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Abstract 
Li-ion batteries (Libs) are a mature technology widely used for energy storage 
in various electronic devices. Nowadays, this technology has become a leading 
candidate for the portable electronics market and for electric vehicles due to its 
good performance. As a result, the demand for Libs containing critical metals, 
rare earth elements and precious metals is increasing day by day with the acce-
lerated upgrades of consumer electronics, which promotes the supply risk of 
many mining resources. In addition, the problems associated with the produc-
tion of end-of-life Lib are increasing on a global scale. Used Libs are e-waste 
containing significant levels of critical raw materials (such as Co, Li, Mn and 
Ni) along with harmful substances. Without proper management of Lib waste, 
these precious metals and toxic substances may end up in nature and cause en-
vironmental and public health problems. In order to preserve nature, ensure 
sustainable resource management and stimulate the circular economy, it has 
become crucial to properly manage and recycle end-of-life Li-ion batteries. By 
the way, conventional methods focusing on pyrometallurgical treatments com-
bined with hydrometallurgical treatment are widely studied to recover design 
metals from Libs waste. It is in this context that we have conducted this biblio-
graphic synthesis, focusing on the efficiency of the solvents employed and their 
competitiveness for a more environmentally friendly economic management. 
In this manuscript, recent leaching, solvent extraction, electrodeposition and 
precipitation strategies to recover precious metals from end-of-life Li-ion bat-
tery designs are reviewed and the evolution of these processes is discussed.  
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1. Introduction 

In recent decades, making certain aspects of life much easier, electronic devices 
that are increasingly small, manageable, portable and economical have invaded 
our daily lives. In fact, there has been a meteoric rise in the number of cell 
phones, laptops, digital devices, electric and hybrid vehicles, etc. [1] [2]. These 
technologies work through electrochemical systems, batteries, storing chemical 
energy that they reversibly restore in electrical energy during their operation. 
For performance reasons, improvement studies are widely carried out, leading to 
the development of various types of batteries such as lead acid, nickel-cadmium 
(Ni-Cd), nickel-metal hydride (Ni-MH), Li-ion (Libs), lithium air, etc. [3] [4] 
[5]. After efficiency tests, Li-ion batteries have been shown to perform better due 
to higher energy densities, lower self-discharge rates, higher cyclabilities and no 
memory effect, high capacity, etc., hence the large-scale production of Li-ion 
batteries for consumer electronics. According to a study, the production of Li- 
ion batteries increased from 500 to 700 million tons from 2000 to 2004, while the 
number of users exceeded 6.8 billion in 2013 [6]. Due to the accelerated upgrad-
ing of consumer electronics, we are witnessing a surge in the production of used 
Li-ion batteries. Based on studies of the cyclability of Li-ion batteries [7] [8] [9], 
results had predicted the production of waste Libs in China to be around 500,000 
tons in 2020 [8]. 

On the other hand, a Li-ion battery is essentially composed of a negative elec-
trode, made of LiC6 graphite, a positive electrode, a separator and an electrolyte, 
made of a mixture of solvents such as DMC, DEC, EC and a lithium salt (LiPF6) 
[10] [11] [12]. The positive electrodes, which have a crucial role to play on the 
performance of the systems, often made of metal oxide (LiMO2), are usually 
composed of heavy metals (Co, Mn, Ni, etc.) in relatively high concentration [3]. 
Therefore, data from a statistical study showed that 4000 tons of Libs waste 
could contain 1100 tons of heavy metals and more than 200 tons of electrolyte 
constituents, which can pollute the atmosphere [6]. Therefore, improper man-
agement of used Li-ion batteries can pose a threat to the environment and public 
health through pollution of nature, contamination of groundwater, etc. [13]. 

Then, used Li-ion batteries have an added economic value due to the signifi-
cant amounts of precious metals (Co, Li, Ni, Mn, Al, etc.) they contain. In addi-
tion, the critical state of their natural ores, the cost and environmental impacts 
of their extraction process, etc., motivate the revaluation of these technologies. 
Therefore, the development of an environmentally friendly and cost-effective 
method of processing these wastes has become a major challenge for the sus-
tainable development of portable electronics. Cost-effective and environmentally 
friendly management of Libs waste, has two major advantages that are the pro-
tection of nature and public health and the development of secondary sources of 
Libs design raw materials. According to the literature, many processes for Li-ion 
battery waste recovery are developed and classified into two main families such 
as pyrometallurgy and hydrometallurgy [13] [14] [15]. The pyrometallurgical 
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technique is more generally used on an industrial scale, and allows the efficient 
recovery of certain metals such as Ni, Co, Cu, etc. However, this method does 
not allow the recovery of metals such as Al and Li, which are generally found in 
slag [16]. Moreover, this technique consumes large amounts of energy and leads 
to the release of hydrogen fluoride (HF) which can pollute the atmosphere. Hy-
drometallurgical processes, on the other hand, are more studied in the laborato-
ry and are more advantageous due to their low energy consumption, reduced 
environmental footprint, selectivity and, above all, the possibility of recovering 
all the design metals from a given Libs. Advances in improvement studies have 
led to industrial scale with the development of relevant processes [16] [17].  

The hydrometallurgical treatment is quite simple and consists of a series of 
highly selective processes that can be divided into three main parts: leaching, ex-
traction and purification [13] [14] [15] [16]. The hydrometallurgical treatment is 
usually preceded by a physical pretreatment of the system, which has as objective 
the separation of the electrode components and the separator for more selectivi-
ty with a lower solvent consumption. 

2. Li-Ion Batteries 

A Li-ion battery is a reversible electrochemical system which is able to store 
energy in chemical form that it restitutes in electrical energy during its opera-
tion. It is composed of two electrodes, negative and positive, insulated by an 
electrically insulating polymer and interconnected by a liquid electrolyte. All 
these components of the battery are kept in a steel and/or plastic case (Figure 1) 
[18]. 
 

 
Figure 1. Structure of a Li-ion battery. 
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Most commercial Libs consist of graphite at the anode and a cathode generally 
composed of a layer of metal oxide and lithium (LiNiO2, LiCoO2, LiMn2O4) or 
iron phosphate and lithium (LiFePO4), deposited on an aluminum foil using an 
adhesive binder such as PVDF [19]. These are interconnected by an electrolyte 
solution consisting of a binary or ternary mixture of organic solvents, typically 
dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), 
in which a lithium salt such as LiPF6, LiBF4 or LiCiO4 is dissolved [10] [20]. In 
the design of a Lib, the cathode has a composition, often mixed, in relatively 
high concentrations of heavy metals and varying according to the manufacturer 
[21]. The cathode metal composition sometimes defines the name of the battery 
and is responsible for its performance (energy density, working potential, etc.). 
The electrolyte, which ensures the transfer of Li+ cations from one electrode to 
another, plays an indispensable role in the safety of the system, facilitates opera-
tion and improves the life of the battery by its stability with the electrode com-
ponents. 

Despite the good use of Li-ion batteries, their heavy metal composition and 
the polluting nature of some of their electrolyte constituents, as well as the im-
proper treatment of used batteries, can constitute sources of danger for public 
health and nature. Therefore, a cost-effective management of Li-ion battery 
waste, can allow the newly use of the design metals as a secondary source of 
metals. Proper management of Li-ion battery waste can play a vital role in the 
sustainable development of the electronics industry and avoid the depletion of 
mineral resources. Furthermore, most commercial electrolytes are composed of 
harmful, flammable and highly volatile components, so the disposal of used Libs 
or their open incineration can lead to adverse consequences [11] [22]. In view of 
all these threats, it is imperative for sustainable development of the electronics 
industry to develop a safe and economical method for the treatment of waste 
Libs. 

With the accelerated upgrading of consumer electronics and their positive 
impact on our daily lives, the production of used batteries is becoming problem. 
In addition, considering the various threats related to the improper treatment of 
Libs waste, the development of a perfect management technique occupies an 
important place in the current research [13] [16] [23] [24]. 

At the present state of research, many processes, consisting of several steps, 
aimed at the recovery of Libs waste have been developed in various laboratories 
[16] [24].  

3. Physical Pre-Treatment 

The sample pre-treatment phase includes all the processes such as sorting, un-
loading, removal of crusts and heat treatment of electrodes [6] [25]. However, 
the most important steps are unloading, dismantling and heat treatment. After 
sampling, the batteries are emptied of their residual charge by means of an 
adapted external circuit or ionic solution such as NaCl to avoid any risk of fire 
or explosion. The latter are dismantled by cutting the cover and the electrodes 
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and electronic insulation are recovered and then separated. At this level, it is of-
ten used alcoholic solvent to recover the electrolyte before heat treating the se-
parated electrodes. The purpose of the unloading is to reduce the risks of igni-
tion and the extraction of the electrolyte could improve the polluting character 
of the process and improve the efficiency of the process 

4. Hydrometallurgical Treatment 

Hydrometallurgy is a method of chemical treatment which aims to recover the 
metals present in a given sample. The principle consists in using appropriate 
solvents to solubilize the metallic constituents. The general procedure is subdi-
vided into three main parts which are leaching, liquid-liquid extraction and the 
purification or revalorisation phase [26]. 

4.1. Leaching 

It consists of attacking a metal or a metallic constituent by oxidizing or reducing 
in the presence of strong ligands capable of forming soluble and stable complex-
es [3] [26]-[32]. After a bibliographical study of the Libs, two types of leaching 
such as oxidative or alkaline leaching and reductive or acid leaching, are studied 
in the treatment processes by hydrometallurgy [26] [28] [33]. 

4.1.1. Alkaline Leaching 
The selective leaching of Libs cathodes aims at attacking the aluminium metal of 
the cathode collector in an alkaline medium in order to solubilize it [3] [26] [27] 
[28]. The originality of this step is to selectively recover the aluminum from the 
cathodic electrical connector and possibly other metals such as iron, copper, etc. 
qualified as impurities to the liquid-liquid extraction [34]. Since aluminum is 
generally in metallic form, the solubilization of the electronic connector can be 
explained by an oxidation to the Al3+ cation and then a complexation of the 
present cations. Therefore, the choice of the leachant can be based on its oxidiz-
ing character and/or the coordination strength of its constituents. It is in this 
context that Ferreira et al. (2009) tested soda ash in a process of selective solubi-
lization of used Libs cathodes [26]. The aim of the work was to optimize opera-
tional variables such as concentration, contact time of the reactants, L/S ratio 
and reaction temperature. As a result, they showed that nearly 60% of the alu-
minum in the connector can be solubilized when the concentration is increased 
to about 4 M with an L/S ratio of 10 L/Kg for one hour at a temperature of about 
60˚C. Results from this work showed that the solubilization of aluminum metal 
is explained by its oxidation in the presence of oxygen from the air and then by 
the coordination of Al3+ cations by OH− ligands in the medium (R1 and R2) 
[26].  

( )2 3 2 4Al O 2OH 3H O 2Al OH −−+ +                (R1) 

( ) ( )2 2s 42Al 2OH 6H O 2Al OH 3H−−+ + → +             (R2) 

Gaye et al. (2019) resumed the study at room temperature in an effort to im-
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prove the fitting conditions [27]. In doing so, they evaluated and optimized the 
variables concentration, count time, and L/S ratio. Results of this work proved 
respective solubilization rates of about 55% and 10% for aluminum and lithium 
when the study parameters were set at 4 N, L/S = 10 L/Kg for 5 h. 

Other solubilization tests have been performed with soda ash and results have 
confirmed its good performance as a leachant [33] [34] [35] [36], which may fa-
vor its choice as a reference solvent in the selective leaching of Libs cathodes. 

However, it is noted that soda solutions do not completely solubilize cathodic 
aluminum, which can be explained by passivation and/or precipitation of alu-
minum oxide in basic media [37]. Data from the literature have shown that the 
precipitation of aluminium oxide is favoured by the presence of CO2, the level of 
OH− ions, temperature, time, etc. [38] [39] [40]. In an effort to improve the de-
sign aluminum recovery rates of Libs cathodes, researchers have investigated 
and tested other alkaline solvents [3] [41]. As a result, Nayl et al. (2017) studied 
the selective leaching of cathodic and anodic Libs materials with ammonia [3]. 
This work allowed them to access recoveries of about 98% for Al and 65% for Cu 
when the experimental conditions were set to NH4OH 4 N with L/S = 15 mL/g 
for one hour under 60˚C. This solubilization efficiency of Al metal can be ex-
plained by the coordination strength of the NH3 ligand. The smaller recoveries 
for copper may be due to the redox potential of the Cu2+/Cu couple being closer 
to that of the oxidant, which may make the couples reactive. 

4.1.2. Acid Leaching 
All the metals present in Li-ion batteries are solubilized by acids. Thus, acidic 
solvents are used to solubilize the metals Co, Ni, Mn, Li, Al, etc. used in cathode 
compositions. Until today, many studies have been conducted and different or-
ganic and inorganic acids have been tested as acid leachers of Libs cathodes [13] 
[15] [42]. Inorganic acids such as H2SO4 [3] [25] [26] [36] [43] [44], HNO3 [45], 
HCl [46] [47] [48] [49] [50], and H3PO4 [51] [52] have been widely studied and 
have shown great promise with solubilization rates of Li, Co, Mn, and Ni metals 
above 90%. Joulié et al. (2014) conducted a comparative study of the perfor-
mance of HCl, H2SO4, and HNO3 acids in a process to solubilize Li, Ni, Co, and 
Al metals from Libs cathodes [47]. Results have shown that HCl presents the 
best performances compared to H2SO4 and HNO3, which can be explained by 
the presence of Cl−, very strong reductant towards Co(III) and Ni(III) cations 
(R3) contrary to 3NO−  and 2

4SO −  anions, that have weak reducing powers. 

2 2 2 22LiMO 8HCl 2MCl Cl 2LiCl 4H O+ → + + +  (R3) (with M = Ni, Co, Mn) 

Despite the good results with HCl, the reduction of metal cations leads to the 
production and release of chlorine (Cl2), which is very harmful to humans [53]. 
Since most of the metals (Mn, Co and Ni) of Libs design are more soluble with 
their reduced form, reducing agents are therefore studied and tested in order to 
improve the performance of some acids [53] [54]. 

According to the literature, hydrogen peroxide (H2O2) is widely tested with 
many acids in the leaching of Co, Ni and Mn metals, which are generally used in 
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commercial Libs cathodes [3] [27] [33] [43] [55] [56]. Despite the good perfor-
mance of inorganic acids associated with reducing agents, most of them, lead to 
the release of gaseous compounds of a polluting nature. Therefore, research is 
focused on other types of acids in order to improve the pollutant character of 
waste Libs treatment. 

In this respect, many acids such as citric acid [57] [58] [59], oxalic acid [36] 
[60], ascorbic acid [61], DL-malic acid [62] [63], succinic acid [64], L-aspartic 
acid [55], L-tartaric acid [65], acetic acid [66], iminodiacetic acid [67] have been 
tested as cathode leachers of Libs. These types of acids have the advantage of be-
ing more environmentally friendly and are capable of solubilizing, at high levels, 
the design metals of Libs cathodes. Similarly, organic compounds including 
glucose [29] [68], ethanol [69], etc. are being studied and tested with organic ac-
ids as a reducing agent [54] [70] [71] [72]. The use of organic acids has made a 
significant contribution to safety in the management of waste electrical and elec-
tronic equipment in general, and of Libs waste in particular [39]. However, the 
use of these organic solvents often requires high concentrations, which can have 
economic consequences [73]. Thus, research continues in various laboratories 
with the objective of finding a cheap, ecological acid capable of completely solu-
bilizing the design metals of Li-ion batteries. 

4.2. Liquid - Liquid Extraction 

In hydrometallurgy, solvent extraction is a process of transferring soluble metals 
from the aqueous phase to the organic phase by means of an organic solvent. 
The principle is based on the use, in appropriate proportions, of organic solvent 
that is weakly miscible with the aqueous phase. When the final mixture is well 
stirred and the metals are loaded into the organic phase, a distribution equili-
brium is established between the organic and aqueous phases, characterized by a 
partition coefficient (D) defined as follows [9] [10] [74] [75] [76]: 

1 1 2 2

2 2

C V C VD
C V
−

=                          (1) 

The extraction efficiency of the given solvent with respect to a metal is cha-
racterized by its extraction rate (% E), which is determined from Equation (1) 
below [33] [74] [77]: 

1 1 2 2

1 1

% 100
C V C VE

C V
−

= ∗                      (2) 

In the case of a mixture of several metals, the affinity of an extractant towards 
the metals or the extraction selectivity of a metal in a mixture is determined ac-
cording to the separation factor of these metals. This separation factor of two 
metals for a given solvent is determined by Equation (3) below [76]. 

1

2

D
D

β =                             (3) 

With D the partition coefficient, % E the extraction rate, C1 and C2 the initial 
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and final concentrations of a given metal in the aqueous phase, V1 and V2 the 
respective volumes of the aqueous phase before and after extraction, D1, D2 the 
distribution factors of the metals M1 and M2, and β the separation factor of the 
metal M1 from M2. 

From a literature review, we found that many organic solvents are studied and 
tested in the laboratory. Organophosphorus acids such as Cyanex 272, D2EHPA 
and PC 88A have shown very promising performances with high extraction rates 
for the recovery of Co, Mn, Ni with interesting selectivity [7] [33] [77] [78] [79] 
[80] [81]. Table 1 below gives a presentation of chemical formulas of some well 
known organophosphorus solvents in the field of liquid-liquid extraction of Libs 
metals.  

The characteristic chemical molecules of these solvents have the particularity 
of being able to form stable complexes that are completely insoluble in the 
aqueous phase, hence their good performance. 

Cyanex 272 has been tested several times, for the extraction of precious met-
als, in the hydrometallurgical treatment of Libs wastes and the results showed an 
interesting affinity towards metals (Co, Mn, Ni, etc.) of cathodic design [25] [33] 
[35] [44] [79] [81] [82] [83]. In a process for the recovery of Co, Li, Cu and Al 
metals, Jha et al. (2013) conducted optimization tests of the operational variables 
that impact the performance of Co extraction by Cyanex 272 [83]. As a result, 
they obtained after 5 min, extraction rates of about 99.9% Co when the experi-
mental conditions were increased to 15% Cyanex 272 and 3% isodecanol in ke-
rosene and the O/A ratio was set to 1:1 (by volume) at pH equals 5. Vasilyev et 
al. (2019), conducted an optimization study of a process for extraction of Co, Ni, 
and Li metals by NH4-Cyanex 272 from Li-ion battery leachates [79]. Other op-
timization work has shown that an extraction solution consisting of 1 M Cyanex 
272 neutralized to 48% with ammonia and 5% TOA, can achieve nearly 99.9%  
 

Table 1. Structure and properties of widely used extractants. 

Nom Structure moléculaire Identifiant Réf. 

PC-88A 

 

C16H35O3P 
M = 306.42 g∙mol−1 [3] 

D2EHPA 

 

C14H31O4P 
M = 294.3673 g∙mol−1 [5] [7] 

Cyanex 272 

 

C16H35O2P 
M = 290.42 g∙mol−1 

[7] [10] 
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extraction of these metals with high purity rates (≤99%) for an A/O ratio equal 
to 1:1 for 5 min [81]. 

Nayl et al. (2015) also employed Cyanex 272 to recover Mn(II), Co(II), and 
Ni(II) cations from spent Libs mixed cathode leachates [32]. Beforehand, Cu(II), 
Fe(II) and Al(III), considered as impurities, are removed with 20% Acorga 
M5640 diluted with kerosene after 5 minutes at 30˚C. When Na-Cyanex 272 is 
applied after 5 minutes under 30˚C, respective extraction rates of about 91.2%, 
89.3%, 95.6% are obtained for Mn(II), Co(II) and Ni(II) cations at pH 3.5, 5 and 
8 respectively [32]. 

D2EHPA has been tested as an extractant in cathode treatment processes of 
waste Libs [5] [60] [78] [84]-[89]. For example, Yang et al. (2017) tested the ex-
traction and separation of Co, Mn, Ni, and Li metals from Libs leachates [89]. 
After optimization tests of pH, O/A ratio, contact time, and D2EHPA concen-
tration, extraction efficiencies up to about 100% for Mn, 99% for Co, and 85% 
for Ni were achieved with 40% D2EHPA, O/A ratio = 1, at pH 3.5, for 6 minutes 
[89]. They thus showed that the extractant has a selective affinity towards these 
metals (with Mn > Co > Ni > Li) and that this selectivity depends on pH. In ad-
dition, Li et al., (2018) developed a simple and effective method for manganese 
recovery from Libs leachates [74]. They investigated the optimization of pH, 
O/A ratio, contact time, and saponification rate of the extractant, and results 
proved high recovery rates for Mn [74]. This confirms the selective affinity of the 
extractant towards Mn.  

Another organophosphorus such as 2-ethylhexyl phosphonic acid-mono-2- 
ethylhexyl ester (PC88A) has been studied and tested as an extractant of metal 
cations from Libs cathode leachates [85] [86] [87] [88] [89]. Yang et al. (2020) 
conducted an optimization study of the variables pH, O/A ratio, and concentra-
tion of PC88A in kerosene in a selective recovery study of Mn2+, Co2+, Ni2+, and 
Li+ cations from sulfuric leachate [89]. An extraction efficiency of 98% for Mn 
and 90% for Co can be obtained when the experimental conditions are set at pH 
= 5, O/A ratio = 2/1 for 10 minutes. Most importantly, they obtained high sepa-
ration factors of Co and Mn compared to Li and Ni, found in the raffinate. These 
results prove an interesting extraction selectivity depending on the reaction pH 
value. 

These works show the good performances of these extractants with selective 
affinities towards the metals Co, Mn, Ni and Li; D2EHPA has more affinity with 
Mn while Cyanex 272 and PC-88A have comparative affinities towards Co, Mn 
[90] [91]. These results prompted the study of their synergistic action in combi-
nations such as Cyanex 272/PC-88A [75] [90] [92], Cyanex 272/D2EHPA [7], 
Cyanex 272/Cyanex 302/D2EHPA [91], Cyanex 272/Cyanex 301/D2EHPA [93], 
Cyanex 272/PC-88A/D2EHPA [94] [95]. Thus, results have shown that synergis-
tic systems often have higher recovery rates with better separation for mixed 
leachates.  

This is the case with Sarangi et al. (1999) who showed that the binary mixture 
Na-PC88A (0.005 M) and Na-Cyanex 272 (0.025 M) presents, under the same 
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conditions, a better separation of Co(II) and Ni(II) from a hydrochloric acid 
leachate compared to the solvents Na-Cyanex, Na-PC88A, Na-D2EHPA used 
alone, as well as the binary mixtures of these three solvents [94]. 

Despite the important performance of organophosphorus solvents, the search 
for an extractant system that can recover cathodic design metals in a single step 
and with different affinities towards these metals remains a challenge. It is in this 
context that the family of ionic liquids is being explored and very promising stu-
dies are underway [96] [97]. 

4.3. Electrodeposition 

Electrodeposition is an electrochemical technique for metal cations recovery or 
removal from leachate or effluents. The principle is based on the application of a 
direct current between positive and negative electrodes immersed in the electro-
lyte solution. When an appropriate electrodeposition potential is applied, the 
targeted metal cation(s) is reduced (to its metallic or metal oxide form) and de-
posited on the cathode. The deposit is then solubilized in an acid medium (re-
duced pH) for characterization and purification tests [98]. This technique is 
widely applied in water treatment (removal of heavy metals), industrial effluent 
treatment, pyrometallurgical treatment of WEEE, etc. [15] [73]. According to 
the literature, electrodeposition is explored by various research teams and in 
various laboratories during cathode treatment of used Libs [99] [100] [101] 
[102] [103]. Thus, it has been shown that the deposition of a given metal de-
pends on the working potential, the nature of the electrolyte, the temperature, 
the pH of the medium, etc. [99] [100] [101]. 

Tanong et al. (2017) studied the recovery of Zn(II), Mn(II), Cd(II), and Ni(II) 
cations from H2SO4 leachates by electrodeposition [104]. The metal cations in 
the leachates are selectively extracted by Cyanex 272 and D2EHPA, then 
stripped with H2SO4 solution and the electrolytes are tested for electrodeposi-
tion. When an energy density of about 370 A∙m−2 is applied at pH = 2, metallic 
layer deposits appear on the cathodes (made of steel) in all experiments. These 
deposits are subsequently solubilized by a 5% HNO3 solution and subjected to 
characterization and precipitation tests. 

Kim et al. (2021) studied the selective recovery of cobalt and nickel in a hy-
drometallurgical treatment process of Li-ion battery cathodes [98]. This work 
demonstrates the role played by the electrolyte on the efficiency and selectivity 
of metal deposition. In addition to the pH of the medium and the working po-
tential, the use of LiCl as an electrolyte promotes the selective deposition of co-
balt through the formation of the [CoCl4]2− complex by stabilizing the cationic 
complex [Ni(H2O)5Cl]+ [98]. Data from this experiment showed high recoveries 
with purities in the range of 96.4% and 94.1% for cobalt and nickel respectively. 

Thus, electrodeposition is an advantageous purification process in that it re-
duces solvent consumption and limits the production of effluents and polluting 
gases [99] [100] [101]. However, this method has technical limitations in the 
treatment of mixtures of metals with very close redox potential [98] [104]. 
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4.4. Chemical Precipitation 

Precipitation is a process of forming insoluble end products from two or more 
reagents under specific conditions. After extraction or electrodeposition and 
subsequent stripping, the new aqueous phase is mixed with a precipitating rea-
gent in precise proportions to precipitate metal hydroxides, sulfides or carbo-
nates. Data from the literature have shown that this precipitation depends on 
many parameters, the most influential of which are the pH, contact time, nature 
and concentration of the reagents, temperature, etc. [33] [48] [84] [103]-[108]. 

Nayl et al. (2017) evaluated the impact of pH on the performance of selective 
precipitation of Co(II), Mn(II), Ni(II) and Li(I) cations from H2SO4 leachate [3]. 
When they employed a sodium carbonate solution, the carbonates MnCO3, Ni-
CO3, CoCO3, and Li2CO3 precipitated selectively when the pH was adjusted to 
7.5; 9; 11 and 12, respectively. This pH-dependent selectivity of metal precipita-
tion is confirmed by the work of Meshram et al. (2015) [109] and Natarajan et al. 
(2018) [110]. Furthermore, it is shown that this metal precipitation is also de-
pendent on the reagent employed. Barik et al. (2017) demonstrated that under 
specific conditions, a NaClO solution results in the selective precipitation of a 
manganese oxide mixture from a leachate containing Mn(II), Co(II), Ni(II), 
Cu(II), Al(III) and Li(I) [48]. Cobalt and lithium precipitated using sodium car-
bonate solution while copper and aluminum precipitated using soda ash [48]. 

5. Conclusions 

In the face of the rapid production of waste Libs and the growing demand in the 
portable electronics market, the economic and proper management of used Libs 
has become a major political and economic issue. These types of waste, if im-
properly treated, become a threat to public health and nature. In addition, the 
critical state of the ores and the economic value of the design metals make recy-
cling a major asset for the sustainable development of consumer electronics. 
Nowadays, many hydrometallurgical treatment processes of Libs scrap are de-
veloped and promising results are obtained from literature data. After biblio-
graphic synthesis, we retain that in hydrometallurgy; 

Alkaline leaching can facilitate the acid leaching and liquid-liquid extraction 
steps by eliminating impurities such as Al, Cu, Fe, etc. and reduce the solvent 
consumption and minimize the number of steps. However, the solvents tested in 
this field lack efficiency, which calls for further studies. 

Acid leaching, which is the essential step, consists in solubilizing all the metal-
lic constituents of a given sample. Most of the inorganic acids tested release gas-
es that can pollute the atmosphere and pose a threat to public health, while or-
ganic acids are less polluting but not too effective. 

Liquid-liquid extraction and electroplating are complementary and are often 
confronted with a lack of selectivity in the treatment of mixed batteries. In addi-
tion, extraction can lead to the consumption of large quantities of solvent and 
the production of effluents. 
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For future studies, it would be interesting to test the use of specific oxidants of 
very strong complexing agents in order to improve the performance of selective 
leaching and the use of ionic liquids as extractants for solubilized metals. 
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