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Abstract 
Within southern Mali, the Syama belt constitutes a linear major struc-
ture-oriented N-S, which host several gold deposits (e.g., Syama and Tabako-
roni) and prospect areas (e.g. Tellem). The Syama Belt is formed by magmatic 
rocks (basalts, lamprophyres, andesites, dacites and microgranites); sedimen-
tary rocks (shales) and volcano-sedimentary rocks (pyroclastics). The mag-
matic rocks are divided into two main volcanic series: tholeiitic affinity rocks 
(basalts and lamprophyres) and calc-alkaline affinity (andesites) that are the 
most evolved. The field relationships between rocks of these two series sug-
gest that the calc-alkaline series are younger the tholeiitic series. These tho-
leiitic series present the Mid-Ocean Ridge Basalt (MORB) affinity whereas the 
calc-alkaline series would be linked to an island arc-type. This coexistence is 
not an isolated case within the West African Craton (WAC). Otherwise, the 
Syama belt has all the characteristics of other belts, within which a number of 
gold deposits are developed, in the WAC. 
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1. Introduction 

The West African Craton (WAC) is the part of Africa which is stabilized around 
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1700 Ma [1] and is constituted by magmatic, metamorphic and sedimentary rocks 
(Figure 1). These geological formations were shaped during eburnean orogeny 
[2] [3] [4]. It is established within the WAC, the basic magmatic rocks belong to 
two series succeeding each other in time: tholeiitic and calc-alkaline, the latter 
presenting in addition to the basalts a differentiated series up to the dacites and 
rhyolites [2] [3]. However, the geodynamic context of the genesis of the tholeiitic 
basaltic rocks is always a subject of discussion. According to previous studies, 
the tholeiitic magmatism from the Birimian basement would be related to: an 
oceanic MORB-type [5], an oceanic shelf domain [2] [3] [6] [7] [8] and an island 
arc domain [9]-[17]. 

On the other hand, all of the authors admit a subduction context for calc-alkaline 
rocks [17] [18] [19] [20]. Concerning the magmatic rocks of the Syama belt, the 
geochemical studies to date focused only on major elements [18] [21]. Analyzed 
samples were taken from drill cores in order to be as free as possible from su-
pergene alteration due to the tropical climate, a widespread alteration in the 
study area. The present study was initiated to complete the major elements data 
by adding traces and rare earth elements (REE) with the aim to: i) accurately 
identify the mafic rocks (basalts and lamprophyres) as well as the various felsic 
rock types encountered in the three deposits; ii) propose a geodynamic of these 
rocks. 

 

 
Figure 1. Geological map of Leo-Man Shield with gold showing distribution after [24]. 
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Geological setting 
In the WAC, two Precambrian Shields (Reguibat and Leo) and two Precam-

brian Inliers are noted [1] [22] [23]. This craton is composed of Precambrian 
formations [1] [24] which are modelled by Eburnean orogeny date to 2.1 Ga [4]. 
The Leo Shield contains our study area (Figure 1) and is situated in the south of 
Paleozoic basin of Taoudenit. 

The eastern part of this shield is composed of Proterozoic formations, also is 
called the Boualé-Mossi domain. This domain is made up of plutonic, volca-
no-sedimentary and metamorphic formations that outcrop in Mali in the south-
ern part. 

The south of Mali contains five deposits (e.g., Morila, Komana, Kalana, Sya-
ma, Tabakoroni) and many gold showing such as Bananso, Syama-extension and 
Tellem [19] [25] [26] [27] distributed along main shear-zones (e.g., Yanfolila, 
Banifing, Syama). Along with the Syama shear, three gold deposits (Syama, Ta-
bakoroni and Tellem) are located follow a direction globally N-S (Figure 2). 
This region is formed by a succession of greenstone belts oriented NNE-SSW 
and separated by sedimentary basins (Figure 1). These belts are composed of 
basic volcanic or sedimentary-dominated volcano-sedimentary rocks and are 
cross-cut by plutons and granitoid stocks [28]. Among these belts, one of Syama 
is presented as a narrow belt that extends 100 km within the Banifing shear zone. 
On the south, it connects to the Sassandra fault in Ivory Coast [29] [30] [31]. 

The Syama gold deposit as well as ones of Tabakoroni and Tellem is located 
on the Syama belt (Figure 2). These gold deposits are exploited for a long time 
and are majorly constituted of quartz veins hosted in volcano-sedimentary 
rocks. 

2. Materials and Methods 

The main characteristic of the study area is the absence of exploitable outcrops. 
Indeed, the bedrock is recovered on the surface by several meters thickness of 
ferruginous lateritic. Therefore, the analyzed samples have been mainly taken 
from drill cores in order to avoid supergene alteration, which is caused by the 
tropical climate in the region. Some other samples have been taken from the 
open pit of Syama. Whole rock geochemical analyses have been performed on 20 
representative magmatic rock samples. The choice of these samples was made 
taking into account the freshness of the rock. The samples have been carefully 
cleaned and cleared of all surface elements and quartz veins. After, they have 
been pulverized to avoid any contamination through a long preparation process. 
Geochemical analysis was performed at Chemex Laboratories in Canada and 
ALS in Spain. 

The ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) 
method with lithium tetraborate fusion technique for digestion has been used for 
samples analysis. This technique was used for geochemistry analysis, in particu-
lar the major elements. A prepared sample of 0.200 g is added to the lithium  
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Figure 2. Local geology of the Syama deposit with location of associated deposits and 
showings, modified from [32]. 

 
metaborate/lithium tetraborate of 0.90 g. The whole is mixed well and melted in 
a furnace at 1000˚C. The resulting melt is then cooled and dissolved in 100 mL 
of 4% nitric acid or one 2% hydrochloric acid solution. This solution is then 
analyzed by ICP-AES and the results are corrected in the inter-element spectral 
interferences. The oxide concentration is calculated from the determined ele-
mental concentration, and the result is reported in a table (Table 1). 

3. Results 
3.1. Classification 

The different magmatic rocks of the Syama belt have been defined from the  
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Table 1. Major and trace elements for 20 representative samples of igneous rocks from the Syama belt. Major elements in % by 
weight; Trace elements in ppm; <LD = below detection limit. 

Litho 
ID 

Basalt 

Sya Pit2 Sya-MB Sya 137-5 Sya 243-3 Sya 256-3 Sya 254-3 Tab-2 Tacd 13-1 Tacd-21 

SiO2 48.3 46.7 43 40.7 38.1 49 49.2 47 49.1 

TiO2 1.83 1.1 0.8 0.7 0.69 0.72 1.08 1.16 1.17 

Al2O3 12.6 10.7 10.85 11.9 10.55 9.34 13.15 12.2 13.15 

Fe2O3 18.25 12.3 9.02 11.1 9.83 9.32 15.5 16.35 15.7 

MnO 0.22 0.14 0.21 0.27 0.22 0.15 0.2 0.22 0.21 

MgO 5.43 6.31 6.11 7.77 6.82 9.73 6.06 7.16 6.08 

CaO 5.29 6.29 6.7 6.68 10.7 6.91 8.3 9.76 9.02 

Na2O 3.07 2.05 3.22 1.22 1.9 2 2.7 1.92 3.11 

K2O 0.11 0.14 1.61 1.48 1.95 0.03 0.17 0.33 0.13 

P2O5 0.16 0.09 0.03 0.08 0.04 0.24 0.12 0.11 0.11 

BaO 0.01 <LD 0.02 0.02 0.02 <LD <LD 0.01 0.01 

Cr2O3 0.01 0.03 0.06 0.02 0.05 0.1 0.05 0.05 0.02 

SrO 0.02 0.01 0.03 0.02 0.05 0.02 0.02 0.03 0.02 

LOI 5.27 12.55 16.65 16.55 16.8 13.25 2.21 2.14 0.92 

Total 100.57 98.41 98.31 98.51 97.72 100.81 98.76 98.44 98.75 

As 3.8 64 48 58 42 4 72 69 77 

Ba 74.5 27.7 193 223 148.5 28.8 33.5 63.3 63.5 

Bi 0.01 9.3 46.4 34.6 114 0.02 3.3 1.8 1.6 

C 0.37 2.66 4.5 4.23 4.98 2.78 0.27 0.19 0.05 

Co 56 41 31 53 35 47 60 62 57 

Cr 70 240 500 140 450 730 410 380 190 

Cs 1.96 0.6 1.82 3.66 2.88 0.59 0.65 1.2 0.24 

Cu 100 171 104 106 96 60 173 128 140 

Ga 19.6 15.4 14 15.2 13.3 14.3 16.8 17.6 16.9 

Hf 3.3 2.1 1.6 1.7 1.4 2.8 2.2 2.1 2.3 

Hg 0.011 0.03 0.02 0.02 0.2 0.006 0.19 1.2 0.06 

Li 30 170 10 80 20 80 30 30 
 

Mo 1 <LD 10 4 2 <LD 76 <LD 5 

Nb 5.1 2.9 2.3 2.2 1.9 4.9 3.1 3.1 3.3 

Ni 60 89 166 64 146 270 521 552 122 

Pb <LD <LD <LD 2 3 2 <LD <LD <LD 

Rb 3.6 4.9 48 48.4 52.9 1.1 3.4 11.7 1.7 
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Continued 

S 0.13 0.11 0.06 0.7 1.82 0.13 0.66 0.65 0.08 

Sb 1.37 0.01 0.006 0.01 0.048 8.21 0.027 0.015 0.008 

Sc 41 41 30 37 28 21 36 40 41 

Se 1.3 3.54 31.9 25.2 8.64 0.3 0.71 0.2 0.15 

Sr 137.5 90.9 276 147.5 415 204 150.5 227 190 

Ta 0.3 0.2 0.1 0.1 0.1 0.3 0.2 0.2 0.2 

Te 0.01 0.5 0.4 1 0.9 0.03 1 1.1 0.7 

Th 0.55 0.34 0.22 0.55 0.22 2.77 0.32 0.31 0.33 

Tl <LD 0.02 0.02 0.01 0.08 
 

0.07 0.16 0.03 

U 1.38 0.36 0.32 0.31 0.27 1.66 0.43 0.44 0.47 

V 501 0.11 0.09 0.21 0.07 171 0.11 0.11 0.13 

W 1 339 258 242 248 1 388 390 387 

Y 38.3 3 31 4 7 16.3 5 3 2 

Zn 143 115 60 99 58 87 118 140 116 

Zr 115 2.25 2.27 1.98 1.74 106 2.97 3.03 3 

La 5.7 3.4 3 4.7 2.4 18.8 4 3.9 4 

Ce 15.3 9.1 7.4 11.1 6.4 42.7 10.6 10.6 10.7 

Pr 2.44 1.39 1.15 1.45 0.95 5.7 1.63 1.61 1.64 

Nd 12.6 6.9 5.1 6.7 4.8 23.2 8.2 8.3 8.1 

Sm 4.59 2.23 1.99 1.95 1.75 5.1 2.75 2.78 2.61 

Eu 1.46 0.85 0.64 0.76 0.67 1.3 0.99 1.04 1 

Gd 5.74 3.12 2.59 2.54 2.45 4.01 3.73 3.86 3.81 

Tb 0.99 0.55 0.48 0.47 0.41 0.59 0.65 0.71 0.66 

Dy 6.73 3.67 3.27 2.91 2.83 3.38 4.27 4.54 4.24 

Ho 1.47 0.74 0.67 0.63 0.59 0.68 0.97 0.97 0.94 

Er 4.08 2.39 2.34 1.99 1.85 1.64 3.07 3.15 3.1 

Tm 0.64 <LD <LD <LD <LD 0.26 <LD <LD <LD 

Yb 4.03 22.3 19.8 17.1 16.9 1.43 26.5 27.9 27 

Lu 0.62 0.36 0.35 0.29 0.28 0.22 0.46 0.45 0.46 

 

Litho 
ID 

Lamprophyre Andesite-dacite Microgranite 

Tab-204 Sya Pit1 Sya Pit4 Sya B1 Tacd 13-2 Tacd-242 Te 58-1 Te 92-4 Te 92-5 Te 92-6 Te 92-7 

SiO2 42.3 43.3 41.3 37.7 66.8 66.9 71.9 71.8 74.5 71.8 71.1 

TiO2 0.51 0.57 0.6 0.96 0.45 0.41 0.27 0.28 0.27 0.27 0.26 

Al2O3 10.3 8.93 9.07 13.35 16 15.7 15.05 15.05 14.85 14.45 15.05 
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Continued 

Fe2O3 9.98 9.41 6.98 16.85 3.12 3.23 2.02 2.09 2.27 2.22 2.2 

MnO 0.17 0.19 0.26 0.16 0.04 0.04 0.01 0.02 0.01 0.04 0.03 

MgO 12.85 9.24 7.74 9.79 1.34 1.22 0.7 0.59 0.71 0.64 0.57 

CaO 10.05 7.14 12.05 6.6 3.04 2.13 0.21 1.04 0.23 2.48 1.54 

Na2O 0.01 1.12 1.68 1.16 6.01 5.91 4.86 4.75 4.68 4.72 4.6 

K2O <LD 1.74 1.55 0.11 1.14 1.25 2.25 2.25 2.28 1.87 2.42 

P2O5 0.19 0.17 0.83 0.25 0.17 0.18 0.11 0.11 0.11 0.1 0.11 

BaO <LD 0.04 0.04 0.01 0.09 0.07 0.08 0.08 0.08 0.09 0.09 

Cr2O3 0.24 0.16 0.11 0.13 0.03 0.04 <LD 0.01 0.04 0.01 0.03 

SrO 0.03 0.03 0.08 0.01 0.13 0.09 0.05 0.07 0.05 0.09 0.06 

LOI 12.75 19.7 19.65 14.7 1.63 3.52 1.73 2.39 1.74 3.09 2.73 

Total 99.38 101.74 101.94 101.78 99.99 100.69 99.24 100.53 101.82 101.87 100.79 

As 77 2 <LD 66.6 110 107 78 74 83 81 79 

Ba 3.2 350 371 50.8 832 672 803 694 719 739 775 

Bi 56 0.04 0.06 0.04 3.3 102 <LD <LD LD 31.5 <LD 

C 2.07 5.2 5.1 2.61 0.22 0.65 0.02 0.22 0.02 0.54 0.34 

Co 64 44 39 42 12 8 5 5 6 4 5 

Cr 1910 1140 740 940 270 280 30 50 290 90 270 

Cs 0.37 4.34 2.87 1.12 5 3.62 3.26 3.8 3.36 3.48 3.37 

Cu 69 63 43 115 40 35 17 19 19 25 18 

Ga 12.9 13 13.8 21.9 22 20.6 20.2 20.9 20.6 19.6 21.3 

Hf 2.1 2 3.2 3.6 3.2 3.2 2.8 2.6 2.7 2.8 2.7 

Hg 0.16 0.128 0.048 0.006 0.14 0.81 0.16 0.1 0.11 0.16 0.11 

Li 50 30 20 270 10 20 20 20 30 10 20 

Mo <LD 1 1 1 34 15 <LD 6 12 8 15 

Nb 3 3.9 5.8 5.8 3.2 3.4 4 4.6 4.9 4.6 5.1 

Ni 467 340 450 216 200 41 12 34 26 26 36 

Pb 3 <LD 5 8 13 7 8 11 12 13 10 

Rb 0.3 59.1 48 3.5 37.7 38.9 59.5 64.1 63.2 57.2 66.7 

S 0.34 0.04 0.04 
 

0.11 0.34 0.28 0.72 0.56 0.12 0.63 

Sb 0.042 14.85 26.4 4.56 0.016 0.071 0.011 0.028 0.038 0.017 0.044 

Sc 23 22 15 32 5 4 4 4 4 4 4 

Se 0.16 0.2 0.7 0.4 0.57 5.79 1.33 1.02 1.91 0.3 1.36 

Sr 224 262 651 106.5 1175 843 476 651 449 789 546 

Ta 0.2 0.2 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.3 
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Continued 

Te 1.2 0.01 0.02 0.03 0.4 0.5 0.4 0.3 0.5 0.2 0.3 

Th 1.51 2.13 7.49 2.51 2.72 2.79 2.76 2.69 2.9 2.64 2.71 

Tl 0.04 0.06 0.06 <LD 0.02 0.16 0.02 0.01 0.02 0.01 0.02 

U 0.2 2.73 3.67 1.64 0.07 0.07 0.09 0.09 0.09 0.11 0.11 

V 0.46 164 125 306 1.35 1.33 1.6 1.65 1.71 1.65 1.73 

W 157 13 17 2 54 59 29 30 31 31 31 

Y 3 12.2 18.8 21.6 2 19 17 18 25 9 24 

Zn 86 71 30 174 67 58 42 52 49 49 57 

Zr 1.29 77 145 139 0.5 0.42 0.58 0.58 0.6 0.62 0.6 

La 11.2 12.4 79.8 11.7 21.7 23.3 19.2 16.9 16.8 15.6 15.8 

Ce 25.7 26.5 176 29.3 44.6 48.3 39.7 34.5 35.5 32.6 33.5 

Pr 3.43 3.46 23.4 4.31 5.36 5.73 4.91 4.34 4.37 4.11 4.07 

Nd 14.5 14.9 93.2 19.6 20.3 21 18.7 16.4 16.9 15.7 16 

Sm 3.37 3.37 16.4 5.05 3.54 3.68 3.52 3.3 3.31 3.2 3.23 

Eu 0.77 0.88 3.92 1.25 0.94 1.03 0.89 0.84 0.84 0.99 0.74 

Gd 2.85 2.78 9.95 4.37 2.06 2.08 2.36 2.24 2.25 2.13 2.25 

Tb 0.43 0.42 1.06 0.67 0.25 0.25 0.29 0.29 0.29 0.3 0.27 

Dy 2.45 2.41 4.55 4.19 1.11 1.1 1.43 1.46 1.4 1.5 1.44 

Ho 0.5 0.47 0.67 0.84 0.18 0.19 0.22 0.24 0.26 0.28 0.24 

Er 1.57 1.38 1.53 2.31 0.57 0.5 0.7 0.63 0.63 0.69 0.68 

Tm <LD 0.21 0.19 0.35 <LD <LD <LD <LD <LD <LD <LD 

Yb 13.6 1.27 0.94 2.31 5.6 5.6 7.4 7 7.2 8.3 7.3 

Lu 0.2 0.2 0.15 0.36 0.05 0.06 0.08 0.1 0.09 0.1 0.1 

 
classification of [33] (Figure 3), sub-alkaline series classification (Figure 4) and 
FeOt/MgO vs SiO2 distribution (Figure 5). The classification is also based on the 
major elements SiO2, Na2O and K2O and that of Harker trace elements Nb, Y, Zr 
and Ti (Figure 6). These Harker’s diagrams are used to assess the degree of frac-
tional crystallization. So, they allow us to understand mineralogical evolution 
and to highlight the genetic relations between the different magmatic rocks. 
These classifications complete the results of thin sections of the magmatic rocks 
with an optical microscope [26]. 

The two diagrams obtained show that the magmatic rocks in the belt consist 
of several types: i) a basic set combining basalt and lamprophyre of Syama and 
Tabakoroni; ii) an intermediate set corresponding to andesitic-dacitic rocks col-
lected at Tabakoroni; iii) a differentiated set corresponding to microgranites at 
Tellem. In addition, the diagram of [33] shows that the different rocks belong to 
the sub-alkaline series (Figure 4). These rocks have been also plotted in Harker  

https://doi.org/10.4236/ojg.2022.123014


D. Y. Traoré et al. 
 

 

DOI: 10.4236/ojg.2022.123014 258 Open Journal of Geology 
 

 
Figure 3. Classification diagram of magmatic rocks of the Syama-Tabakoroni-Tellem 
zone according to alumina saturation (A/NK as a function of A/CNK) from [34]. 

 

 
Figure 4. Alkaline-Silica diagram of magmatic rocks of Syama, Tabakoroni and Tellem, 
modified after [35]. 
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Figure 5. Distribution of magmatic rocks of the Syama-Tabakoroni-Tellem zone accord-
ing to [39]. 

 
diagrams (oxides vs SiO2) (Figure 6), which highlight: i) the dispersion of the 
data and the absence of correlation between oxides and SiO2; ii) the variability of 
the contents of certain oxides such as TiO2, Na2O and K2O within the same pe-
trographic rock type (basalt or lamprophyres) This variability would be related 
to the differential of hydrothermal alteration. 

3.2. Mobility of the Components 

Syama belt rocks have undergone strong supergene and hydrothermal alteration. 
Thus, in order to define the primary characteristics of the magmatic rocks, we 
chose rocks less affected by silicification phenomena and those where vein net-
works were less dense. 

Major elements analysis shows that supergene alteration is highly variable 
(Figures 7(a)-(l)). It results in a loss on ignition (LOI) of 5% to 17% in the Sya-
ma basalts, 1% to 2.2% in the Tabakoroni basalts, 12.7% to 21.8% in the Syama 
and Tabakoroni lamprophyres, 1.6% to 3.5% in the Tabakoroni andesites, and 
1.7% to 3% in the Tellem microgranites. To be sure to characterize the igneous 
rocks despite the high loss on ignition values and a possible hydrothermal altera-
tion in some facies, we plotted the incompatible element Nb and the trace element 
Zr (Figure 7(h)). The trace element Zr is known to be immobile in even altered 
mafic volcanic rocks [36] [37] [38]. This diagram shows a good correlation between  
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Figure 6. Harker-type variation diagrams of major elements vs SiO2 of igneous rocks of the 
Syama-Tabakoroni-Tellem areas showing an absence of discontinuity in the evolution. 

 
the two elements, following a straight line through the origin, indicating that the 
elements have not been affected by these secondary processes. They can there-
fore be used to recover the original characteristics of our rocks (Figure 7(h)). 

3.3. Rares Earth Elements Spectra 

In order to eliminate the variation in abundance between rare earth elements of 
odd-even atomic numbers, the values of the Syama-Tabakoroni-Tellem mag-
matic rocks have been normalized with the concentration of the early mantle 
[40]. This normalization allows us also to discern the extent of any fractionation 
among rare piles of earth in the studied samples (Figure 8). The rare earth spec-
tra show a general decrease from light rare piles of earth to heavy rare piles of 
earth except for basalts where the spectra remain constant. These spectra show 
mostly a positive anomaly in Yb except the spectra of the lamprophyres. The 
spectra of the different types of rocks are generally cross. However, andesites- 
dacites and microgranites spectra show parallelism between them. 

The spectra most often show a negative anomaly in Eu (Eu/Eu* < 1). This im-
plies that Eu plays an important role in the fractionation of plagioclases by subs-
tituting Sr, Ba or Ca (Figure 9). The REE spectrum shows a negative absence of 
Eu anomaly for all the samples analyzed (Figure 8). 
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Figure 7. Harker-type variation diagrams of trace elements vs SiO2 of igneous rocks of the Sya-
ma-Tabakoroni-Tellem areas. 

 
The slope (La/Lu) of the spectra is negative, implying that magmatic rocks of 

Syama-Tabakoroni-Tellem present enrichment in LREE compared to HREE. Ex-
cept for basalts where the slope is constant, so no enrichment or depletion of 
LRRE compared to HREE (Figure 8). 

3.4. Rares Earth Elements Expanded Spider Diagram 

The expanded REE values of the Syama-Tabakoroni-Tellem magmatic rocks have 
been normalized to the primitive mantle, after [41] to multi-element spider dia-
grams (expanded REEs). These spider diagrams (Figure 9) show positive ano-
malies which are characterized by peaks of enrichment. We are noted also nega-
tive anomalies marked by indentations of depletion. 

As in the REE spectra, these normalized multi-element spider diagrams of the 
Syama-Tabakoroni-Tellem rocks (Figure 9) are cross, except for the spectra of 
andesites-dacites and microgranites which are parallel to each other. The lam-
prophyre spider diagrams are too intersecting and are difficult to interpret, so 
they are not taken to account in Figure 9. 

All the spider diagrams of basalts, andesites-dacites and microgranites show 
positive anomalies in Cs, K, Sr, Yb and negative anomalies in Rb, Nb, La-Ce, P, 
Zr, Lu (Figure 9). In addition to these common anomalies, basalts present a  

https://doi.org/10.4236/ojg.2022.123014


D. Y. Traoré et al. 
 

 

DOI: 10.4236/ojg.2022.123014 262 Open Journal of Geology 
 

 
Figure 8. Rare earth spectra of igneous rocks (9 basalts, 4 lamprophyres, 2 andesites-dacites and 5 microgranites) of the Sya-
ma-Tabakoroni-Tellem area of the study area normalized to the early mantle [40]. 
 

positive anomaly in U and negative anomalies in Ba, Th, Y. On the other hand, 
andesites-dacites and microgranites present positive anomalies in Ba, Pb, Nd, 
Sm and negative anomalies in U, Pr, Ti. 

3.5. Basalts 

Nine Basalt samples have been analyzed whose six at Syama and three at Taba-
koroni. Their SiO2 contents vary from 38 wt% to 49 wt%, ones Fe2O3 from 9 to 
18 wt% while Al2O3, MgO and CaO contents are relatively homogeneous and 
respectively ~ 12%, ~ 6% with an exception reaching 10%, 6.5% with an excep-
tion reaching 10.7%. Cr and Ni contents are high, reaching 730 ppm and 562 
ppm respectively in some samples. The basalts are very weakly enriched in REE 
with a ∑REE varying between 25 and 60 ppm. An exceptional high value is rec-
orded in Syama basalt where the ∑REE reaches 100 ppm related to higher La (19 
ppm), Ce (42 ppm) and Nd (25 ppm) contents. In the chondrite-normalized di-
agram of [41], the basalts show nearly flat rare-earth (REE) spectra (La/Yb CN = 
0.95 - 1.70 at Syama, 0.92 - 0.97 at Tabakoroni, devoid of anomaly or with low  
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Figure 9. Expanded rare earth spider diagrams of igneous rocks of the Syama-Tabakoroni-Tellem zone normalized to 
the early mantle [41]. 
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negative europium anomaly (Eu/Eu* = 0.86 - 1.04 at Syama, 0.95 - 0.97 at Taba-
koroni). In a multi-element diagram of values normalized to the early mantle 
data [41], the basalts show some dispersion in alkali element concentrations (Cs, 
Ba, Rb) related to their mobility but relatively flat spectra, with no negative 
anomalies in Nb and Ta for the other elements, notably the HFSE (Figure 9(b)). 
These data indicate that crustal contamination did not play an important role in 
the evolution of the compositions of these magmas [42]. Significant crustal con-
tamination would be indicated by strong negative anomalies in Nb and Ta. Fi-
nally, the Zr/Y ratio, lower than 4 (2.6 and 2.8 respectively for Syama and Taba-
koroni), would indicate a tholeiitic affinity for these basalts [43]. Indeed this ra-
tio is between 4 and 7 for transitional lavas, and higher than 7 for calc-alkaline 
lavas. 

3.6. Lamprophyre 

Five lamprophyre samples collected in Syama and in Tabakoroni have been ana-
lyzed. The result shows they present mafic lavas characteristics comparable to 
basalts (Figure 5), and ones of ultramafic rocks. These samples are characterized 
by a very high value of LOI up to 21 wt%, low contents of SiO2 ranging from 38 
and 43 wt%. The Fe2O3 contents are variable (between 7 wt% and 17 wt%) while 
the ones of MgO are between 7.8 wt% and 10.5 wt%. The major characteristic is 
their very high content of Cr (up to 1910 ppm) and of Ni (up to 470 ppm). The 
lamprophyres are enriched in Rare Earth Elements with ∑REE ranging from 47 
to 386 ppm. In the chondrite-normalized diagram, the REE shows a good frac-
tionation with (La/Yb) CN between 4 and 61. The Eu anomalies are clearly nega-
tive with Eu/Eu* ratio from 0.76 to 0.94. The lamprophyres also show high alka-
line concentrations (Cs, Ba, Rb) compatible with their mica richness [27], very 
high U and Th contents (100 times higher than those in the Primitive Mantle) 
and evident negative anomalies in Nb and Ta (Figure 8). These chemical cha-
racteristics are those of calc-alkaline lamprophyres of the spessartite type [44]. 
They are also similar to calc-alkaline lamprophyres from the Black Mountain 
[45], eastern Pontides in NE Turkey [46], NW Mexico City [47], and also to 
lamprophyres from the Daping gold deposit [48]. 

3.7. Andesite-Dacite 

For andesite-dacite, two samples from the Tabakoroni deposit have been ana-
lyzed. These samples are characterized by high SiO2, Al2O3, Na2O contents (re-
spectively equal to 67 wt%, 16 wt% and 6 wt%). They are highly enriched in REE 
with a ∑REE ranging from 95 to 101 ppm. So, they are highly fractionated with a 
very high enrichment in light REE (La/YbCN = 31 - 40). In multi-element dia-
gram normalized to the Primitive Mantle (Figure 8 and Figure 9(b)), the ande-
site-dacite samples show a negative Nb-Ta anomaly. The Zr/Y ratio of the ande-
sites is between 10 and 20, a value compatible with a calc-alkaline affinity. This 
result is confirmed by the diagram of [49] in which andesitic samples are placed 
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in the calc-alkaline field (Figure 5). 

3.8. Microgranites 

The analyzed microgranitic vein of Tellem is characterized by high SiO2 (71 wt% 
to 74 wt%) and Al2O3 (~15 wt%) contents and relatively high K2O proportion 
(between 1.87% and 2.42%). It is enriched in REE with ∑REE varying between 47 
and 73 ppm and its spectra are strongly fractionated with La/YbCN ranging 
from 18 to 23 ppm. It generally shows a negative anomaly in Eu (Eu/Eu* = 0.84) 
with an exceptional positive value (Eu/Eu* = 1.16). However, multi-element di-
agram shows very strong negative anomalies in Nb, Ta and Th. 

4. Discussion 

In the Syama belt, three populations of magmatic rocks have been identified: ba-
salts with a tholeiitic affinity, and more advanced rocks (andesites with microgra-
nites) and lamprophyres with a calc-alkaline affinity. The intersection between 
lamprophyric veins and basalts verify the chronology proposed for this birimian 
period, namely the calc-alkaline event is posterior to the one of tholeiitic. 

In order to characterize the tectonic the emplacement context of these various 
magmas, we consider that the principle of uniformitarianism is verified and that 
the processes of magma genesis for the Precambrian period are similar to those 
of the present period [50]. Thus, if we consider current island arc basalts (IABs) 
we note that the concentrations in Nb (<2 ppm; [51] is lower than basalts from 
other tectonic settings. This translates into a negative Nb anomaly and also Ta 
(similar chemical properties to Nb) in diagrams normalized to the early mantle 
[52]. These chemical characteristics are found in many tholeiitic basalt suites of 
Precambrian greenstone belts that have then been interpreted as formed in an 
arc setting [50] [51] [53]. 

In Syama belt, the basalts do not show negative anomalies of Nb and Ta, but 
relatively REE flat spectra. This type of spectrum is characteristic of basaltic se-
quences in current oceanic shelves (e.g. Nauru).Thus, a contextual analogy has 
been considered for similar ancient oceanic shelf basaltic sequences [2] [54]. To 
discuss the composition of mantle sources, [37] instead favors elemental ratios 
using HFSEs, as these elements have similar incompatibilities in the mantle. 
Thus, the author’s diagram combining Zr/Nb ratios with Nb/Th applied to the 
Syama and Tabakoroni basalt samples would indicate an oceanic shelf signature 
for them. 

For differentiated rocks (andesite and microgranite), data strongly fractio-
nated spectra (Figure 8), and the negative anomalies in Nb, Ta, Zr/Nb on Nb/Th 
ratios (Figure 9(b)), indicate the arc magmatism type. 

Within the WAC, the tholeiitic basalts, which have the same characteristics as 
those of the Syama belt [2] [11] have been interpreted differently. Thus, [5] con-
siders the Birimian tholeiitic basalts of the WAC as MORB equivalents. Howev-
er, many authors [9]-[17] propose an o island arc context for these basalts. Fi-
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nally, an oceanic shelf tectonic environment in relation to a mantle plume has 
been considered by [2] for the tholeiitic basalts (2.1 Ga) of the WAC parts (e.g., 
Mauritania, Senegal, Burkina-Faso), by [6] for volcanics from northeastern Ivory 
Coast, by [7] for volcanics from the Kédougou-Kéniéba Inlier (eastern Senegal), 
and recently by [8], for metavolcanics from the neighboring Mana district in the 
Houndé belt of Burkina Faso. Similarly, [55] proposed for the iron-rich tholeiitic 
basalts of the Birimian-aged El Callao formation, located on the Guiana Shield 
(equivalent to the WAC for the South American craton), an oceanic shelf tec-
tonic setting. However, in this last example, in addition to the large volume of 
basalt (maximum thickness estimated at 1200 m), the existence of komatiite-type 
formations underlying the basalts has been highlighted, formations that have not 
been recognized to date in the WAC. In these last two examples (Mana and El 
Callao), the tholeiitic basaltic formations are host to gold mineralization. The 
same remark is done in Syama deposit. 

The absence of isotopic data, the state of alteration affecting rocks and the 
poor conditions of outcrop does not make it possible to estimate the real volume 
of these various formations. It is thus difficult in our case to define precisely the 
tectonic context of these tholeiitic basalts. 

In the Syama region, calc-alkaline formations are represented by mafic plu-
tonic (lamprophyres) and more differentiated rocks (andesites and microgra-
nites). The existence of mafic rocks (ultrabasic to basic) belonging to the calc- 
alkaline series was shown by [13] in the Loraboué region (Burkina Faso) and by 
[56] in the Kadiolo belt, located to the east of Syama belt. 

The differentiated rocks of the Syama belt show strong similarities with the 
rocks of the calc-alkaline series of the Kédougou buttonhole in Senegal [57], Gui-
nea [58] or Kalana in the south-east of Syama in Mali [25]. For the emplacement 
of the calc-alkaline rocks of the WAC belts, an island arc setting has been very 
often proposed [2] [9]-[17]. For the Bagoé belt, [18] [21] also proposed an origin 
in a back-arc context, and the Kadiana Madinani domain terrains are interpreted 
as a back-arc basin. Similarly, [57] proposed an island arc context for the em-
placement of a set of ultramafic to mafic rocks of the Kadiolo belt, located east of 
the Syama belt. In conclusion, the calc-alkaline series represented by the diffe-
rentiated volcanic rocks would be developed in an island arc context. 

As for the spessartite lamprophyres, it is important to note that they are fre-
quently found in association with gold mineralization. This is the case in Arc-
hean terrains, such as in Matheson, in Ontario [58] [59] and the Yilgarn Craton, 
Australia [60], but also in Cenozoic formations such as in China’s Yunnan 
Province with the Daping gold deposit, located along the Ailao-Shan-Red-River 
gold shear-zone, the latter being related to the collision of the Indian and Eura-
sian plates [48]. These various authors consider that this type of magmatic rock 
would be set up late during the geodynamic evolution, during late transmission 
to post-collisional tectonic phase. These particular rocks, rich in compatible (Cr 
and Ni) and incompatible (LILE and HFSE) elements would derive from mag-

https://doi.org/10.4236/ojg.2022.123014


D. Y. Traoré et al. 
 

 

DOI: 10.4236/ojg.2022.123014 267 Open Journal of Geology 
 

mas generated from a metasomatized mantle source [44] [46]. So, this origin is 
generally the case for this type of highly potassic-rich magma. In the case of Sya-
ma, the lamprophyres, intersecting the basalts in the belt, would mark the first 
extensive post-collisional stages that would take place at the end of the Eburnian 
orogeny. 

5. Conclusions 

The coexistence of heterogeneous geochemical signatures of igneous rocks in the 
Syama Belt (tholeiitic and then calc-alkaline), suggests that the rocks were formed 
in different tectonic settings during the Eburnian orogeny. 

The coexistence of tholeiitic and calc-alkaline volcanic rocks is a magmatic 
association that is not unusual in the WAC. In the Baoulé-Mossi domain, this 
association has been identified in the Boromo and Houndé belts [12] [13] and 
interpreted as an evolution of juvenile island arc or oceanic plateau type during 
the Birimian. This oceanic province is dominated by the basal tholeiitic forma-
tion and the magmatic evolution continues to a mature arc, dominated by the 
calc-alkaline formations. This evolution could be also considered as cause of the 
petrological diversity of magmatic formations of the Bagoé belt in Syama region. 
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