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Abstract 
While the prophylactic use of regular, low dosage, acetylsalicylic acid (aspi-
rin) has been employed due to the inhibitory effect on platelet aggregation, 
few if any rheological studies validate the change in the physical and me-
chanical properties of human blood post-aspirin administration. The viscosi-
ty and yield stress of blood from eleven donors were assessed at varied shear 
rates before and after daily aspirin administration (81 mg) for 14 consecutive 
days. The findings indicate a statistically relevant aggregated decrease with 
respect to viscosity and yield stress within the study population. 
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1. Introduction 

Aspirin, or acetylsalicylic acid, is one of the most commonly used drugs in the 
world [1] [2] and is widely utilized for the prophylaxis and treatment of atheros-
clerotic cardiovascular disease (ASCVD) [2] and arterial thrombotic disorders 
due to its ability to decrease the viscosity of whole blood and reduce clotting due 
to platelet aggregation [3] [4]. Recent evidence suggests aspirin may be effective 
in reducing COVID-19 fatalities associated with thrombosis and pulmonary em-
bolism [5] [6]. While studies have shown that aspirin leads to decreased risk of 
stroke or other vascular diseases, it is also associated with increased risk of major 
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bleeding events [2]. 
The precursor to aspirin, salicylic acid, was originally isolated from the bark of 

the willow tree and has been utilized for its anti-pyretic, anti-inflammatory, and 
analgesic properties for thousands of years [1]. Felix Hoffman synthesized ace-
tylsalicylic acid (aspirin) in 1897 to reduce the gastrointestinal distress associated 
with carboxylic acid moiety of salicylic acid [7]. Aspirin is rapidly absorbed post 
oral administration and partially hydrolyzed to salicylate on first pass through 
the liver [8] [9]. Following oral administration, the maximum concentration 
(Cmax), attained within the 30 minutes, accumulates in plasma during repeated 
dosing. The decrease in platelet aggregation is dose dependent [9] and the op-
timal dose related to the antiplatelet action of aspirin differs per indication rela-
tive to the prevention of thrombus formation in the coronary versus vascular 
circulation. 

Aspirin has been shown to inhibit platelet thromboxane production and ag-
gregation, which results in prolonged bleeding times [1]. Mechanistically, aspirin 
inhibits the synthesis of platelet thromboxane A_2 (TXA2) by irreversibly acety-
lating a serine reside near the active site of the enzyme cyclooxygenase-1 (COX-1) 
as shown in Figure 1 [10]. The inhibition of COX-1 results in a reduction in the 
production of TXA2, which normally stimulates the activation of new platelets, 
increases platelet aggregation, and functions as a positive-feedback mediator 
during platelet activation [10] [11]. Since platelets do not synthesize new pro-
teins, the resulting suppression of platelet secretion and aggregation lasts for the 
life of the platelet (approximately 8 - 12 days) [12]. Platelet aggregation caused 
by TXA2-independent pathways, such as thrombin formation, remains unchanged 
during aspirin administration.  

While the mechanism and its effect on viscosity are well documented in the 
literature, few studies have used rheological models and apparatus to explore the  
 

 
Figure 1. Mechanism of aspirin inhibition of cyclooxygenase-1 catalytic site, preventing the formation of 
thromboxane A2 and platelet aggregation [10] [11] [13]. Adapted from Fitzgerald & FitzGerald (2013). 
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viscous and elastic properties of blood and the changes in those rheological 
properties resulting from regular low dosage aspirin use. Hemorheology is the 
study of the structure, flow and deformation of blood. Human blood is a com-
plex non-Newtonian, fluid fully described as a thixo-elasto-visco-plastic (TEVP) 
fluid that contains red blood cells, leukocytes, platelets, and various proteins and 
dissolved solutes [14]-[19]. The thixotropic property of blood means that it has 
an evolving microstructure that is attributed to rouleaux—the stacking of red 
blood cells and time-dependent shear thinning properties [14] [18] [19]. The 
elastic (solid-like: attributed to evolving and stretching rouleaux) and viscous 
(liquid-like: resistance) properties of blood also allow it to store and dissipate 
energy (in a nonlinear manner) and undergo deformation and return to its 
pre-deformed state [15] [17] [18]. The plastic property of blood means that it 
also has the ability to undergo permanent change in its microstructure after de-
formation, especially as the blood ages [17] [18]. This TEVP nature of blood is 
important in order to understand how the flow of blood throughout the human 
body is variant and dynamic [14]. That is, the physical and mechanical proper-
ties of blood and rheological parameters are related to the physiological proper-
ties.  

For instance, cholesterol and triglyceride content have been shown to affect 
the rheological parameters of blood [14] [16] [20]. Earlier research related blood 
viscosity with shear rate, hematocrit levels, and the diameter of the blood vessel 
in which it flows [14] [21] [22]. There is a direct correlation between the hema-
tocrit level (ratio of the volume of red blood cells to the volume of total blood) 
and the viscosity of the blood [23] due to the formation of rouleaux structures 
[24]. Rouleaux are the pseudo-microstructures that red blood cells (RBCs) form 
at low shear rates that appear as a stack of coins (Figure 2). Fibrinogen is a red 
blood cell binding protein, known to increase the aggregation of red blood cells 
into the rouleaux [17]. These factors are known to affect both the yield stress of  
 

 
Figure 2. Mechanism by which fibrinogen interacts with red blood cells and forms the 
rouleaux microstructure, which is one of the major contributors to whole blood viscosity. 
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the blood and the absolute viscosity. Studies have shown the value of yield stress 
varies approximately as the cube of hematocrit and as a function of fibrinogen 
concentration [25]. The physiological metrics of blood can be used evaluate car-
diovascular disease in humans [14] [21] [26] [27] [28]. By modeling the physio-
logical properties, one may predict the incidence of cardiovascular disease by 
evaluating the various physiological parameters.  

The enhanced MHAWB model is a thixo-elasto-visco-plastic model that con-
siders both the thixotropic contributions of the rouleaux formation and the con-
tributions of individual blood cells to shear stress [19]. It combines the White- 
Metzner and Cross models with linear superposition of structural effects. The 
end result is a model consisting of five ordinary differential equations, six alge-
braic equations, and ten parameters. Seven of these parameters are used in fit-
ting the steady state rheology data, while three are used when probing the tran-
sient data. 

The model represents the level of rouleaux formation with the non-dimensional 
structure parameter, λ, taking on values [0 1], where zero represents blood with 
all individual RBCs in plasma, and one represents fully “structured” rouleaux. 
The transient ordinary differential equations that governs rouleaux evolution is a 
follows 

( ) ( )( )2 1
d 1 1 1
d p ptr tr

t λ

λ λ λ γ λ γ
τ

= − + − −                (1) 

where τλ, τa, and τb are time constants representing the overall rate of structure 
formation, the relative rate of structure formation due to shearing, and the rela-
tive rate of structure breakdown due to shearing, respectively. Under steady shear 
conditions, the ODE can be simplified to 
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Equation (2) can be used to find the steady state shear rouleaux stress contri-
bution as shown in Equation (3) 

( )1.5
,SS R y SS R SSσ σ λ µ γ λ= +                       (3) 

Additionally, the model represents the individual red blood cell shear stress 
contributions by a Cross model as seen below in Equation (4) 
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                   (4) 

where τC is a time constant governing the dependence of the apparent viscosity 
on the shear rate. Finally, to obtain the total stress exhibited by the sample under 
steady shear conditions, the rouleaux contributions, Equation (3), must be added 
to the red blood cell contribution, Equation (4), 

, , ,Tot SS SS R SS cσ σ σ= +                       (5) 

The resulting model has seven parameters, 2 1 0, ,, , , , ,c R C Ctr tr τ µ µ µ∞  and yσ , 
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which each must be fit to the collected data. To fit the model parameters we have 
incorporated a stochastic, global optimization algorithm, parallel simulated an-
nealing [29] [30]. Under high shear rates, Equation (3) will go to zero, showing 
the decreasing contributions of rouleaux structure at high shear. Under low 
shear rates, the rouleaux contributions dominate the red blood cell contribution, 
eventually approaching the dynamic yield stress, yσ , as γ  approaches zero. 

2. Methods 

The handling and measurement protocol employed for the blood rheology re-
sults in this work follow the previously established guidelines for blood rheology 
[14] [18] [19] [29] [30] [31] in compliance with United States Military Acade-
my’s Institutional Review Board (RHCA19037_918567). No adverse events were 
reported by the study participants. The specimens collected were subsequently 
analyzed within a clinical laboratory (Complete Blood Count and Lipid Panel) 
per published procedures [18]. All rheological measurements were performed 
using a Discovery Hybrid Rheometer-3 (DHR-3) stress control rheometer from 
TA Instruments equipped with a double wall couette geometry following pre-
viously published steady state and transient protocols [14]. Venipuncture speci-
mens were obtained at day zero (prior to aspirin dosing) and day 14 post 81 mg 
daily dosage of aspirin. Measurements are taken using the previously mentioned 
protocols. The steady state rheological experimental protocol was a log spaced in 
shear rate progression with a pre-shear of 300 s−1 for 30 s to remove historical 
artifacts from previous shear rate measurements; all shear rate tested at a tem-
perature of 37˚C; and all steady states experiments were run in strain-controlled 
mode [14]. 

3. Results 

In Figures 1-4, we show the results of the mHAWB model fitting to 11 sets of 
steady state data, before and after the aspirin protocol. We focus here on the 4 
rheological model parameters that capture the mechanical property change with 
the aspirin protocol, namely: 1) zero-shear viscosity; 2) infinite-shear viscosity; 
3) rouleaux viscosity; and 4) yield stress. These four parameters come directly 
from fitting the steady state data with a global stochastic optimization algorithm 
to the mHAWB TEVP model. These results are shown via box and whisker plots 
in Figures 1-4.  

4. Discussion 

The eleven volunteers in this study were administered 81mg daily low-dose aspi-
rin regimen for a two-week period. Figure 3 shows the consolidated rheological 
data for all samples before and after the two-week aspirin protocol. To examine 
the effect of the aspirin on blood rheology and mechanical properties, we con-
structed a set of box-and-whisker plots for three different viscosity parameters 
and one yield stress parameter. The plots show the change in zero shear viscosity 
(Figure 3), infinite shear viscosity (Figure 4), viscosity due to rouleaux (Figure 5),  
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Figure 3. Box and whisker plot of zero shear viscosity before and after a two-week daily 
regimen of 81 mg aspirin. 
 

 
Figure 4. Box and whisker plot of infinite shear viscosity before and after a two-week 
daily regimen of 81 mg aspirin. 
 

 
Figure 5. Box and whisker plot of viscosity due to rouleaux before and after a two-week 
daily regimen of 81 mg aspirin. 
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Figure 6. Box and whisker plot of yield stress before and after a two-week daily regimen 
of 81 mg aspirin 
 
and yield stress (Figure 6) values in the blood of the donors before and after the 
aspirin administration. While the graphical representations indicate a decrease 
in blood viscosity post aspirin administration, a paired t-test was performed to 
determine the significance (if any) of the change in any parameter values. Of 
the seven parameters, only yield stress and infinite shear viscosity resulted in a 
p-value less than 0.05, indicating a significant change.  

The data generated during this study utilized a rheometer to probe the com-
plex mechanical properties of human blood more effectively in response to a 
COX-1 inhibitor (aspirin) which decreases platelet aggregation. Previous studies 
utilized viscometer, which itself had limited use with low viscosity materials like 
blood. The DHR-3 rheometer can incorporate the double wall couette geometry 
increasing surface area, and signal to noise ratio, thereby allowing for an in-
creased shear rate range of experimentation with the human blood. This allowed 
for interrogation of viscosity at lower and higher shear rates then the viscometer 
could. The DHR-3 also allowed for more robust experimental control, through 
rheology experiments conducted at constant stress, or constant shear rate which 
the viscometer lacks. Thusly, the steady state curve analysis is able to probe vis-
cosities and stresses over four logarithmic decades of shear rates. Although this 
study is composed of a small sample size, serves as a case study for further ana-
lyses regarding the efficacy of hemorheology in probing the more nuanced flow 
parameters of human blood. The pre and post physiology lab-reporting has 
shown a relatively constant (±10%) on average deviation in the hematocrit, total 
cholesterol and fibrinogen levels, know to affect the mechanical properties the 
most, corroborating that the blood viscosity and yield stress was affected in a 
statistically meaningful way by the one a day 81mg aspiring protocol for two 
weeks [18] [19]. 

5. Conclusion 

We have demonstrated that regular low dosage aspirin does reduce not just total 
viscosity but several contributing rheological parameters, such as yield stress. 
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Previous studies failed to explore the effects of regular low dosage aspirin on the 
multiple rheological parameters of healthy adults. The results of this study will 
serve to fuel further expanded studies into the diagnostic potential of the field of 
hemorheology. The once a day, 81 mg aspirin protocol for two weeks has shown 
to induce a statistically significant decrease in viscosity and yield stress of human 
blood, with all other physiological parameters (cholesterol, fibrinogen, and HCT) 
remaining relatively constant ±10% of starting values, aggregated over all 11 
donors, from lab pre and post lab reports [32]. 
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