vP, CP). 
2Chomsky (1986b: 18) named (i) “super-raising”, where IP = TP, and t = trace.  
(i) * John seems [CP that it is certain [IP t to win]].  
Chomsky (1986b) used the empty category principle (ECP; a rule that governs where a silent ele-
ment appears in a sentence) to explain the ungrammatical status of (i), i.e., the John trace is not 
properly governed, i.e., it is neither close to V nor licensed by a local binder. MP has discarded ECP. 
3Even the pronouns she and he have uF gender as evidenced by transgender facts. 
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Figure 1. Phrase structure of (1a). 

 

 
Figure 2. Phrase structure of (1b). 

 
they match. Every [3, sg] in every Alice copy is deleted since the same thing 
happens in every copy, i.e., the same entity. The nominative case [nom] in Alice0 
disappears as a side-effect of φ elimination.4 Importantly, by the end of the deri-
vation, each of the three Alice copies has the same θ role, containing no uF. Each 
probe attracts the closest goal, obeying PIC, in (1a). 

One might ask a fundamental question. If IM is motivated by the need to 
check and value features, then how is it possible that a chain contains identical 

 

 

4An alternative is to assume a probe uF [NOM], which eliminates [nom] in DP under matching, 
which is simpler than the “side-effect” analysis of case elimination. 
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members? Will the lowest link in the chain always have more uninterpretable 
features than the highest link? Does enforcing identity defeat the whole purpose 
of movement in the MP? I do not adopt the valuation, which causes a significant 
complication. All copies are identical at the final derivation step if all uFs in 
probes and goals eliminate via matching without valuation. 

Let us consider (1b). The same algorithm applies until the matrix tense T3 ex-
ternally merges with VP3, except that an expletive it externally merges with T2'. 
The T3-probe [III, SG] attempts to attract the closest goal that has matching φ 
[3, sg]. The T3-probe cannot attract the expletive it because it is frozen at the 
TP2 edge. If T3-probe attracted it forcefully, the output is ungrammatical: * It 
seems that is certain to like Bob. Given PIC-I, T3-probe can see C1 (that) and 
CP1 edge (none) only. That is, there is nothing T3-probe can attract. If an “ex-
pletive-support” (like do-support) is invoked as an LR, i.e., fetch an expletive 
from the lexicon and externally merge it at TP3 edge, the output is grammatical: 
It (there) seems that it is certain for Alice to like Bob, where a preposition for is 
inserted as an LR to eliminate uF in Alice1. However, the relevant derivation 
chose to attract a distant Alice1, which is already transferred to CI and SM and 
invisible to T3-probe, thereby violating PIC-I. Alternatively, Alice1 skipped a 
potential landing site, i.e., TP2 edge. If no expletive existed and Alice1 managed 
to reach TP2 edge, the output is grammatical: Alice seems to be certain to like 
Bob.  

A point to be elaborated regarding (1a; Figure 1) is as follows. The occur-
rences (i.e., syntactic contexts) of Alice copies are v’, T1’, and T2’. They are dis-
tinct. Why do the same copies appear in different contexts? Suppose that the 
T2-probe [III, SG] attracted externally-merged Alice0 in Figure 1, which obeys 
PIC because no strong phase intervenes between TP2 and vP. Why can Alice0 
not move to the TP2 edge? Furthermore, we cannot distinguish whether Alice1 
or Alice0 has undergone IM, i.e., either externalization ends up “Alice seems to 
like Bob.” Therefore, we cannot tell which copy has undergone an IM by just by 
looking at (1a), given PIC.  

A part to be sophisticated regarding (1b; Figure 2) is the following. The oc-
currences of internally-merged Alice copies are T1’ and T3’. The occurrence of 
externally-merged expletive it is T2’. The syntactic contexts of internally-merged 
Alice copies and expletive it are the same: T’. Why can Alice and it not appear in 
the same context? The probe uFs [III, SG] in T2 (finite tense to which a copula 
be is adjoined) are eliminated when they match with the goal uFs [3, sg] in the 
expletive it and its case [nom] is deleted as a side-effect of φ-elimination. As-
sume PIC-II. When T3-probe starts searching a matching goal, the strong phase 
CP2 is not formed yet. Furthermore, no strong phase intervenes between CP1 
and TP1. Therefore, T3-probe should be able to see Alice1 and attract it. Why is 
it impossible? In contrast, the stricter PIC-I correctly bars T3-probe from at-
tracting Alice1. Given the Greed-LR principle, why can Alice1 not move to the 
TP3 edge to eliminate its uF? Why is a Greed-LR unavailable given that it is 
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another MP guideline? Why does PIC-I override the Greed-LR principle? 
Furthermore, Martin et al. (2019: 29) asked fundamental questions regarding 

(1a). Why are all copies not pronounced/interpreted? Why is it the case that no 
more than one copy is available for interpretation at CI and for externalization at 
SM? Why do the objects behave that way, and not in other equally rational ways 
(all copies are interpreted, some copies are interpreted, …)?5 The MC account 
has explanatory power, but it can be collaborated with matrix syntax (MS), 
which uses mathematical tools employed in quantum mechanics (QM), to find a 
key to solve a hard problem (2), which is the fundamental question of the MS. 

(2) Fundamental question of MS (Orús et al., 2017: 22). 
What does it mean for such occurrences (i.e., syntactic contexts such as v', 
T1', T2' in Figure 1) to be a way to distribute an item like Alice over a 
phrase marker? 

This paper offers a fresh look at the grammaticality of (1a) and (1b), using 
tools of the MS.6 When we investigate a chain, it is important to consider the 
occurrences of chain members because the occurrences are the syntactic con-
texts in which those member copies are allowed (1a) or disallowed (1b).7 Signif-
icantly, the MP has started to recast crucial concepts such as EPP, IM (move-
ment), and phase in terms of context-sensitivity: “the status of X … changes de-
pending on the syntactic contexts in which X occurs (Bošković, 2013, 2014). 
This study investigates a mathematical property of dynamics of chain-member 
copies (subsection 4.1) and the occurrences (syntactic contexts) of grammatical 
and ungrammatical raising examples (subsection 4.2). It attempts to find a clue 
to solve a difficult problem as (2). 

This topic was chosen to enhance MP and science cooperation. The MP is a 
linguistic foundation of the MS, which employs QM tools. Orús et al. (2017: 3) 
explains why MS can be a crucial perspective: “We are not claiming to have dis-
covered quantum reality in language. The claim, instead, is that our model of 
language, which we argue works more accurately and less stipulatively than al-
ternatives, especially in providing a reasonable explanation of the behavior of 
chains, turns out to present mathematical conditions of the sort found in quan-
tum mechanics. In our view, this is quite striking and merits public discussion.” 
The MS cooperates with MP to investigate a question (2) posed in Martin et al. 
(2019: 29). The MS uses the same mathematical tools as QM, the most successful 
physics framework to date. I believe that QM provides “more general tools to 
handle information” (Sato & Matsushita, 2007: 151) than just algorithms that 
investigate the behavior of electrons and photons. The MS should be able to 
provide a new perspective on the algorithms created by nature since the lan-
guage system is a natural (physical) object that evolved in the human brain. 
More importantly, as Uriagereka (2019) stated, an MS approach enables us to 

 

 

5The MP uses MC to answer this question: it is costless to externalize just one copy. But why one? 
6See Smolensky (1990) for reinterpretation of the optimality theory regarding phonology and mor-
phology using quantum mechanical tools. 
7Orús et al. (2017) and Martin et al. (2019) did not discuss ungrammatical (1b). 
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perform a rigorous argument that can efficiently prove correct or incorrect 
based on simple mathematics. 

This work is organized as follows. In Section 2, we introduce theoretical as-
sumptions and experimental apparatus. In Section 3, we summarize our results. 
In Section 4, we discuss the fundamental question of MS, and propose mathe-
matical images of a chain. The conclusion is presented in Section 5. Appendix A 
introduces a formal toolkit that is assumed in MS. Appendices B and C present 
matrix calculation of structure building of (1), which is the base of the argument 
in Sections 3 and 4. 

2. Methods 
2.1. MS 
2.1.1. Axiom 1: The Fundamental Assumption of MS 
Chomsky (1974) made a breakthrough when he used the distinctive features 
proposed by Jakobson and Halle (1971) to classify four parts of speech (adjective 
(A), verb (V), noun (N), and adposition (P). Table 1 shows the Chomsky ma-
trix, where [N] represents nominal properties and [V] verbal properties; both N 
and V are “conceptually orthogonal” (Orús et al., 2017: 17). As Orús et al. (2017: 
9) reminds the reader, “[i]t is important not to confuse the lexical attribute V 
with the lexical category V (which has the lexical attribute V in the positive and 
the lexical attribute N in the negative).” 

Another breakthrough represented by MS (Uriagereka, 2016; Orús et al., 2017: 
22; Martin et al., 2019), which attempts to connect CHL with QM; MS expresses 
Chomsky’s matrix using the complex number z = a + bi, by translating [N] into 
the real number 1 and [V] into the imaginary number i.8 In more detail, the nu-
merical translations are A = 1 + i, N = 1 − i, V = −1 + i, and elsewhere category = 
−1 – i. I adopt Orús et al. (2017: 7), where P in Chomsky matrix is replaced by 
elsewhere category, although I use P as a mnemonic aid for elsewhere category. 
The fundamental assumption of MS is (3) (Orús et al., 2017: 7), Martin et al., 
2019: 31).9 

(3) Axiom 1 (fundamental assumption) 
Lexical features take the values N = 1 and V = i. 

 
Table 1. Chomsky matrix. 

 [+N] [−N] 

[+V] A V 

[−V] N P 

 

 

8Martin et al. (2019: 30) stated that they were not the first to bring QM toolbox into the discussion 
of language, e.g., to make symbolic AI systems more solid and flexible, Smolensky (1990) used QM 
tools as tensor product and superposition and applied them to phonological phenomena in the 
connectionist theory. 
9It is important to note that any orthogonal quantities do the same work; MS chooses typical or-
thogonal entities: one on the real axis and i on the imaginary axis that are orthogonal on the com-
plex plane. 
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We can restate the Chomsky matrices (Chomsky, 1974) as shown in (4). 
(4) Axiom 2 (Chomsky matrices) 
The four lexical categories are equivalent to diagonal matrices 

1 0
N

0 i
 

=  − 
, 

1 0
V

0 i
− 

=  
 

, 
1 0

A
0 i
 

=  
 

, elsewhere = 
1 0

0 i
− 
 − 

 

Any structure building in any system must start somewhere. The standard as-
sumption in MP is that a structure building proceeds bottom up in CHL. MS 
postulates that the starting point is a noun and that only nouns self-merge 
(Axiom 6 (Guimarães))10, a compound of which is a cognitive anchor in CHL.  

Thus, 
1 0 1 0 1 0

N N NP Z
0 0 0 1i i
     

× = ⋅ = = =     − − −     
, i.e., one of the Pauli  

matrices, which is the most elegant matrix.11 MS introduces the Jarret graph 
(Figure 3), indicating how phrases (nodes, e.g., NP and VP) are connected 
through operators (edges, e.g., N̂  and V̂ ) by matrix multiplication (first 
merge).12 The determiner (det) of each twin (plus and minus) node is also  

shown as well, e.g., the twins 
1 0

NP
0 1
 

± = ±  − 
 have the determiner det = −1.  

MS claims that a phrase det is the phrase label. 
For instance, an operator (function) V̂  acts on (undergoes external merge 

(EM) with) an NP (input) and outputs VP. More elaborately, an operator 
1 0

V̂
0 i
− 

=  
 

 acts on NP, i.e.,  

1 0 1 0 1 0 1 0
V̂ NP VP

0 0 1 0 0i i i
− −       

× = ⋅ = = − =       − −       
, the twin of which is 

1 0
VP

0 i
 

= 
 

. Thus, the det of VP is i. 

One might argue against the current analysis that employs the Chomsky ma-
trix, too simple. One might criticize that for an approach that aims at explanation,  
 

 
Figure 3. Jarret graph. 

 

 

10Orús et al. (2017: 13) states that Axiom 6 is based on insights of Guimarães (2000). 
11Z is the most elegant because it is very symmetrical. Both twins ±Z have the same characteristic 
polynomial x2 −1, the eigenvalues are real (1 and −1), and the trace (i.e., the sum of the entries along 
the main diagonal (Strang, 2016: 294) is zero. Z is more symmetrical than the identity matrix I, the 
characteristic polynomials of which are different between I and −I. 
12The graph was conceptualized by physicist Michael Jarret (Orús et al., 2017: 14). 
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the basis of the system remains deeply stipulative. One might point out that MS 
faces criticisms of the Chomsky matrix for its excessive rigidity and empirical 
inadequacies, which is a step back in linguistic research. 

Regarding P, I strictly adopt Orús et al. (2017: 7) here, which names [−N, −V] 
output as elsewhere category. I admit that the Chomsky matrix is simple, i.e., a 
sentential structure containing functional elements such as light verb v, tense T, 
and complementizer C cannot be captured by only four categories. In fact, 
Orús et al. (2017: 27-32) mentioned possible matrices for functional elements.13 
However, I want to limit this analysis to the smallest possible set, which Orús et al. 
(2017: 17-18) calls G8 (the “magnificent eight” group) as shown in (5) (ibid., 18). 

(5) { }18 2, Z, ,CG CI± ± ± ±= , where 

1 0
0 1

I 
=


 
 

, 
1 0
0 1

Z  
 − 

= , 1

1 0
C

0 i−
=
 
 
 

, 2

1 0
C

0 i
=
 
 
 

. 

The subsets { }, ZI± ±  are from the Pauli group (Hermitian), and 
{ }1 2C C,± ±  are Chomsky matrices (non-Hermitian), which have complex en-
tries on the diagonal. G8 is “abelian (commutative) because all matrices are di-
agonal and therefore mutually commute [ x y y x=  ] (ibid.)”.14 I limit the 
building-block matrices to G8 because (a) it is consistent with the strong mini-
malist thesis (SMT), i.e., CHL must provide the simplest possible solutions to le-
gibility problems, (b) G8 “allows us to explain the basic features of the MS mod-

 

 

13Orús et al. (2017: 28) states that “the combination of Axiom 1 (Chomsky matrices), Axiom 3 (ma-
trix multiplication as 1st M), and Axiom 12 (reflection symmetry) yields a unique set of 32 matrices 
with the structure of a non-abelian group.” The 32 matrices form an enlarged “periodic table” (ib-
id.) that is used to investigate an entire sentential structure. For example, NumP (number phrase) = 

0 1
X

1 0
 

± = ±  
 

, IP (TP) = 
0

X
0
i

i
i
 

± = ±  
 

, and DegP (degree phrase) = 

0 0 1
Y

0 1 0
i

i i
i

−   
± = ± = ±   −   

 (ibid., 28, 40). 

14Martin et al. (2019: 39). Uriagereka (2019: approximately at 34:00) mentions that lexical categories 
such as N and V are formed by diagonal G8 and the twins (16 matrices) that are commutative, whe-
reas functional categories such as T and C by non-diagonal 16 matrices that are non-commutative. 
In matrix multiplication, non-commutativity is more general than commutativity that is based on 
special diagonal matrices. A contrast between (i) and (ii) is interesting in this regard.  
(i) a. a cat that is a mother (A that is B)  
   b. a mother that is a cat (B that is A) 
(ii) a. the cat’s mother (A’s B) 
   b. the mother’s cat (B’s A) 

Examples in (i) with a copula be obey the commutative law, i.e., (ia) = (ib), and those in (ii) with 
a genitive ’s disobey it, i.e., (iia) ≠ (iib). Expressions with lexical category V (be) obey the commuta-
tive law, whereas those with functional category (genitive; GEN) are non-commutative. The former 
is similar to multiplication of diagonal matrices, whereas the latter multiplication of non-diagonal 
matrices. As Strang (2016: 439) states, “with [Hermitian] complex vectors, uHv is different from 
vHu. The order of the vectors is now important. In fact 1 1

H
n nv uu v v u= + +  is the complex con-

jugate of uHv.” A matrix S is Hermitian if S = SH, i.e., jis sij = , where s is an entry in S (ibid. 440). A 

Hermitian matrix is non-commutative, whereas an anti-Hermitian matrix is commutative. Trans-
lating (i) and (ii) into linear algebra, a lexical element such as V is anti-Hermitian, whereas func-
tional element such as D is Hermitian. Orús et al. (2017: 34) presented a table indicating the first set 
of unit matrices, in which those with “context label” (det(Uc))2/N = +1 are Hermitian, and those 
with −1 are anti-Hermitian. Although a rigorous proof is beyond the current paper’s ability, a syn-
tactic contrast between (i) and (ii) is translated into an algebraic difference. 
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el” (ibid.), and (c) it is cost effective to integrate T (suffix) and C into elsewhere. 
Although this is a preliminary analysis that can only accommodate the most ba-
sic tools, I admit that in the future, I will need to investigate and elaborate on the 
tools and system. 

The linear-algebraic Chomsky matrices are diagonal and eigenvalue matrices 
Λ that have eigenvalues λ1 and λ2 on their diagonal.15 In all cases, λ1 fixes its ei-
genvector s1 = (1, 0), and λ2 determines its eigenvector s2 = (0, 1). The four lexi-
cal categories have an eigenvalue either λ = i or λ = −i, indicating that they share 
a rotational property: the unit 90˚-rotation matrix Q. A and N have an eigenva-
lue λ = 1, which suggests that A, N, and the projection matrix share a property of 
perfect symmetry, i.e., everything is left unchanged. V and elsewhere category 
have an eigenvalue λ = −1, which shows that a reversion property characterizes 
them. 

2.1.2. Chain Vector as Superposition 
“An image is a large matrix of grayscale values, one for each pixel and color. 
When nearby pixels are correlated (not random) the image can be compressed 
(Strang, 2016: 364).” A linguistic structure is similar to a large matrix that can be 
compressed by correlating nearby nodes. We calculated matrices on chain (CH) 
structures that are created by IMs using the matrix method proposed by Orús et 
al. (2017) and Martin et al. (2019). They proposed that a CH is mathematically 
isomorphic to superposition in QM. See Appendix A for a formal toolkit that 
assumed in MS. The CH for Alice in (1a) is expressed in Equation (1), where v', 
T1', and T2' are the occurrences (i.e., syntactic contexts) in which Alice appears. 
SM externalizes Alice2. 

( ) ( ) ( )( )0 1 2CH , v , ,T1 , ,T2Alice Alice Alice′ ′ ′=              (1) 

As the three copies of Alice are superposed, the three occurrences are as well. 
By factoring Alice out, we obtain Equation (2). 

( )( )CH v ,T1 ,T2Alice ′ ′ ′=                     (2) 

More generally, let α denote an NP undergoing IM, and let K and Λ denote 
occurrences (contexts or sisters that the NP is merged with) of a higher and the 
original NP copy, respectively. The normalized vector CH  of the NP chain 
state is Equation (3) (Orús et al., 2017: 23). 

 ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆCH α K
2
α1 1

2
K= ⊗ + α ⊗ Λ = ⊗ + Λ       (3) 

 

 

15We need eigenvalues, because they inform us about the essential properties of matrices, such as 
symmetry (e.g., how a system is unchanged and changed) and commutativity (e.g., how a system is 
affected by permutation). For example, λ = 2 means that a special vector x (eigenvector) tends to 

stretch (grow) by a factor of 2 when A acts on x infinitely many times, 
1
2

λ =  means that x tends 

to shrink by a factor 
1
2

, approaching zero (decaying mode), λ = −1 means that x tends to reverse 

the sign, λ = 1 means that x tends to remain as it is, and λ = 0 indicates that a system is singular, i.e., 
not solvable. Significantly, λ = i suggests that x involves rotation. See Strang (2016: 288-289) for a 
plain introduction of eigenvalue and eigenvector. 
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Orús et al. (2017: 23) proposed that a linguistic chain is a superposition of at 
least two different states, postulating the axiom 8 shown in (6). 

(6) Axiom 8 (Hilbert space) 
Linguistic chains are normalized sums of vectors from a Hilbert space. 
Martin et al. (2019: 30) claimed that syntactic computation “collapses” into 

interface observables (i.e., a classical linguistic reality) when “syntax acts on 
some Hilbert space, by way of linear operations.” 

Let us focus on the first IM step of the entire CH of Alice Alice : CH = 
(Alice0, Alice1, Alice2). The first subset of a normalized vector of chain CH 
(Alice) is in the superposed of two occurrence states (i.e., v' and T1'). 

( )CH Alice  is indicated in Equation (4). 

( )

 ( )  ( )
   ( )
  ( )

v

v

1 1CH T1
2 2

1 T1
2

1 T1
2

v

Alice Alice Alice

Alice Alice

Alice

′′= ⊗ + ⊗

′= ⊗ ′+ ⊗

′⊗ + ′=

          (4) 

The scalar 1
2

 indicates that the resulting vector is set according to the  

normalization condition, which dictates that every state’s square sum of proba-
bility amplitude must be equal to one. The probability that a copy of Alice is ob-
served at vP edge and that the same copy is observed at the TP1 edge are iden-
tical, i.e., 50%, respectively.16 

3. Results 

Let us consider how we can differentiate between grammatical (1a) from un-
grammatical (1b) linear algebraically. See Appendix B for the matrix calculation 
for structure building of the grammatical example (1a), the geometry of which is 
shown in Figure 1, and Appendix C for that of ungrammatical (1b), the geome-
try of which is shown in Figure 2. 

3.1. SVD of Occurrence Matrices 
3.1.1. SVD of Occurrence Matrices of Chain Head Alice in (1a) 
I focus on the occurrence (i.e., sister) matrices of (potential) chain heads in 

 

 

16The materialization (externalization; pronunciation) of Alice in the root clause is obligatory in 
(1a) and Figure 1. One might wonder how this system delivers the obligatoriness of materialization 
of the highest copy and (b) what it contributes with respect to other analyses. As for externalization, 
I follow Orús et al. (2017: 24), which states that “once a superposed quantum is observed in the ap-
propriate basis, it “collapses” in one of the superposed options as a result of the measurement, 
which also dictates the measurement outcome,” which is their Axiom 9 (interface). 

(i) Axiom 9 (interface): when a chain ψ  is sent to an interface, its vector gets projected in one 

of the elements φ  being specified according to the probability 
2

φ ψ . 

A quantum collapse is responsible for externalization. The 50%/50% probability observation does 
not contradict with one copy being materialized at one position. See Subsection 3.2. for relevant 
discussion, and Subsection 3.1.2. for a possibility of quantum failure in the ungrammatical (1b) and 
Figure 2. 
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question: substantive DP (Alice) for (1a) and substantive DP (Alice) and exple-
tive (it) for (1b). For (1a), the relevant occurrences are v', T1', and T2'; (1b), they 
are v', T1', T2', and T3'. MATLAB returns the singular value decomposition 
(SVD) result for each occurrence matrix.17 The SVD results of occurrence ma-
trices of Alice in (1a) are shown in (7). 

(7) SVD of occurrence matrix of chain head Alice in grammatical (1a) 

a). 
0

v
1
0 i

′ =
 
 
 

, and its [ ] ( )
1

U,S,V svd v
0 1 0

0 0 1i
     
     − −

′
  

= =
 

1 0
0 1

. 

b). 
1 0

0
T1

i
− 
 −

=


′ , and its [ ] ( )
1

U,S,V svd T1
0 1 0

0 0 1i
−     

     −
′=

  
=

 

1 0
0 1

. 

c). 
1 0

0
T2

i
−′ =


 
 

, and its [ ] ( )
1

U,S,V svd T2
0 1 0

0 0 1i
−     

     − −
′

  
= =

 

1 0
0 1

. 

The diagonal matrix S indicates the fundamental characteristics of the matrix. 
All occurrence matrices show that S is the identity matrix I, as shown in (7), im-
plying that the relevant occurrence does not change. For explanatory purposes, 
the boldface matrices highlight a point in question. 

3.1.2. SVD of Occurrence Matrices of Alice and Expletive It in (1b) 
The SVD results of occurrence matrices of potential chain heads Alice and an 
expletive it in the ungrammatical example (1b) are shown in (8) below. 

(8) SVD of occurrence matrix of chain heads Alice and it in ungrammatical 
(1b) 

a). 
0

v
1
0 i

′ =
 
 
 

, and its [ ] ( )
1 0 1 0 1 0
0

U,
0 1 0

d
1

S,V sv v
i

     
     − −    

′=


= . 

b). 
1 0

T1
0 i
− ′ =  − 

, and its [ ] ( )
1 0 1 0 1 0
0 0 1 0

U,S,V 1
1

svd T
i

−     
 ′= =    −     

. 

c). 
1 0

0
T2

1
− 

=  − 
′ , and its [ ] ( )

1 0 1 0
0 1 0 1

U,S,V svd T2
−     

     −     
′= =

1 0
0 1

. 

d). 
1 0

0
T3

i
−′ 

=  
 

, and its [ ] ( )
1 0 1 0 1 0
0 0

U
1 0

,S,V svd T3
1i

−     
     − −    

′=


= . 

All occurrence matrices show that S is the identity matrix I, implying that the 
relevant occurrence does not change. Unlike other U’s, the first orthogonal ma-
trix U in the SVD result of T2' occurrence matrix (8c) is a real matrix (indicated 

 

 

17MATLAB (an abbreviation of “matrix laboratory”) is a proprietary multi-paradigm programming 
language and numeric computing environment developed by MathWorks (Wikipedia). SVD is a 
“data reduction tool” (Brunton, 2020), used to compress dimension. For example, a tensor multip-
lication yields a 4 by 4 matrix, which must be compressed to a 2 by 2 matrix to continue matrix 
multiplications with 2 by 2 matrix. SVD factorizes a matrix A into two orthogonal matrices V and 
U, between which a diagonal matrix Σ = S (symmetry, stretching, scaling, or growth factor) comes. 
Thus, A = UΣV. A crucial property of A is contained in Σ, which is used to obtain a compressed 
matrix of A. Unlike MS, in which specifier dimension reduction by decreasing the number of ei-
genvalues is proposed to compress matrices (Martin et al., 2019: 41), I use SVD to compress grown 
tensor-product matrices, following Strang (2016: 364-381), which states that (a) SVD separates any 
matrix into simple pieces, (b) when nearby pixels [matrices] are correlated (not random) the image 
[matrices] can be compressed [by SVD], and (c) when [SVD] compression is well done, you can’t 
see the difference from the original (ibid. 364-365). 
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by a boldface matrix). Later I will propose that the heterogeneous property of U 
of occurrence T2’ of the expletive it in (8c) is responsible for a quantum collapse 
failure. 

3.2. Normalized Vectors and Wave Function of Alice Chain in (1a) 

Let us consider the normalized vectors of an Alice chain in the grammatical 
raising example in (1a). Let us recapitulate on the general formula for a norma-
lized vector of a set of chain members. Let K̂  and Λ̂  be normalized vec-
tors of two the Alice occurrences. A normalized vector of Alice chain is shown in 
Equation (5) below. 

( )

 ( )ˆ ˆK1CH
2

Alice Alice= ⊗ + Λ                (5) 

In Equation (5), Alice  is factored out of ( )ˆ ˆK + Λ , which means that 
the occurrences K̂  and Λ̂  share the same chain-member, i.e., Alice . 
Each step of chain formation in the grammatical raising (1a) is expressed as a 
vector formula in Equation (5). Incidentally, Orús et al. (2017: 25) introduced an 
ungrammatical vector called a “weird” vector as shown in Equation (6). 

( )1
2

ˆˆ ˆˆWeird a K b= α ⊗ + β ⊗ Λ                (6) 

When a,b 0≠ , α̂  and β̂  cannot be factored out, which is called an en-
tangled state. Equation (6) expresses a chain formation step in the ungrammati-
cal (1b), where α̂ Alice= , and β̂ it= .18 I leave the entanglement for fu-
ture research. 

Now, let us consider Figure 1 of (1a) a grammatical geometry. Let us calculate 
a normalized vector of the first sub-step of the entire Alice chain, which is 
shown in (9). 

(9) Normalized vector of the first sub-step of Alice chain in (1a) 
0

v
1
0 i

′ =
 
 
 

. Since 
1 0 1 0 1 0
0 0 0 1i i
     

⋅ =     −     
, the trace of which is 2, norma-

lized vector is 

1 01
0

v
2 i
′ =


 
 

. Similarly, 
1 0

0
T1'

i
− 
 − 

= . Since  

1 0 1 0 1 0
0 0 0 1i i
− −     

⋅ =     −     
, the trace of which is 2, the normalized vector is 



1 01T1
02 i
−′

−
=


 
 

. Therefore,  

( )
( )

1 1 0 0 01T1
0 02

v
0i i

 + −   ′ =′ +    + − 
=


. 

Therefore, ( )



1CH
2

0 0Alice Alice= ⊗ = . 

 

 

18In QM, an entangled state takes place, i.e., two particles have no interaction, but they are somehow 
correlated (Zwiebach, 2016). Orús et al. (2017: 24; fn. 13) states that A’-chains formed by wh- and 
topic-IMs for example may involve entangled states in the Hilbert space. Possibly, an entanglement 
is available for A’-chain, which contains A-chain, whereas it is unavailable for A-chain, where chain 
members occupy A-positions uniformly. If a super-raising example involves an unfactorizable state, 
entanglement consideration is inescapable. 
 

https://doi.org/10.4236/ojml.2022.123025


K. Arikawa 
 

 

DOI: 10.4236/ojml.2022.123025 348 Open Journal of Modern Linguistics 
 

In the grammatical geometry (Figure 1), the normalized vector of the first 
sub-step occurrence of the Alice chain is zero. Next, let us calculate a normalized 
vector of the second sub-step occurrence of the entire Alice chain in Figure 1, 
which is shown in (10). 

(10) Normalized vector of the second sub-step occurrence of Alice chain in 
(1a) 

1 0
0

T1'
i

− 
 − 

= . Since 
1 0 1 0 1 0

0 0 0 1i i
− −     

⋅ =     −     
, the trace of which is 2, 

the normalized vector is 
1 01T1

02 i
−′

−
=


 
 

. Similarly, 
1 0

0
T2

i
−′ =


 
 

. Since 

1 0 1 0 1 0
0 0 0 1i i
− −     

⋅ =     −     
, the trace of which is 2, normalized vector is 



1 01T2
02 i
−

=
′  

 
. Therefore,  

2 01 2 0T1 T2
0 0 0 02

 −  −′ ′ =   
  

=


+ . Now, 

let us calculate a normalized vector of Alice chain. Since 
1 0
0 i

Alice  
 − 

= , and 

1 0 1 0 1 0
0 0 0 1i i
     

⋅ =     −     
, the trace of which is 2, a normalized vector is 



1 01
02

Alice
i

 
 − 

= . Therefore, 

( )

  ( ) 1 01 1 2 0CH T1 T2
02 0 02

2 0 2 01 0
0 0 0 01

2 2 0 2 00
0 0 0 0

2 0 0 02 0 0 0 2
0 0 0 0 0 0 0 01

2 0 0 2 0 20 0 0
20 0 0 0

0 0 0 0

Alice Alice
i

i

i i

   −′ ′ =   −   
    − −
⋅ ⋅    

    =     − − ⋅ − ⋅        

= ⊗ + ⊗

 
−  −   
  = =   
  
     
 

 

Using MATLAB to apply SVD, we obtain  

[ ] ( )( )CH

1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

U,S,V svd Alice

i

−     
     
     
     − −
     
    

=



=

0.7071 0 0 0
0 0.7071 0 0
0 0 0 0
0 0 0 0

 

Significantly, the scaling matrix S (indicated by a boldface matrix) in the SVD 
matrix is not I, and its (1, 1) (i.e., row 1, column 1) and (2, 2) positions have 
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values that are smaller than one, but not zero. This means that the normalized 
vector of the second sub-step of the Alice chain tends to diminish. The gram-
matical (1a) shows a wave function ψ of Alice chain vector consisting of a 4 by 4 
complex matrix in Equation (7). 

2 0 0 0
2

0 0 0 0

20 0 0
2

0 0 0 0

i

 
− 
 
 

ψ =  
 
 
 
 

                      (7) 

Calculating its squared length 2ψ , we obtain a probability as shown in Equ-
ation (8) regarding where the plural copies of Alice are observed in Figure 1. 

2

2 2 10 0 0 0 0 0 0 0 0
2 2 2

0 0 0 0 0 0 0 0 0 0 0 0
12 2 0 0 00 0 0 0 0 0 22 2

0 0 0 00 0 0 0 0 0 0 0

i i

     − −     
     
     ψ ψ ψ = =     
     −     
       

=

 

†  (8) 

The probability matrix in Equation (8) contains 1
2

 at (1, 1) and (3, 3) posi-
tions. There is a 50% probability of Alice being in the TP1 or TP2 edge; in other 
words, the same NP simultaneously exists in two different positions. The super-
posed states collapse into one in SM and CI. In Figure 1, the superposed state 
collapses into Alice at TP2 edge. If a collapse happens at the TP1 edge, SM ex-
ternalizes (11). 

(11) It seems for Alice to like Bob. 
In (11), when Alice has reached at TP1 edge, a distinct derivation is realized, 

where a preposition for is inserted as a last resort to eliminate Alice’s case, i.e., a 
probe uF [ACC] (accusative feature) in for eliminates a goal uF [acc] of Alice.19 

4. Discussion 
4.1. A Mathematical Structure of Grammatical Chain Formation 

A normalized vector of a grammatical chain of Alice in (1a) has three significant 
properties, as shown in (12). 

 

 

19It is incorrect to mention an example such as (i).  
(i) It seems that Alice likes Bob. 
It is so because it has a different lexical array, i.e., it contains a suffix attached to V, finite lower T, 

and complementizer that. The example (i) does not lead to a collapse in MS, since it is a different 
sentence from the infinitival one leading to Alice seems to like Bob [(1a)]. The example (11) is rela-
tively appropriate example to indicate a distinct collapse within the same sentential geometry, ex-
cept for the preposition for, which CHL invokes as a last resort. Other examples for possible collapse 
are obtained from Uriagereka (2019: approximately at 15:23) as shown in (ii). 

(ii) a. (There) was killed an emperor.  
b. An emperor was killed. 

In (iia), if the expletive there is deletable, (iia) and (iib) share the terms, and the collapse proba-
bility would be 50%/50%. 
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(12) a). The SVD-diagonal matrix (i.e., the middle matrix S in [U, S, V]) of 
occurrence matrices of Alice, as shown in each SVD matrix in (7), is the identity 
matrix I. 

b). The value of the first chain sub-step is zero, as shown in the last line of (9).  
c). The S value of the second sub-step is 0.7071, as shown in the last line of 

(10).  
The basic property of occurrence matrices, according to property (12a), indi-

cates that they provide a stable mode. Regarding property (12b), I argue that the 
zero value of the first sub-step of CH corresponds to the fact that the SM does 
not externalize the intermediate chain-member copies, i.e., Alice0 and Alice1. 
This is notable because it is a linear-algebraic proof that intermediate copies are 
not externalized. Property (12c) indicates that chain-member copies in the final 
IM step are in a decaying mode given that the infinite power of 0.7071 ap-
proaches zero but never reaches zero. 

Let’s use geometry to express these properties and tendencies. Regarding 
(12a), let us assume that the geometrical form of I is a unit circle, i.e., a basic 
form. The geometrical occurrence forms (syntactic contexts) remain in the same 
unit circle. As to (12c), the value 0.7071 shows that the geometrical form of Alice 
chain copies approaches zero-dimensional point infinitesimally toward the chain 
head.20 Figure 4 (to be modified) shows the geometrical image schematically. 
The chain geometry teaches us that the chain copies undergo a dimensional drop 
from 2 to 0, whereas the occurrences (syntactic contexts) are stable, i.e., they re-
main 2 dimensions. A direction of dimension drop equals a direction of chain 
realization toward the highest chain member, a point at which SM externalizes 
an Alice copy, just as a direction of potential drop equals a direction in which a 
current flows (Strang, 2016: 458). 

Medeiros (2012: 244-245) calculated the growth factor of the spine, i.e., the 
head-complement structure, as shown in (13), where PSR stands for phrase 
structure rule, a characteristic polynomial is used to find eigenvalues, which de-
scribes the fundamental property of the relevant matrix, the black circle corres-
ponds to a head, and the blank triangle indicates a phrase.  
 

 
Figure 4. Geometrical image of the second sub-step of 
chain formation (to be modified). 

 

 

20See Serrano (2020) for a plain introduction on how to interpret SVD geometrically. 
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(13) The Spine (adapted from Medeiros (2012: 244)) 
PSR: 1 → 0 1   
Matrix: [ ]1 0  
Characteristic polynomial: x– 1 
Growth factor: 1 
Tree: 

 
 
Given that Medeiros’ spines correspond to chain occurrences, i.e., v’, T1’, and 

T2’ in Figure 1, I believe it is significant that the spine’s growth factor is 1 (i.e., 
nothing changes; equals the identity matrix I), which corresponds to our finding 
that the basic property of occurrence matrices of the grammatical chain forma-
tion in (1a) and Figure 1 is that they are stable, as shown in (13), which is geo-
metrically described as the check unit circles in Figure 4. 

Regarding the growth factor of the sentential geometry using IMs, I adopt 
Medeiros’ result that the sentential-structure-building growth factor is φ ~ 1.618, 
as shown in (14).21 

(14) X-bar (adapted from Medeiros (2012: 245)) 
PSR: 2 → 2 1, 1 → 0 2  

Matrix: 
1 1
1 0
 
 
 

 

Characteristic polynomial: x2 – x – 1  
Growth factor: φ ~ 1.618 
Tree: 

 
 
The growth factor φ ~ 1.618 is a positive larger root of the x2 − x − 1 = 0 cha-

 

 

21Given an X-bar geometry, where XP = phrase, Medeiros and Piattelli-Palmarini (2018: 5) intro-
duced a rewrite table (ii), which leads to the Fibonacci matrix in (14). 

(i) 
0

XP

XP X'

XP X




   (ii) 

XP X'
XP 1 1
X' 1 0

→
→

 

In (i), from top, XP consists of XP and X’, which consists of XP and X0. In a rewrite table (ii), the 
first row [1 1] indicates that XP is formed by adding one XP and one X’, the second row [1 0] shows 
that X’ is formed by using one XP and no X’. The Fibonacci matrix is also obtained by transforming 
a system of simultaneous equations as shown in (iii) into a formula uk k 1A u +=  (Strang, 2016: 309). 

(iii) k 2 k 1 k

k 1 k 1

F F F (a)
F F (b)

+ +

+ +

= +
 =  

Strang (2011) called (iii-b) “a clever trick”. Given k 1
k

k

F
u

F
+ 

=  
 

, k 1 k

1 1
u u

1 0+

 
=  
 

. 
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racteristic polynomial. The matrix in (14) is the Fibonacci (F) matrix, which de-
scribes F sequence. Medeiros (2012) and Medeiros and Piattelli-Palmarini (2018) 
persuasively argued that the golden rule determines the growth factor of geome-
try-creation in CHL. As indicated in Carnie and Medeiros (2005: 52), Medeiros 
(2008: 161), and Medeiros (2012: 220), it is significant that CHL creates a geome-
try whose basic property is governed by the golden rule. The diagram in Figure 
5 is adapted from Medeiros (2012: 220), which indicates an idealized linguistic 
tree, where its edge and complement are maximized, and how F numbers 
emerge in the tree. 

(15) F emerging in Figure 5 
a). XP = {1, 1, 2, 3, 5, 8, …} = Fib(n) 
b). X’ = {0, 1, 1, 2, 3, 5, …} = Fib(n − 1) 
c). X = {0, 0, 1, 1, 2, 3, …} = Fib(n − 2) 
The complement XP and the edge XP are maximized in Figure 5. Count the 

number of XP, X’, and X0 for each derivational line, F sequence defined by the 
linear recurrence equation Fn = Fn–1 + Fn–2, where F1 = F2 = 1 and F0 = 0, ap-
pears22, i.e., F = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …}, as indicated in (15). 

A new finding of this paper is that the chain copy members, Alice copies here, 
tend to diminish, approaching zero, but never reach zero, as shown by S in the 
last line of (10), which is geometrically described as diminishing circles toward 
TP2 edge. Here it is tempting to propose a hypothesis that the emergence of di-
minishing value 0.7071 corresponds to the little φ ~ −0.618, which is the other 
solution (eigenvalue) of x2 − x − 1 = 0, i.e., infinite power of both numbers ap-
proaches zero, but never reaches zero. If this logic is true, the hypothesis that 
chain-member copies diminish is probable. Following Medeiros (2012) and Me-
deiros and Piattelli-Palmarini (2018), assume that the basic property of 
CHL-geometry building is the golden rule, which determines the growth factor of 
F sequence. Strictly speaking, the growth factor of F numbers consists of both 
the greater φ ~ 1.618 and little φ ~ −0.618, where the infinite power makes the 
former grow exponentially, and the latter becomes infinitesimally small; ap-
proaching zero, but never reaching zero. This is the reason why the little φ is  
 

 
Figure 5. A maximized X’-tree. 

 

 

22Wolfram MathWorld; Fibonacci Number; https://mathworld.wolfram.com/FibonacciNumber.html    
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often ignored. Therefore, it is reasonable that the chain-formation geometry 
contains both exponential boost and infinitesimal shrinkage. Thus, we modify 
Figures 4 to Figure 6, which is more accurate. In Figure 6, the identity matrix I 
is expressed by the constant unit circles, the greater φ ~ 1.618 by the enlarging 
circles, and the little φ ~ −0.618 by the diminishing circles. 

The fundamental MP assumptions and network theory support Figure 6. A 
DP (NP) with a set of uF externally merges at a position where it is assigned a θ  
role. The driving force of IM is uF elimination, which means that the uF number 
decreases as the DP undergoes successive IM bottom-up. The currents (i.e., edge 
information) flow in the direction of a potential (i.e., node information) drop, 
according to network theory (Strang, 2016: 458). A set of chain-head DPs reduc-
es uF numbers, corresponding to diminishing circles in Figure 6. The MP dic-
tates that a sentential-structure building proceeds bottom-up, accumulating in-
formation, which theoretically corresponds to the exponential growth factor of a 
positive golden ratio. However, CHL uses IM edges to create loops and the loops 
lead to equilibrium, avoiding a computational explosion (Arikawa, 2019). A 
spine ( X ) is formed by externally merging a head X and its complement YP, 
which is transferred to the interfaces as soon as possible. A higher probe targets 
X and its edges but not the spine X . A spine X  is invisible to CHL and does 
not affect the computational result, which is due to the spine’s extreme symme-
try, as expressed by the identity matrix (i.e., unit circle). 

4.2. A Mathematical Structure of Ungrammatical Chain Formation 

Now consider a CH (Alice) in an ungrammatical (super-raising; (1b)) geometry, 
as shown in Figure 2. The basic property of ungrammatical (1b) occurrence 
matrices is the same as that of grammatical (1a), as indicated by the diagonal 
matrices S in (8) and those in (7), respectively. Consequently, the matrix calcula-
tion yields the same value of normalized vector for ungrammatical super-raising 
and grammatical raising geometries. Therefore, this analysis faces a problem 
(16). 
 

 
Figure 6. Geometrical image of the second sub-step of chain 
formation (modified). 
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(16) A problem 
We cannot distinguish the grammatical chain from the ungrammatical 
one in terms of values of normalized vectors. Is there a way to algebraically 
differentiate between the two types of CH? 

Two possible algebraic ways to differentiate grammaticality are shown in (17). 
(17) Two possible solutions 
a). Use the basic property (i.e., I) of occurrence matrices. 
b). Use the left orthogonal matrix U.  
Consider the diagonal S (i.e., Σ) of SVD of these occurrences for the initial 

solution (17a). As shown in (8), the occurrence matrices of the ungrammatical 
chain is I. SVD shows that σ1 (upper-left corner) of diagonal matrix S is equal to 
one. Thus, the maximum growth factor equals one (Strang, 2016: 382), indicat-
ing that the occurrence is stable.23 The identity property of occurrence matrices 
causes all chain-member copies of CH to be identical. Let us adopt the funda-
mental concept of context-sensitivity (Bošković, 2013, 2014) and propose the 
context-sensitivity hypothesis as shown in (18). 

(18) The context-sensitivity hypothesis (original version, ibid.) 
If the syntactic contexts of X vary, so does its status. 

Suppose that the inverse of the conditional proposition in (18) is true, as 
shown in (19). 

(19) The inverse of context-sensitivity hypothesis 
If the syntactic contexts of X are identical, X’s status is identical. 

As indicated by all S’s (i.e., the growth factor matrices) in (8), the syntactic 
contexts are the same, implying that their sisters are identical. However, the DP 
Alice and the expletive it are not identical, which contradicts (19). Alternatively, 
in (1b), the geometry of which is shown in Figure 2, the absolute CH uniformity 
requires Alice = it, which is a syntactic, semantic, and phonetic contradiction. 
Thus, the potential CH in Figure 2 contains a linear-algebraic contradiction, 
leading to ungrammaticality.24 However, in Figure 1, a geometry of (1a), the 
three CH-heads are identical, i.e., Alice0 = Alice1 = Alice2; and the sentence is 
grammatical, conforming to (19). The members of the relevant chain are com-
pletely uniform. 

According to MP, as stated in section 1, (1b) is ungrammatical because Alice 
skipped over a potential-intermediate landing site, the TP2 edge, on its way to 
the final landing site, the TP3 edge, violating MC. However, given the Greed-LR 
principle in MP, the solution must be elaborated. Why is the Greed-LR principle 

 

 

23In fact, the SVD result of Chomsky matrices as well as matrices of other nodes is I. Linguistic 
structures are extremely stable and robust. 
24The identity property of occurrence matrices here forces a more restricted (i.e., absolute condi-
tion) version than chain uniformity (Chomsky & Lasnik, 1993). According to Chomsky and Lasnik 
(1993), a chain ( )1CH , , n= α α  is a legitimate LF object if CH is uniform, where uniformity is a 

relational notion: the chain CH is uniform with respect to P (UN[P]) if each iα  has property P or 

each iα  has non-P (ibid.). In contrast, an absolute chain uniformity here requires 1i i+α = α , i.e., 

complete identity. 
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not invoked in such a way that Alice is forced to skip the potential landing site if 
the expletive it is frozen at the TP2 edge and does not move out of the way? Why 
does MC take precedence over the Greed-LR principle? Another way to account 
for (1b) ungrammaticality using MS is to use a broader concept of chain that in-
cludes a potential landing site, i.e., potential CH = {TP3-edge, TP2-edge, 
TP1-edge, vP-edge}. The significant finding is that the occurrence (syntactic 
context) matrix calculation (i.e., the growth factor matrix S in SVD in (8)) re-
veals that the identity matrix I (see also (13)) describes the basic property of 
these occurrences (Alice-occurrence nodes = v', T1', T3' and it-occurrence 
node = T2' in Figure 2). If these occurrences (syntactic contexts) are identical, 
then their sisters must also be identical as well (19). It forces us to conclude that 
Alice = it, despite breaking every rule of syntax, semantics, and phonetics. Ex-
ample (1b) is ungrammatical because the sentential geometry matrix calculation 
forces Alice to be equated to it, resulting in crashes at CI and SM. 

Consider how the left orthogonal matrices U can be used in the second solu-
tion (17b). As shown in (8c), one distinguishing feature of the occurrence matrix 
T2' of expletive it is that its U is a real matrix, unlike other U’s, which are com-
plex. Consider the following fact, on which SVD is entirely dependent (Strang, 
2016: 365). 

(20) Grayscale fact 
Grayscales of nearby pixels are generally similar. 

An image is a large matrix (ibid.). Similarly, a sentential structure is a large 
matrix. The entry aij describes the grayscale of each pixel in the image. It is diffi-
cult to compress different grayscales. A grammatical set of chain-member con-
texts constitute grayscales that can be compressed. However, a super-raising 
structure has a different context, i.e., SVD results with a real-matrix U. The dif-
ferent context causes the compression impossible, resulting in the ungrammati-
cal status of (1b). An SVD factorizes a matrix A as TA U V= Σ , which has the 
geometrical meaning of which is (rotation) times (stretching) times (rotation). A 
real matrix represents stretching, whereas a complex matrix represents a rota-
tion and stretching. A super-raising structure, as shown in (8c), contains com-
plex-U syntactic contexts for DP Alice, and real-U context for the expletive it. 
An informal formula for a super-raising quantum state is shown in Equation (9), 
where a tensor-product symbol ⊗  represents IM and dot product ⋅  
represents EM. 

  (  

    )
2

1 0

1Super-raising a T3 b

c d v

T2
2

T1

Alice it

Alice Alice

′⊗ + ⋅

+ ′⊗ +

′

′⋅

=
         (9) 

In Equation (9), unlike other occurrences (i.e., syntactic contexts) with com-
plex-U’s, the occurrence T2′  of expletive it  contains a real-U. As men-
tioned in Subsection 3.1.2, the heterogeneous property of U of occurrence T2’ of 
the expletive it in (8c) may result in quantum collapse failure at CI and SM, i.e., 
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Alice cannot be interpreted or externalized at a single position when a speaker 
makes an observation, i.e., she is aware of grammaticality. 

5. Conclusion 

An insight about MS is that its conditions are consistent with QM, which pro-
vides more general tools to handle and investigate information in general. The 
MP CHL study can be integrated with complex dynamics using MS and linear al-
gebra. The Merge has a property of simple iterations, resulting in a complex 
butterfly effect with discrete infinity. I list the findings of this research. 

(21) Chain properties are calculable linear algebraically, and it can be used as a 
key to solving hard problems of MP and MS: Why does internal merge create 
A-chains in this way, and not in other logically possible ways? What does it 
mean for such occurrences (i.e., syntactic contexts such as v', T1', T2' in Figure 
1) to be a way to distribute an item like Alice over a phrase marker? The MP and 
MS can collaborate to tackle the hard problem. 

(22) Let CH = (X3, X2, X1) a grammatical chain, where X1 is an EM-copy of X, 
and X2 and X3 are IM-copies of X. 

(a) The normalized vector value of the first sub-step of a chain is equal to zero 
in the scaling matrix S (the last line of (9)), showing that the SM does not exter-
nalize X2, i.e., the kinetic energy is zero. 

(b) The normalized-vector S value of the second sub-step is 0.7071 (the last 
line in (10)), indicating that the chain-member copies (X3, X2, X1) tend to dimi-
nish in the direction from X1 to X3. 2D area approaches zero-dimensional point 
infinitesimally, which corresponds to a potential drop in graph theory, causing 
information to flow toward the drop. SM externalizes the highest chain-member 
copy X3, a zero-dimensional point where a computation converges. 

(c) The S of the occurrences (sister node of chain copies; the syntactic context 
of chain members) is the identity matrix I, indicating that the occurrences are in 
steady mode. 

(23) The calculation leads to the dynamics of chain-forming geometry in CHL 
(Figure 6). A chain-forming geometry contains three areas with distinct growth 
factors: (a) occurrences (spine) in a steady mode, (b) the entire structure build-
ing in a developing mode at an exponential rate (i.e., greater φ ~ 1.618), and (c) 
the chain-member copies in a decaying mode (i.e., little φ ~ −0.618 or σ1 = 
0.7071). 

(24) Two possible ways to distinguish linear-algebraically grammatical from 
ungrammatical raising are: 

(a) MATLAB returns the SVD result of occurrence (i.e., syntactic context) of 
potential-chain members, where every scaling matrix (S = Σ) is I. The inverse of 
context-sensitivity hypothesis demands that the members of a potential chain 
must be identical. In an ungrammatical raising (super-raising) geometry, one of 
the potential-chain members is an expletive, forcing “Alice = it,” which is a con-
tradiction. 
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(b) Unlike the occurrence matrices of the chain member Alice, where the ro-
tational matrices U’s are all complex, the SVD result is peculiar for the occur-
rence matrix of the expletive it, where the rotational matrix U is real. The hete-
rogeneous property of U of occurrence T2' is responsible for failures of com-
pression and quantum collapse, i.e., Alice copy cannot be externalized at one po-
sition in ungrammatical super-raising when a speaker makes grammaticality 
observation. 

A practical implication based on the current research results is that this paper 
may enhance collaboration among the MP linguists, mathematicians, and phy-
sicists, which was initiated by Orús et al. (2017) and Martin et al. (2019), as well 
as a scientific investigation into CHL.  

Regarding the following studies, my perusal is necessary for Orús et al. (2017) 
and Martin et al. (2019) to continue the MS project in detail. My MS learning 
must parallel with the MP investigation, which is the linguistic foundation of 
MS. Simultaneously, I need to continue studying linear algebra by reading a 
textbook, such as Strang (2016), because linear algebra is a fundamental mathe-
matical tool used in MS. 
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Appendices 

A). MS toolkit 
Orús et al. (2017) and Martin et al. (2019) adopted the standard Dirac 

(bra-ket) notation as shown in (1) below to define a scalar product. 

( )†A B tr A B=                         (1) 

In (1), the ket B  is a system state, the bra A  is a scalar, tr is the matrix 
trace, i.e., the sum of its diagonal entries, which equals to the sum of eigenvalues, 
and †A  (read as “A dagger”) is the conjugate transpose of a complex matrix 
A.25 

Pierce (2021) provides a concise statement regarding the reason why we use 
bra-ket notation. Namely, “[t]he bra-ket notation ⟨bra|ket⟩ is a way of writing 
special vectors used in QM. A ket is a quantum state, the values of which are 
complex numbers, and it can have any number of dimensions, including infinite 
dimensions. The bra is similar, but the values are in a row, and each element is 
the complex conjugate of the ket’s elements. We can ‘map’ some real-world case 
(usually one with probabilities) onto a well-defined mathematical basis. This 
then gives us the power to use all the math tools to study it (ibid).” The norm N 
(also called size, length, modulus, magnitude, or absolute value) of a vector z  
is shown in (2). 

( )†N z z tr z z= =                      (2) 

When obtaining inner products of complex vectors, we must use Hermitian 
matrices to avoid contradictions.26 A vector z with norm N = 1 is called a nor-
malized vector, which corresponds to ẑ  (read “z-hat”), as indicated in (3). 

( ) z1 z 1
zz z

ˆN z == =                     (3) 

For example, NP  of 
1 0
0 1

NP  
 − 

=  is shown in (4), where NP NP 2= . 



1 01 1NP NP
0 12NP NP
 

= =  − 
               (4) 

See Orús et al. (2017: 19) and Martin et al. (2019) for relevant definitions. 

 

 

25The conjugate transpose ( †A ) can be indicated in several other ways, namely, AH (“Hermitian 
matrix A”) = TA  (“transpose matrix of the conjugate of A”) = †A . 

26Suppose that one has a vector 
1

v
i
 
 
 

= . If he uses a general multiplication to obtain a length 

squared 2v , he ends up concluding that a nonzero vector has zero length because 

[ ]2 21
v 1 1 01 1i

i
i 

×  
 

= = + = − = , which is a contradiction. To avoid such a contradiction, it is a 

rule to use a conjugate transpose †v  in a complex vector multiplication, i.e., 

[ ] 2†v 1 1 2
1

v 1 1i
i

i 
= = − =×  


+− =


. Thus, v 2= . See Strang (2016: 438) for an introduction of 

the reasoning. 
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B). Structure building of grammatical (1a) 
In Orús et al. (2017: 10), Axiom 3 (multiplication) states that 1st MERGE (M) 

is matrix multiplication, and Axiom 4 (tensor product) elsewhere M [non-first 
MERGE] is matrix tensor product. The former corresponds to EM, and the latter 
to IM.27 The matrix calculation of the entire structure building of grammatical 
(1a) is shown in (1) below. 

(1) Matrix calculation for(1a) = Figure 1 
1) V1 (like) EMs with NP (Bob). 

1 0 1 0 1 0
VP1

0 0 0 1i i
− −     

× = =     −     
 

2) v EMs with VP1. 

1 0 1 0 1 0
v

0 0 1 0i i
− −      ′× = =     
     

 

3) NP (Alice) EMs with v'. 

1 0 1 0 1 0
vP

0 0 0 1i i
     

× = =     −     
 

4) T1 (to) EMs with vP. 

1 0 1 0 1 0
T1

0 0 1 0i i
− −      ′× = =     − −     

 

5) NP (Alice) IMs with T1'. 

1 0 1 0 1 0 0 01 0
0 01 0 1 0 0 0 0

TP1
0 0 0 0 01 0 1 0

0
0 0 0 10 0

i i i
i i i

i
i i

 − −     − 
      − −− −          ⊗ = = =       − − − −        −      −− −       

 

6) SVD compresses TP1 matrix to TP1 = UΣVT, where diagonal matrix Σ 
(scaling factor; singular value) indicates how axes stretch, and orthogonal (uni-
tary) matrices U and VT indicate how vectors rotate (UTU = UUT = I, VTV = VVT 
= I). MATLAB returns the following result of SVD for TP1. 

T

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0

V
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0

TP1

1 0 0 0 1

U

0

i
i

−     
     −     Σ
     − −
     

−     

= =  

Singular value Σ is I. Therefore, 4-by-4-TP1 matrix is compressed into 2-by-2 
I. 

7) V2 (seem) EMs with TP1. 

VP
1 0 1 0 1 0

0
2

0 1 0i i
− −     

× = =     
     

 

 

 

27This conforms with a commentary in Orús et al. (2017: 10) that “elsewhere M (merge) denotes the 
merger of two syntactic objects both of which are the results of previous merges in the derivation.” 
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8) V2 (seem) IMs with T2 (s; 3, sg). 

1 0 1 0 1 0 0 01 0
0 01 0 1 0 0 0 0

T2
0 0 0 0 01 0 1 0

0
0 0 0 10 0

i i i
i i i

i
i i

 − −      −      − − −          ⊗ = = =       − − −        −            

 

9) SVD compresses T2 matrix to T2 = UΣVT. MATLAB returns the following 
SVD. 

T

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0

2

0

T

1

U
i

V
i

     
     −     Σ
     − −
     
     

= =  

SV matrix Σ is I. Therefore, 4-by-4-T2 matrix is compressed into 2-by-2 I. 
10) T2 (seem) EMs with VP2. 

1 0 1 0 1 0
T2

0 1 0 0i i
− −      ′× = =     

     
 

11) NP (Alice) IMs with T2'. 

1 0 1 0 1 0 0 01 0
0 01 0 1 0 0 0 0

TP2
0 0 0 0 01 0 1 0

0
0 0 0 10 0

i i i
i i i

i
i i

 − −     − 
      −          ⊗ = = =       − − −        −            

 

12) SVD compresses TP2 matrix to UΣVT. MATLAB returns the following 
SVD. 

T

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0

V
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0

TP2

1 0 0 0 1

U

0

i
i

− −     
     −     Σ
     −
     

−     

= =  

SV matrix Σ is I. Therefore, 2-by-2-TP2 matrix is compressed into 2-by-2 I. 
13) C EMs with TP2. 

1 0 1 0 1 0
CP

0 0 1 0i i
− −     

× = =     − −     
 

C). Structure building of ungrammatical (1b) 
A matrix calculation for the entire structure building of ungrammatical (1b) = 

Figure 2 is shown in (1) below. 
(1) Matrix calculation for (1b) = Figure 2 
1) V1 (like) EMs with NP (Bob). 

1 0 1 0 1 0
VP1

0 0 0 1i i
− −     

× = =     −     
 

2) v EMs with VP1. 
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1 0 1 0 1 0
v

0 0 1 0i i
− −      ′× = =     
     

 

3) NP (Alice) EMs with v'. 

1 0 1 0 1 0
vP

0 0 0 1i i
     

× = =     −     
 

4) T1 (to) EMs with vP. 

1 0 1 0 1 0
T1

0 0 1 0i i
− −      ′× = =     − −     

 

5) NP (Alice) IMs with T1'. 

1 0 1 0 1 0 0 01 0
0 01 0 1 0 0 0 0

TP1
0 0 0 0 01 0 1 0

0
0 0 0 10 0

i i i
i i i

i
i i

 − −     − 
      − −− −          ⊗ = = =       − − − −        −      −− −       

 

6) MATLAB returns the following result of SVD for TP1. 

T

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0

V
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0

TP1

1 0 0 0 1

U

0

i
i

−     
     −     Σ
     − −
     

−     

= =  

Singular value Σ is I. Therefore, 4-by-4-TP1 matrix is compressed into 2-by-2 
I. 

7) A (certain) EMs with TP1. 

1 0 1 0 1 0
0 0 1

P
0

A
i i

     
× = =     

     
 

8) V2 (auxiliary verb be) EMs with AP. 

1 0 1 0 1 0
0 0 0 1

VP2
i i

− −     
× = =     −     

 

9) V2 (auxiliary verb be) IMs with T2 (3, sg). 

1 0 1 0 1 0 0 01 0
0 01 0 1 0 0 0 0

T2
0 0 0 0 01 0 1 0

0
0 0 0 10 0

i i i
i i i

i
i i

 − −      −      − − −          ⊗ = = =       − − −        −            

 

10) SVD compresses T2 matrix to UΣVT. MATLAB returns the following 
SVD. 

T

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0

ΣV
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0

T U

1

2
i

i

     
     −     
     − −
     
 

=



=

  

 

SV matrix Σ is I. Therefore, the 4-by-4-T2 matrix is compressed into 2-by-2 I. 
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11) T2 (is) EMs with VP2. 

1 0 1 0 1 0
T2

0 1 0 1 0 1
− −      ′× = =     − −     

 

12) Expletive (it) EMs with T2'. 

1 0 1 0 1 0
TP2

0 0 1 0i i
− −     

× = =     − −     
 

13) C1 EMs with TP2. 

1 0 1 0 1 0
CP1

0 0 0 1i i
− −     

× = =     −     
 

14) V3 (seem) EMs with CP1. 

1 0 1 0 1 0
VP3

0 0 1 0i i
− −     

× = =     
     

 

15) V3 (seem) IMs with T3 (s; 3, sg). 

1 0 1 0 1 0 0 01 0
0 01 0 1 0 0 0 0

0 0 0 0 01 0 1 0
0

0 0 0 10

T

0

3
i i i

i i i
i

i i

 − −      −      − − −          ⊗ = =       − − −        −           

=

 

 

16) SVD compresses T3 matrix to UΣVT. MATLAB returns the following 
SVD. 

T

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0

V
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0

T

0 0 1 0 0 0 1

2 U
i

i

     
     −     Σ
     − −
     
     

= =  

SV matrix Σ is I. Therefore, the 4-by-4-T3 matrix is compressed into 2-by-2 I. 
17) T3 EMs with VP3. 

1 0 1 0 1 0
T3

0 1 0 0i i
− −      ′× = =     

     
 

18) NP (Alice) IMs with T3'. 

1 0 1 0 1 0 0 01 0
0 01 0 1 0 0 0 0

0 0 0 0 01 0 1 0
0

0 0 0 10 0

TP3
i i i

i i i
i

i i

 − −     − 
      −          ⊗ = =       − − −        −         

=

  

 

19) SVD compresses TP3 matrix to UΣVT. MATLAB returns the following 
SVD. 

T

1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0

V
0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0

T

0 0 1 0 0 0 1

P2 U
i

i

− −

=

    
     −     Σ
     −
     
   

=
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SV matrix Σ is I. Therefore, the 2-by-2-TP3 matrix is compressed into 2-by-2 
I. 

20) C2 EMs with TP3. 

CP
1 0 1 0 1 0

0 0 1 0
2

i i
− −     

× =     − −    
=
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