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Abstract 
The ultimate pit may affect other aspects in the life of a mine such as eco-
nomical, technical, environmental, and social aspects. What makes it even 
more complex is that most often there are many pits which are economically 
minable. This calls for a heuristic approach to determine which of these pits is 
the ultimate pit. This study presents a means of selecting an ultimate pit dur-
ing design operations of the Hebei Limestone mine. During optimization 
processes of the mine, many pit shells were created using Whittle Software. 
Normally, Whittle Software optimizes these processes and assigns a revenue 
factor of 1 for the ultimate pit. Unfortunately, the pit shells created did not 
satisfy the criteria with a revenue factor of 1 based on the parameters. As a 
result of this, statistical analysis was implemented to further understand the 
relationship, variability, and correlation of the pit shells created (data). Cor-
relation Analysis, K-means++ Analysis, Principal Component Analysis, and 
Generalized Linear models were used in the analysis of the pit shells created. 
The results portray a salient relationship of the optimization variables. In 
addition, the proposed method was tested on Whittle Sample projects which 
satisfy the selection of ultimate pit selection with a revenue factor of 1. The 
results show that the proposed model produced almost the same results as the 
Whittle model with a revenue factor of 1 and was also able to determine the 
ultimate pit in cases which did not satisfy the Whittle selection criteria. 
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1. Introduction 

The selection of the ultimate pit is a very important step in mine planning. 
Several researches have been made in determining the ultimate pit [1] [2]. The 
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techniques in ultimate pit selection may vary depending on the mineral resource 
model, location, estimation techniques, economic parameters, technical para-
meters, and data analysis. The ultimate pit may vary if a parameter is changed. 
For example, if the economic parameter is changed, the ultimate pit will be the 
pit that satisfies the defined parameters. As such, before computing for an ulti-
mate pit, there is a need for a proper evaluation of these parameters by experts 
and a final decision by the administrative board [3]. Before the determination of 
the ultimate pit, the very first step involves the characterization of the reserve 
followed by preliminary assessment, and feasibility studies [4]. These processes 
include exploration, geological modelling, mineral resource estimation, ore re-
serve estimation, and statistical analysis. Exploration is the process of finding an 
economically viable ore to mine. The exploration process consists of geological 
mapping of the area, geochemical exploration, and geophysical exploration and 
drilling of the mine area to collect samples [5]. The samples collected are used 
for sampling and analysis of the drill hole data. This data is then used to create a 
geological database. Geostatistical analysis can be done from the database to un-
derstand the geological structures and spatial relationships that constitute the 
mining area. The variogram analysis provides results to a variogram map which 
explains the anisotropy of the data and continuity within a region. The report 
from geostatistical analysis can then be used in geostatistical estimations. Geos-
tatistical estimations can be done by inverse distance estimation, ordinary krig-
ing, indicator kriging, and nearest neighbor [6] [7]. The block estimates can then 
be used to classify and quantify the ore into a mineral resource [4]. The resulting 
mineral reserve can then be converted into a block model by means of mathe-
matical functions under standard mining conditions (metallurgical, economic, 
technical, processing and other factors) [8]. The block model can then be used to 
create and calculate attributes which in turn will be used during estimation or 
filling of the block model, cut-off grade, and column processing [9]. The block 
model can be exported to Whittle Software after geostatistical estimation using 
Surpac Gemcom software. Optimization parameters are configured and pit 
shells are created. Further statistical analysis can be done on the pit shells created 
during optimization to determine the ultimate pit of the mine.  

The technique used in statistical analysis depends on certain factors such as 
data type, variables (parameters), type, and the model of statistical analysis. The 
most common types of analysis are univariate, bivariate and multivariate analy-
sis [10]) [11]. Univariate analysis consists of statistical summaries (mean, stan-
dard deviation, etc.) where the data is visualized as histograms and probability 
plots. Bivariate analysis consists of correlation analysis, scatter plots and regres-
sion analysis. Multivariate analysis consists of multiple regression analysis, e.g. 
bulk density-metals and multiple variable plots e.g. triangular diagrams. Corre-
lation Analysis, Principal Component Analysis (PCA), K-means++ clustering, 
and Gaussian Linear Models (GLM) were used to display and analyze the results 
of pit shells. Correlation analysis was done to determine the type of relationship 
between the variables and which variables show positive or negative correlations. 
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Principal component analysis was used to investigate the correlation and the line 
of best fit. The PCA creates new axes for better display and interpretation of the 
results. K-means++ clustering classify or group the data based on the difference 
and similarities of their features. K-means++ is an unsupervised algorithm used 
in statistical analysis to classify or group data based on their similarities or fea-
tures. The “k” in the name stands for fixed number of clusters in the data [12]. 
Cluster-analysis has been implemented in different fields such as geology, medi-
cine, and economics [13]. The GLM model was used to understand the associa-
tion between the variables as well as predict the ultimate pit based on the defined 
variables. 

The mine is located in Hebei province in the district of Yanshan. The topo-
graphy consists of low mountains and hills. Nikon Total Station was used to 
measure the coordinate points. The formation of the strata is Cambrian (Gushan 
bands, long Sankai, Fengshan) at the upper strata, Ordovician and Quaternary. 
The mining area is dominated by undeveloped folds and faults. The orebody is 
different in composition due to a stratigraphic and lithological difference asso-
ciated. Its mineral composition, texture, and structure are different as well. The 
chemical composition is substantially the same in a given area and varies with 
the different types of ore. The main chemical composition is Calcium Oxide 
(CaO), and small amounts of Magnesium Oxide (MgO), Silicon dioxide (SiO2), 
Aluminum oxide (Al2O3), Iron Oxide (Fe2O3), Potassium Oxide (K2O), Sodium 
Oxide (Na2O), phosphorus pentoxide (P2O5), Sulphur Trioxide (SO3), and Chlo-
rine (Cl−). 

This study presents the determination of ultimate pit by statistical analysis. 
The exploratory data was collected from the Hebei Limestone mine. The data-
base was created from the exploratory data and the block model from the data-
base. The block model was then exported to Whittle Software for optimization 
processes. During the optimization processes, pit shells were created. The pit 
shells created were all economically minable. With respect to this, statistical 
analysis was implemented in the determination of the ultimate pit.  

2. Methodology 

Exploratory analysis was done on the mine data and the results were used to 
create a database. A block model was further created from the database un-
der standard mining requirements. The block model was exported to whittle 
for optimization. Optimization parameters were configured and pit shells were 
created. Further statistical analysis was implemented on the pit shells to select 
the ultimate pit of the mine. 

2.1. Geological Database  

The database was created using SURPAC software which uses a relational data-
base that contains tables or items. The database was created using the raw drill 
hole data. The database contains the collar, survey, geology and the assay tables. 
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The first 30 values of each table have been uploaded on Github for viewing pur-
poses. The collar table gives the location of the hole in space (collar table). A 
downhole survey was done and readings of the dip and azimuth plotted in the 
reflex software to show how the actual hole in the field deviates from the plan 
(survey table). A metallurgical test was done on the sample and the good values 
were recorded in the assay table (assay table). Geological analysis was done on 
the samples to record the weathering state, lithology, sample recovery, moisture 
content, etc. and results recorded in the geologic table (geology table). The geo-
logic database is created by importing all the tables from exploratory analysis 
using Surpac software. The above process was done on standard mining condi-
tions to meet the requirement of creating a geologic database [14]. From the da-
tabase, the drill holes were sectioned and digitized using the graphical method to 
provide mirror images of the shape and size of the ore depending on the geolog-
ical interpretation of the data (image).  

From the sections, triangulation was done and a digital terrain model (DTM) 
of the orebody created as shown in Figure 1(a). The drill holes were partitioned 
by compositing for easy calculation of grade Figure 1(b). For a dataset to pro-
duce good results, the outliers need to be removed or down weighted [15]. In 
this study, the outliers were removed by means of geostatistical analysis using a 
histogram plot. Figure 2 shows a histogram which was modified to mark the 
outliers using a blue circle and a blue rectangle. The outliers were removed by 
applying a cutoff of 22.5 using the “iff” formula (outliers removed). 

2.2. Block Model Creation 

The block model is a form of a spatially-referenced database that provides a 
means for modelling the 3D Body points and intervals of the drill hole sample 
data. It provides a method for estimating volume, tonnage, and average grade of 
the 3D body from parse drill hole data. The blocks are arranged based on define 
coordinates which are minimum and maximum of Northing (Y), Easting (X), 
and Elevation (Z). The centroid of each block defines its geometric dimensions 
in each axis, that is, its Y, X, and Z coordinates. Blocks can be of varying sizes, 
the sizes of the blocks in this block model is 10 × 10 × 5 and a total number 
1,123,402 blocks. An attribute is a model that contains properties or information 
of the model space. It can vary from characters, numbers, decimals, integers or 
even character code. A total of 35 attributes were created for the block model 
(attributes). The block model was constrained to control the selection of blocks 
from which the information was retrieved to make interpolations. Estimation of 
the block model was done by Ordinary Kriging using results from the variogram 
study. Figure 3 shows the constrained block model colored by limestone grade 
attribute. Other attributes such as rock, zone, and economic attributes (mining 
costs, and processing costs) were added to the block model to meet Whittle 
Software standards. All negative grades and air blocks error were checked. A 
block model report was used to validate the block model. The block model was 
then exported to Whittle (Block Model Validation Report). 
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(a)                                       (b) 

Figure 1. (a) Triangulated ore save as .dtm; (b) Composite of the orebody. 
 

 
Figure 2. Outliers marked by a blue circle and a blue rectangle. 

 

 
Figure 3. Block model constrained by limestone grade attribute. 
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2.3. Optimization in Whittle 

The block model was imported into Whittle Software for optimization purposes. 
Table 1 shows the optimization parameters used during the optimization 
process. During the Optimization process, several revenue factors were investi-
gated for best results. A revenue factor (RF) is a variable which when multiplied 
with other parameters such as metal price will produce an outline for each value 
which can be used to create pit shells. The RF are either in range or single values 
and can be done in two methods which are the fixed intervals and geometric in-
tervals [16]. In Whittle, the optimal pit shell is the pit shell with a revenue factor 
of 1. In the scope of this work, the pit shells created did not satisfy this rule as 
there was no exact RF of 1. The Hebei Limestone optimization results can be 
found on this link. The Marvin blend optimization results can be found on this 
link (An internet connection maybe needed to view the tables). As a result of 
this, further investigations were applied to determine the optimal pit.  

3. Statistical Analysis of Pit Shells 

Four different statistical analytical models were implemented in analyzing the pit 
shells created during optimization processes. The pit shells created were record-
ed in a comma separated value file (.csv). The columns of the .csv file are consi-
dered variables in this study. The pit shells created was recorded after using a 
fixed interval revenue factor of 0.3 - 2 (pit shells created). It was the best result 
after using several revenue factors. From the results, it can be seen that there’s 
no pit with an exact revenue factor of 1. Normally in Whittle, the optimum pit is 
that which satisfies a revenue factor of 1. Unfortunately, this condition was not 
met based on our optimization criteria. As a result of this, statistical analysis 
methods were implemented to determine the ultimate pit.  
 
Table 1. Optimization parameters.  

Parameters Hebei limestone Mine Marvin Gold/Copper 

 Value (¥)/(tonne) Value ($) (AU/Oz) (CU/ton) 

Selling Price 150¥ 12.00/0.907 

Selling Cost 5¥ 0.20/0.326 

Reference Mining cost 11¥ 0.9 

Mining recovery fraction 0.95 1 

Mining Dilution Fraction 1.05 1 

Processing Cost 30 - 45 4 

Processing Recovery 0.95 0.6/0.8 

Slope Angle 45 40/45 

Discount rate 10 10 

Revenue Factors 0.3 to 2 Using 99 FF 0.5 to 2, using 54 FF 
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3.1. Correlation Analysis (CA) 

Correlation analysis was done to better understand the relationship between the 
variables of the optimization process. Correlation is the strength between two or 
more variables [17]. The data was normalized to −1 and 1. −1 means that the 
correlation is negative and 1 means the correlation is positive. The most com-
mon correlation methods are Pearson, Spearman, and Kendall. In this study, the 
Spearman correlation analysis was used to investigate the pit shells created dur-
ing optimization data. The Spearman correlation assumes that the relationship 
between the variables is monotonic (an increase in the value of one variable will 
result to an increase/decrease of the other variables), they are measured ordinal-
ly, internal or ratio scale and that the observations are independent [18]. It also 
measures the direction and strength associated to the variables. The data is nor-
malized to +1 and −1. The rank value can be +1 to −1. A +1 indicates a perfect 
correlation, 0 means there is no correlation and −1 means it has a negative cor-
relation [19]. Equation (1) shows the Spearman’s correlation coefficient where 
R(y) is the rank of iy , R(x) is the rank of ix , ( )R x  is the mean of x, ( )R y  is 
the mean of y, and “n” is the number of pairs (variable pairs). The main purpose 
of the correlation analysis was to determine which pair of variables shows high 
or positive correlation. The results are outlined in Section 4.1. 
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3.2. Principal Component Analysis (PCA) 

PCA is a statistical analysis algorithm used in dimensionality reduction of data 
with many variables while minimizing the loss of information for better inter-
pretation [20]. Firstly, the algorithm creates new variables called ‘Principal 
Components’ (PC) from the initial variables by mixtures or linear combinations 
[21]. More weight or information is given to the first PC than the second and so 
forth. There are five major steps in principal component analysis which are 
standardization, covariance matrix computation, identification of PC by Eigen-
values and Eigenvectors, feature vector, and reorientation of the data to PC axes. 
The data was normalized to the same scale by standardization in order to pre-
vent biased results Equation (2). The covariance matrix was used to understand 
the relationship between the variables. The eigenvectors represent the direction 
of the axes with the most information (variance) of the covariance matrix while 
the eigenvalues are the weight or coefficient of the eigenvectors. The feature 
vector is a matrix that has the values of the eigenvectors with the highest infor-
mation. In the last step, the algorithm uses the eigenvectors of the covariance 
matrix and orientates it to the principal component axes by multiplication of 
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feature vector and transpose of the original standardized dataset as shown in 
equation (3). The first PC known as principal component one (PC1) is the line 
which maximizes the variance and the second (PC2) is calculated perpendicu-
larly from the first and so on. The data was divided into five clusters each with a 
different color and four PC axes which represent the revenue factors, stripping 
ratio, ore tones, and limestone grade. The newly created values were plotted on 
the four PC based on their weight. The results are outlined in Section 4.2.  

value mean
standard deviation

z −
=                         (2) 

T TFinal Dataset Feature Vector Standardized Original Dataset= ∗        (3) 

3.3. K-Means++ Clustering 

Jupyter Notebook Environment was used in the implementation of K-means++ 
algorithm. The mean, standard deviation, and count was calculated and the re-
sults displayed to have an idea of the dataset. The pit number, revenue factors, 
limestone grade, and stripping ratio were used to implement the algorithm based 
on the correlation results in Section 4.1. The elbow method was used to deter-
mine the optimum number of clusters. The elbow method uses the sum of 
squared distances between each point of cluster and its centroid [22]. Clusters 
were plotted on a graph and the optimum number of cluster (k) is the point 
where the change in Within Cluster Sum of Squares (WCSS) becomes constant 
or level off as shown in Equation (4). The optimum number of cluster (k) is then 
fitted in the dataset and the results plotted (code). In addition, the data was 
plotted on a value-controlled line chart based on the optimization variables [23]. 
The value-controlled line chart represents the normalized values of the principal 
component on the y-axes and the variables on the x-axis. The variables span 
across the x-axis and the weight of each variable varies along the y-axis. The 
standard deviation of each point can be calculated based on the relationship 
(importance, distance, and cost percentage). The optimal values that satisfy the 
best possible outcomes are fitted along the y = 0 axes.  

( )2
1wcss m

i ii x c
=

= −∑                        (4) 

where wcss is the Within Cluster Sum of Squares; ix  is the data point belong-
ing to the cluster; and ic  is the mean value of points assigned to the cluster. 
Each observation ix  is assigned to a given cluster such that the sum of squares 
(ss) distance of the observation to their assigned cluster centers ic  is mini-
mized. The wcss measures the compactness (goodness) of the clustering and the 
smaller the distance between the points the better the clustering.  

3.4. Generalized Linear Models (GLM) 

This section implements a multivariate statistical model called Generalized Li-
near Models (GLM) popularized by McCullagh and Nelder [24]. GLM refers to a 
large group of regression models used in estimation by exponential distributions 
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[25]. GLM models include Logistic Regression, ANCOVA, Linear Regression, 
ANOVA, Poisson Regression, Multinomial response etc. GLM models have 
three major components which are Random Component, Systematic Compo-
nent, and a Link Function [26]. The random components refer to the predictor 
or dependent variable (pits along the y-axis) defined by the density function (f) 
Equation (5). The systematic components refer to the target or independent or 
explanatory variables (revenue factors, stripping ratio, limestone grade and ore 
tones along the x-axis) defined by the observation matrix (n) Equation (6). The 
link function (g) models the predictions (u) to the systematic component’s Equ-
ation (7). The GLM model is implemented by applying the gaussian distribution, 
identity link function to the dataset by maximizing the gaussian family likelih-
ood Equation (8) to reduce the least squared error Equation (9) [27]. The results 
were plotted on a graph as described in Section 4.4. 
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4. Statistical Analysis of the Results 

Statistical analysis was done on the statistical models and the results plotted us-
ing scatterplot, line plot, biplot and boxplot for interpretation. The four statistic-
al analysis methods show positive results when compared with that of Whittle. 
The statistical analysis results are outlined below.  

4.1. Correlation Analysis Results 

From the correlation analysis, the correlation value is greater than 0, which in-
dicates that there is monotonic relationship. The highest correlation was realized 
between the revenue factor (RF) and the pit number which had a correlation of 1 
(perfect monotonic relationship) as shown in Table 2. Also, there was a high  
 
Table 2. Correlation analysis results. 

Column 1 Column 2 Correlation 

Rev Factor Pit 1 

Rev Factor Stripping Ratio 0.990213211 

Pit Number Stripping Ratio 0.990213211 

Limestone Grade Rev Factor 0.947286057 

Limestone Grade Pit Number 0.947286057 

Limestone Grade Stripping Ratio 0.945555937 
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correlation between the revenue factor and the stripping ratio, pit number, and 
stripping ratio. This means that, in order to determine the optimum pit, the 
revenue factor and the stripping ratio can show better results as compared to 
other variables.  

4.2. PCA Results  

The PCA results were plotted on a biplot graph. According to the PCA theory, 
the highest variance starts from the origin (x, y) and decreases as it moves away 
from the origin. Also, the highest variance is plotted on the PC axes based on the 
weight or amount of information they carry [28]. From Figure 4(a), we can see 
that the closest plot to the origin is pit 31. This means that pit 31 has the highest 
variance in terms of revenue factor, limestone grade and stripping ratio, hence 
the optimum pit. A verification of this analytical hypothesis was investigated 
using the optimization results from the Whittle Gemcom sample project (Mar-
vin blend). The results show that the maximum pit (pit 42) was the closest pit to 
the origin with a revenue factor of 1 as stated in the Whittle handbook. The re-
sults are displayed on Figure 4(b) shows the PCA results of the Marvin blend 
mine. 

4.3. K-Means++ Results 

The K-means++ displayed the results in the form of clusters. The optimum 
number of clusters (k) was chosen to be 3 as shown in Figure 5 where WCSS 
almost levels off according to the elbow theory [29]. The optimum cluster (3) 
was then used to compute the data and the results plotted. From Figure 6(a), the 
results show that when the number of clusters was set to 1, the centroid was dis-
played at the interception of pit 31 on the x-axis and stripping ratio of 0.33 on  
 

 
(a) 
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(b) 

Figure 4. (a) Hebei Limestone mine PCA results; (b) Marvin blend PCA results. 
 

 
Figure 5 Using the Elbow method to determine the optimum number of clusters. 

 
the y-axis. This shows that pit 31 is the pit with the highest variance of occur-
rence. When the optimum number of clusters was set to 3, three different cen-
troids were displayed Figure 6(b). The mean μ log of the three centroids defines 
the variability and deviation from the normal distribution of the component 
value. The calculated mean was 31 which represents the ultimate pit. In addition,  
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Figure 6. (a) Using 1 cluster; (b) using 3 clusters. 

 
the results were plotted on a line chart which shows the variability of the differ-
ent optimization variables with respect to pit number (Figure 7). When a mouse 
hovers over a particular point, the readings of that particular point are displayed. 
Figure 7(a) and Figure 7(b) has been modified to display the readings of the 
interception of each variable to avoid too many images. The results of Hebei Li-
mestone mine shows that the ultimate pit 31 with respect to the revenue factor, 
stripping ratio and Limestone grade Figure 7(a). While for Marvin blend mine 
was pit 42 Figure 7(b).  

4.4. GLM Results 

Interpreting results from the GLM model is the key in understanding the under-
lying model as well as the relationship between the models.  

From the results in Table 3, we can see that the p-value for some variables is 
less than 0.05 while others are greater than 0.05 and a summary of the results 
shows that the p-value is less than 0.05. With regards to this, the ANOVA test 
was further implemented to test how well the model fits the data and how the 
model reacts with respect to the variables. A summary of the test shows that p < 
0.05 which means that the model has a statistically significant association be-
tween the predictor variables and the target variables. Also, the coefficients are 
significant which means that, a change in a variable is associated with a change 
in the mean response value. The revenue factors and stripping ratios coefficients 
were relatively high. For each change in the stripping ratios, the mean pit value 
output increases by 86.8 units and for each change in the revenue factor the pit 
value increases by 25.1 units contrary to the limestone grade which shows a neg-
ative value of −519.2 units. This may be due to the fact that the Limestone grade 
from the optimization results is almost constant or changes insignificantly.  

A plot of the predicted versus the actual values follows a straight line which 
shows a strong relationship and that the values are normally distributed (there’s 
no unidentified variable, outliers or nonnormality) as shown in Figure 8.  

https://doi.org/10.4236/ojg.2020.1012063


T. J. Mbah et al. 
 

 

DOI: 10.4236/ojg.2020.1012063 1274 Open Journal of Geology 
 

 
(a) 

 
(b) 

Figure 7. (a) variation of variables with respect to pit number for Hebei Limestone Mine; (b) variation of variables with respect to 
pit number for Hebei Limestone Mine.  

 
The information criteria (IC) measures the log-likelihood function that pro-

duced the data. The asymptomatic assumptions between Akaike’s Information  
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Table 3. GLM results. 

Term Coefficient Std Error t Ratio P Value Conf High Conf Low 

(Intercept) 21977.85 14543.38 1.511193 0.136679 50482.88 −6527.18 

Min Rev Ftr 25.06232 0.959057 26.13226 5.97E−32 26.94207 23.18257 

Ore Tonnes 1.47E−06 4.32E−07 3.398316 0.001294 2.32E−06 6.21E−07 

Strip Ratio 86.80532 27.58524 3.146803 0.002708 140.8724 32.73825 

Limestone Grade −519.218 329.8802 −1.57396 0.121448 127.3469 −1165.78 

 

 
Figure 8. Predicted versus actual values follow a straight line. 

 
Criteria (AIC) and Bayesian Information Criterion (BIC) is heuristic and some-
times unrealistic based on a given situation [30]. The AIC is smaller than BIC 
which is normal for a well fitted model. Also, the AIC/BIC for the GLM is lower 
compared to the AIC/BIC for other models which is one of the reasons GLM 
was used in this study [31].  

Since the GLM model proves to fit the data well, a plot of the predictor varia-
ble (pit) versus the target variables (revenue factors, stripping ratios, limestone 
grade, ore tones) shows that the ultimate pit is at the intercept (The intercept (α) 
is the predicted value of the dependent variable) between the variables Figure 9. 
In Figure 9, the pit number at the intersection between the variables for Hebei 
Limestone mine is 31, hence the optimum pit is 31. Also, the variation between 
the revenue factor and the pit numbers are almost in the same direction. This 
shows a high degree of correlation as compared to the other variables.  
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Figure 9. Hebei limestone variation of target variables versus predictor variable.  

5. Discussions  

This study presents a summary of the statistical analysis of the pit shells created 
during optimization process in Whittle Software. The goal was to choose and 
simulate as many statistical models possible to see if statistical analysis can be 
adopted in selecting the ultimate pit. Despite the fact that some technical details 
about the models were left out, more emphasis was laid on the type of model and 
the results they produced with the data set presented in this study. The ultimate 
pit was exported to Surpac and used to design the mine as shown in Figure 10. 
The final ultimate pit NPV was 3,541,615,321, the total ore tone was 1,207,747,800 
tones, Limestone grade of 45.013 and the life of the mine was 20 years.  

6. Conclusions 

Choosing an ultimate pit is a step that can affect all other processes in mine 
planning. Also, tuning optimization parameters may produce different results, 
especially when a certain number of parameters has been defined by the admin-
istration and there is doubt in choosing which pit number is the ultimate pit, 
statistical analysis may help to better interpret the results. It may also be of ad-
vantage in a situation where the pit shells created do not satisfy the Whittle se-
lection criteria of optimum ultimate pit with a revenue factor of 1 based on de-
fined parameters. 

In this paper, the statistical analysis uses revenue factors, stripping ratios, and 
the grade of limestone to simulate the ultimate pit. The ultimate pit determined 
in this case is the optimum ultimate pit which gives the best predictions with 
respect to these parameters. 

The ultimate pit can be used to evaluate the economy of the mine and in 
making administrative decisions in mine planning. 
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Figure 10. Final ultimate pit showing the ore zone, topography and waste dump. 

Limitations of the Model and Future Work 

It was found that the models described above had some few limitations in pre-
dicting the ultimate pit. The limitations were noted when computing a multi-ore 
mine at the same time (a mine with more than one ore type). The results from 
the multi-ore predictions were plus or minus compared to a model with just one 
ore type. Future work consists of modelling multi-ore mines with two or more 
ore types by tuning optimization parameters in the statistical models.  
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