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Abstract 

The g-good-neighbor connectivity ( )g Gκ  of G is a generalization of the 

concept of connectivity ( )Gκ , which is just for ( ) ( )0 G Gκ κ= , and an im-
portant parameter in measuring the fault tolerance and reliability of inter-
connection network. Many well-known networks can be constructed by the 
Cartesian products of some simple graphs. In this paper, we determine the 
g-good-neighbor connectivity of some Cartesian product graphs. We give the 
exact value of g-good-neighbor connectivity of the Cartesian product of two 

complete graphs mK  and nK  for 40
2

m ng + − ≤ ≤   
, mesh m nP P×  for 

0 2g≤ ≤ , cylindrical grid m nP C×  and torus m nC C×  for 0 3g≤ ≤ . 
 

Keywords 
Connectivity, The g-Good-Neighbor Connectivity, Cartesian Product 

 

1. Introduction 

We call a multiprocessor system fault-tolerant if it can keep working in case of 
failure. In the beginning, connectivity and edge connectivity of graph were used 
to measure the fault-tolerant of system. Later, people found that these two pa-
rameters had some defects since they assume that all adjacent vertices or edges 
of the same vertex may fail at the same time, which is unlikely in real networks. 
In 1996, Fàbrega and Fiol [1] made some improvements in the connectivity and 
proposed the concept of g-good neighbor connectivity to measure the fault-tolerant 
of the multiprocessor. 

Let ( ),G V E=  be a given connected graph with vertices set ( )V G  and 
edges set ( )E G . If u and v are vertices of a graph G, we say u is adjacent to v if 
there is an edge between u and v. We also say u and v are neighbors. For a vertex 
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v V∈ , we by ( )N v  denote the set of neighbors of v and by ( )N S  denote the 
set of neighbors of every vertex in S. A set F V⊆  is called a g-good-neighbor 
faulty set of G if ( ) ( )\N v V F g≥  for every vertex v in V F− . A g-good- 
neighbor cut of G is a g-good-neighbor faulty set F such that G F−  is discon-
nected. We call the minimum cardinality of g-good-neighbor cuts the g-good- 
neighbor connectivity of G, denoted by ( )g Gκ . Clearly, ( ) ( )0 G Gκ κ=  for any 
graph G. 

In 2012, Peng et al. [2] determined the g-good-neighbor conditional diagno-
sability of hypercube under the PMC model. In 2016, Wang et al. [3] showed 
that 2-good-neighbor connectivity of bubble-Sort Star Graph BSn is 8 22n −  for 

5n ≥  and the 2-good-neighbor connectivity of BS4 is 8. In 2017, Ren and Wang 
[4] [5] determined the 1-good-neighbor connectivity of locally twisted cubes and 
the g-good-neighbor diagnosability of locally twisted cubes, respectively. In 2018, 
Wei and Xu [6] determined the 1, 2-good-neighbor conditional diagnosabilities 
of regular graphs. In 2020, Wang and Wang [7] showed that the 3-good-neighbor 
connectivity of Modified Bubble-Sort Graphs MBn is 8 24n −  for 6n ≥ . Moti-
vated by these researches, notice that the Cartesian product is an important method 
to obtain large graphs from smaller ones for designing large-scale interconnection 
networks [8] [9] [10]. In this paper, we plan to determine the g-good-neighbor 
connectivity of the Cartesian product of graphs. 

The Cartesian product of two graphs 1G  and 2G  is the graph 1 2G G×  whose 
vertex set is the Cartesian product of the sets ( )1V G  and ( )2V G . Two vertices 
( )1 1,u v  and ( )2 2,u v  are adjacent in 1 2G G×  precisely when either 1 2u u=  and 

( )1 2 2v v E G∈  or 1 2v v=  and ( )1 2 1u u E G∈ . In fact, many well-known networks 
can be constructed by the Cartesian products of some simple graphs and the 
Cartesian product preserves many nice properties such as regularity, existence of 
Hamilton cycles and Euler circuits, and transitivity of the initial graphs. See [11] 
[12] [13]. 

In this paper, we determine the g-good-neighbor connectivity of the Cartesian  

product of two complete graphs mK  and nK  for 40
2

m ng + − ≤ ≤   
, mesh  

m nP P×  for 0 2g≤ ≤ , cylindrical grid m nP C×  and torus m nC C×  for  
0 3g≤ ≤ . As usual, we by ( )G∆  and ( )Gκ  denote the maximum degree and 
the connectivity of a graph G, respectively. Use nP , nC  and nK  denote path, 
cycle and complete graph with order n. 

2. Main Results 

In this section, we determine the g-good-neighbor connectivity of Cartesian product 
of two complete graphs mK  and nK , mesh, cylindrical grid and torus. 

Lemma 2.1. [14] Let G be a connected graph and g be an integer. Then  
( ) ( )1g gG Gκ κ +≤ .  

Theorem 2.2. Let m nK K×  be Cartesian product of complete graph mK  and  

nK  with 1 m n≤ ≤  and g be non-negative integer with 40
2

m ng + − ≤ ≤   
. 
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Then the g-good-neighbor connectivity of m nK K×  is 

1) For 0g = , ( ) ( ) 2g
m n m nK K K K m nκ κ× = × = + − . 

2) For 41
2

m ng + − ≤ ≤   
,  

( ) ( ) ( )

( )( ) ( )

22 4
2 , 2 8 3 ;

8

1 2 6 2 , 2 8 3 .

g
m n

m g n
m g n g m

K K

m m g n m g n g m

κ

 + + −
 + − ≥ + − × =   


− − − + + + < + −

 

Proof. Let m nG K K= ×  with  
( ) ( ) ( ) ( ){ }| , | ,ij ij i j i m j nV G w w u v u V K v V K= = ∈ ∈  for 1 i m≤ ≤  and  

1 j n≤ ≤ . Consider G is 2m n+ −  regular, thus, we have  
( ) ( )0 2G G m nκ κ= = + − . Suppose F is a g-good neighbor cut set of G with 

minimum cardinality and let 1 2 pG F G G G− =   . 
Now, we further show that 

k kk m nG K K= ×  with k km n≤  for 1,2, ,k p=  . 
In fact, it is enough if we show that whenever ( ) ( ) ( ) ( ), , , , ,i r i s j r ku v u v u v V G∈ , 
then ( ) ( ),j s ku v V G∈ . On the contrary, if ( ) ( ),j s ku v V G G∈ − , then we by the 
definition of m nK K×  get ( ),j su v F∈ . Let ( ),j sF F u v′ = − , then ( ),j su v  is 
adjacent with ( ) ( ), , ,i s j ru v u v  in G F ′−  and ( ){ },k j sG u v 

   is a com-
ponent of G F ′−  such that ( ) ( )( )\N v V G F g′ ≥  for every ( ) \v V G F∈ . 
This implies F ′  is also a g-good neighbor cut set of G with 1F F′ = − . This 
contradicts to the fact F is of minimum cardinality. So, we have 

k kk m nG K K= ×  
with k km n≤  for 1,2, ,k p=  . Further, we by the minimality of F know that 
G F−  has exactly two components. This means  

( ) ( )1 1 2 2m n m nG F K K K K− = × × . 
Notice that F is a g-good neighbor cut set of G, we have 1 1 2m n g+ ≥ +  and 

2 2 2m n g+ = + . Combine this with 1 2m m m= − , 1 2n n n= − , we get  

( )2 2m n g+ ≥ + , then 2
2

m ng + ≤ −  
. Thus, we have  

{ }
( ) ( ){ }
( )( ){ }

( ) ( ){ }

1 2 2 1

2 2 2 2

2 2 2

2
2 2

min

min

min 2 2

min 2 2 4 2 .

F m n m n

m m n m n n

m m g m nm

m m g n m m g

= +

= − + −

= − + − +

= − + + − + +

 

Notice that 1 1 12 2n m n g≥ + ≥ + , we have 1
2

2
gn +

≥ . By 2 2 2m n g+ = +  

and 1 2m m m= − , 1 2n n n= − , we get ( )1 1 2m n m n g+ = + − + . So  

( )
1

3 2
2

g
m m n

+
≤ + − . Thus 

( )
2

3 2
1

2
g

n m m
+

− ≤ ≤ − . 

Now, let ( ) ( ) ( )22 2 4 2f x x m g n x m g= − + + − + + , the following we deter-

mine the minimum value of ( )f x  in interval 
( )3 2

, 1
2

g
n m

+ 
− − 

 
. 

By ( )2 2 2n m n g≥ + ≥ + , we have 2n g≥ + . Thus  
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( )3 22 4 2 0
4 2 4

gm g n m nn n g
+ + + − −

− − = + − − ≥ 
 

. By comparing the differ-

ence between 2 4
4

m g n+ + −  and 1m − , we discuss the minimum value of 

( )f x . 

If 2 8 3n g m> + − , let 2 4m g n t+ + − = , then ( )min f x =  

( ) ( )
2 2 22 4 2 2 2

4 4 4 4 8
m g n t t t tf f m g m g

 + + −     = = − + + = + −      
       

; 

If 2 8 3n g m≤ + − , then ( ) ( ) ( ) ( )2min 1 2 1 2 4f x f m m m g n= − = − − + + −  
( ) ( ) ( )( ) ( )1 2 1 2 6 2m m g m m g n m g− + + = − − − + + + . 

By the above analysis, we get  

( ) ( ) ( )

( )( ) ( )

22 4
2 , 2 8 3 ;

8

1 2 6 2 , 2 8 3 .

g
m n

m g n
m g n g m

K K F

m m g n m g n g m

κ

 + + −
 + − > + − × = =   


− − − + + + ≤ + −

 

This completes the proof. 
Example 1. The 1-good-neighbor connectivity of 3 4K K×  is 6 with  
{ }12 13 21 24 31 34, , , , ,F w w w w w w= , which is shown in Figure 1.  

Theorem 2.3. Let g, m and n be non-negative integers with 2n m≥ ≥ . Then 
the g-good-neighbor connectivity of mesh m nP P×  is 

1) For 0g = , ( ) ( ) 2g
m n m nP P P Pκ κ× = × = . 

2) For 1g = , ( ) 2, 2;
3, 3.

g
m n

m
P P

m
κ

=
× =  ≥

 

3) For 2g = , ( )
, 2 4, 5;

8, 4;
4, , 5.

g
m n

m m n
P P m n

m n
κ

≤ ≤ ≥
× = = =
 ≥

  

Proof. Let m nP P G× =  with ( ) { }1 2, , ,m mV P u u u=   and  
( ) { }1 2, , ,n nV P v v v=  . Then  
( ) ( ) ( ) ( ){ }| , | andij ij i j i m j nV G w w u v u V P v V P= = ∈ ∈ . Suppose F is a vertex cut 

set of G, notice that the minimum degree of G F−  is always less than 3, so 
0,1,2g =  and by the connectivity ( ) 2Gκ =  we have ( )0 2Gκ = . The fol-

lowing we by distinguishing cases to determine ( )g Gκ . 
 

 

Figure 1. ( )1
3 4 6K Kκ × = . 
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Case 1. 1g = . 
1g =  means 2n ≠ , so 3n ≥ . 

Subcase 1. 2m = . 
By Lemma 2.1, we have ( ) ( )1 0 2G Gκ κ≥ = . On the other hand, let  

{ }1 2,j jF w w=  for 2j =  or 1n − . It is clear that G F−  is disconnected and 
( ) ( )( )\ 1N v V G F ≥  for every ( ) \v V G F∈ . By the definition of g-good- 

neighbor connectivity, we have ( )1 2G Fκ ≤ = . Therefore, we get ( )1 2Gκ = . 
Subcase 2. 3m ≥ . 
First, let { }12 22 31, ,F w w w= . Clearly, G F−  is disconnected and  
( ) ( )( )\ 1N v V G F ≥  for every v G F∈ − , so we have ( )1 3G Fκ ≤ = . On 

the other hand, suppose ( )F V G′ ⊂  is a vertex cut set of G such that  
( ) ( )( )\ 1N v V G F ′ ≥  for every ( ) \v V G F ′∈ . Then G F ′−  has a compo-

nent C with 2C ≥  and the minimum degree of C is ( ) 1Cδ = . Further, we 
have 3F ′ ≥ . In fact, if 2F ′ ≤ , then ( ) 0G Fδ ′− = . This implies  

( )1 min 3G Fκ ′= ≥ . Therefore, ( )1 3Gκ = . 
Case 2. 2g = . 
It is clear that 2,3,4n ≠  while 2m =  and 3,4n ≠  while 3m = . Now, we 

discuss by distinguishing three subcases. 
Subcase 1. 2 4m≤ ≤  and 5n ≥ . 
Let { }3iF w=  for 1 i m≤ ≤ . Notice that F is a cut set of G and  
( ) ( )( )\ 2N v V G F ≥  for every ( ) \v V G F∈ , we have ( )2 G F mκ ≤ =  for 

2 4m≤ ≤ . On the other hand, since ( ) ( )1 2G Gκ κ≤  and ( )1 G mκ =  for  
2,3m = , so we have ( )2 G mκ ≥  for 2,3m = . Thus ( )2 G mκ =  for 2,3m = . 

Similarly, consider the case for 4m = . Suppose ( )F V G′ ⊂  be a 2-good- 
neighbor cut of G, then G F ′−  is disconnected and ( ) ( )( )\ 2N v V G F ′ ≥  
for each ( )( )\v V G F ′∈ . It is not difficult find that 2C ≥  and ( ) 4N C ≥  
for every component of G F ′− . Thus ( )2 4Gκ ≥ . On the other hand, let  

{ }0 13 23 31 32, , ,F w w w w= . Clearly, 0G F−  is disconnected and  
( ) ( )( )0\ 2N v V G F ≥  for ( ) 0\v V G F∈ . So ( )2

0 4G Fκ ≤ = . And thus we 
get ( )2 4Gκ =  for 4m = . 

Subcase 2. 4m n= = . 
Let { }0 ijF w=  for 1,2i = , 3, 4j =  and 3,4i = , 1,2j = . It is clear that 

0G F−  is disconnected and ( ) ( )( )0\ 2N v V G F ≥  for every ( ) 0\v V G F∈ . 
Thus ( )2

0 8G Fκ ≤ = . On the other hand, suppose ( )F V G⊂  is a 2-good- 
neighbor cut of G, then G F−  is disconnected and ( ) ( )( )\ 2N v V G F ≥  
for ( ) \v V G F∈ . Then, we show 8F ≥ . If not, assume 7F ≤ , then by the 
structure of G, there must be ( ) \v V G F∈  such that ( ) ( )( )\ 1N v V G F ≤ , 
this contradicts to the choose of F. So ( )2 8G Fκ ≥ ≥  and thus ( )2 8Gκ =  
for 4m n= = . 

Subcase 3. 5n m≥ ≥ . 
Let { }0 13 23 31 32, , ,F w w w w= . It is clear that 0G F−  is disconnected and  
( ) ( )( )0\ 2N v V G F ≥  for every ( ) 0\v V G F∈ . Thus, we have  
( )2

0 4G Fκ ≤ = . On the other hand, suppose ( )F V G⊂  is a 2-good-neighbor 
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cut of G, then G F−  is disconnected and ( ) ( )( )\ 2N v V G F ≥  for  
( )( )\v V G F∈ . Notice that each component C of G F−  is 2-connected and 

( ) 4N C ≥ . So ( )2 4Gκ ≥  and then get ( )2 4Gκ = . 
This completes the proof. 
Example 2. The 2-good-neighbor connectivity of 5 5P P×  is 4 with  
{ }31 32 13 23, , ,F w w w w= , which is shown in Figure 2.  

Theorem 2.4. Let g, m and n be non-negative integers with 2, 3m n≥ ≥ . Then 
the g-good-neighbor connectivity of cylindrical grid m nP C×  is 

1) For 0g = , ( ) ( ) 3g
m n m nP C P Cκ κ× = × = . 

2) For 1g = , ( ) 3, 3;
4, 4.

g
m n

n
P C

n
κ

=
× =  ≥

 

3) For 2g = , ( )
, 3 5;

4, 2, 6;
6, 3, 6.

g
m n

n n
P C m n

m n
κ

≤ ≤
× = = ≥
 ≥ ≥

  

4) For 3g = , ( )g
m nP C nκ × =  for 5m ≥ .  

Proof. Similarly, let m nP C G× =  with ( ) { }1 2, , ,m mV P u u u=  ,  
( ) { }1 2, , ,n nV C v v v=  . Then  
( ) ( ) ( ) ( ){ }| , | andij ij i j i m j nV G w w u v u V P v V C= = ∈ ∈ . Suppose F is a vertex cut 

set of G, consider the minimum degree of G F−  is not more than 4, so 
0,1,2g =  and 3. By ( ) 3Gκ = , we directly get ( )0 3Gκ = . Now we distinguish 

three cases to determine ( )g Gκ  for 1, 2,3g = . 
Case 1. 1g = . 
Subcase 1. 3n = . 
Consider 3n =  and 1g = , here 3m ≥ . First, let { }0 13 21 22, ,F w w w= . It is 

clear that 0G F−  is disconnected and ( ) ( )( )0\ 1N v V G F ≥  for every  
( ) 0\v V G F∈ . Thus ( )1 3k G ≤ . On the other hand, by Lemma 2.1, we have 

( ) ( )1 0 3G Gκ κ≥ = . So ( )1 3Gκ =  for 3n = . 
Subcase 2. 4n ≥ . 
Let { }0 13 21 1 22, , ,nF w w w w=  for 4n ≥ . It is clear that 0G F−  is disconnected 

and ( ) ( )( )0\ 1N v V G F ≥  for every ( ) 0\v V G F∈ . Thus, we directly get  
 

 

Figure 2. ( )2
5 5 4P Pκ × = . 
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( )1 4Gκ ≤ . On the other hand, suppose that ( )F V G⊂  is a 1-good-neighbor 
cut of G, then G F−  is disconnected and ( ) ( )( )\ 1N v V G F ≥  for  

( ) \v V G F∈ . By the structure of G, we find that there exists a component C of 
G F−  such that 2C ≥  and ( ) 1Cδ = . Further, we find ( ) 4N C ≥   
( )1 4Gκ ≥ . Thus ( )1 4Gκ = . 
Case 2. 2g = . 
Subcase 1. 3 5n≤ ≤ . 
Consider 2g =  and 3 4n≤ ≤ , here 3m ≥ . First, let { }0 2 jF w=  for  

1 j n≤ ≤ . Clearly, 0G F−  is disconnected and ( ) ( )( )0\ 2N v V G F ≥  for 
every ( ) 0\v V G F∈ . Thus ( )2

0G F nκ ≤ =  for 3 5n≤ ≤ . On the other hand, 
by ( ) ( )1 2G Gκ κ≤  and ( )1 G nκ =  for 3, 4n = , we have ( )2 G nκ ≥  for  

3, 4n = . Thus ( )2 G nκ =  for 3, 4n = . 
Now, consider the case for 5n =  by Case 1, we directly get ( ) ( )2 1 4G Gκ κ≥ = . 

Further, we can show ( )2 4Gκ ≠ . If not, assume ( )2 4Gκ = , then there exists a 
2-good neighbor cut set ( )F V G′ ⊂  with 4F ′ =  such that G F ′−  is dis-
connected. Combine this with the structure of G, there always exists a vertex 

( )( )\v V G F ′∈  satisfies ( ) ( )( )\ 1N v V G F ′ ≤ . This contradicts to the choose 
of F ′ . Thus ( )2 4Gκ ≠  and then ( )2 5Gκ ≥ . So ( )2 G nκ =  for 5n = . 

Subcase 2. 2m ≥  and 6n ≥ . 
First, consider the case for 2m =  and 6n ≥ . Let { }0 3 ,i inF w w=  for  

1 i m≤ ≤ . Clearly, 0G F−  is disconnected and ( ) ( )( )0\ 2N v V G F ≥  for 
every ( ) 0\v V G F∈ . Thus, we have ( )2

0 2G F mκ ≤ = . Notice that ( )1 4Gκ = , 
then ( )2 4 2G mκ ≥ = . So ( )2 2G mκ =  for 2m = . 

Next, consider the case for 3m ≥  and 6n ≥ . Let { }1 3 ,i inF w w=  with  
1 i m≤ ≤  for 3m =  and { }2 13 1 23 2 31 32, , , , ,n nF w w w w w w=  for 3m > . It is 
clear that 1G F−  and 2G F−  are disconnected and ( ) ( )( )\ 2iN v V G F ≥  
for every ( ) \ iv V G F∈  for 1,2i = . Thus, we have ( )2 6iG Fκ ≤ = . On the other 
hand, suppose that ( )F V G⊂  is a 2-good-neighbor cut of G, then G F−  is 
disconnected and ( ) ( )( )\ 2N v V G F ≥  for ( ) \v V G F∈ . This follows that 
each component C of G F−  satisfies 4C ≥  and thus ( ) 6N C ≥ . So, we have 

( )2 6Gκ ≥  and thus ( )2 6Gκ =  while 3m ≥  and 6n ≥ . 
Case 3. 3g = . 
Suppose F ′  is a 3-good-neighbor cut of G, 3g =  means component of  

G F ′−  is such as k nP C×  for 2k ≥ , so here consider 5m ≥ . Notice that  

ijw F ′∈  for all 1 j n≤ ≤ , if ijw F ′∈  for some j. Thus F n′ ≥  and  
( )3 G F nκ ′≥ ≥ . On the other hand, let { }0 3 jF w=  for 1 j n≤ ≤ . Clearly, 

0G F−  is disconnected and ( ) ( )( )0\ 3N v V G F ≥  for every ( ) 0\v V G F∈ . 
So we have ( )3 G nκ ≤ . Therefore, we get ( )3 G nκ = . 

This completes the proof. 
Example: The 3-good-neighbor connectivity of 5 6P C×  is 6 with  
{ }31 32 33 34 35 36, , , , ,F w w w w w w= , which is shown in Figure 3.  

Theorem 2.5 Let g, m and n be non-negative integers with 3n m≥ ≥ . Then the 
g-good-neighbor connectivity of torus m nC C×  is 
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Figure 3. ( )3
5 6 6P Cκ × = . 

 
1) For 0g = , ( ) 4g

m nC Cκ × = . 

2) For 1g = , ( ) 5, 3;
6, 4.

g
m n

m
C C

m
κ

=
× =  ≥

  

3) For 2g = , ( ) 2 , 3 4;
8, 5.

g
m n

m m
C C

m
κ

≤ ≤
× =  ≥

  

4) For 3g = , ( ) 2g
m nC C mκ × =  for 6n ≥ .  

Proof. Let m nC C G× =  and ( ) { }1 2, , ,m mV C u u u=  ,  
( ) { }1 2, , ,n nV C v v v=  . Then  
( ) ( ) ( ) ( ){ }| , | andij ij i j i m j nV G w w u v u V C v V C= = ∈ ∈ . Suppose that F is a ver-

tex cut set of G, it is not difficult find the minimum degree of G F−  is not 
more than 4. So here, we only consider 0,1,2g =  and 3. Notice that G is 4-regular, 
so we directly get ( ) ( )0 4G Gκ κ= = . Now, we distinguish three cases to deter-
mine ( )g Gκ  by 1, 2,3g = . 

Case 1. 1g = . 
Subcase 1. 3m = . 
Let { }0 12 1 21 32 3, , , ,n nF w w w w w= . It is clear that 0G F−  is disconnected and 
( ) ( )( )0\ 1N v V G F ≥  for every ( ) 0\v V G F∈ . So we have ( )1

0 5G Fκ ≤ = . 
On the other hand, it is clear that ( ) ( )1 0 4G Gκ κ≥ = . Further, we can show 

( )1 4Gκ ≠ . If not, assume ( )1 4Gκ = , then there exists a 1-good-neighbor cut 
( )F V G⊂  with 4F =  such that G F−  is disconnected. Notice that G is 

4-regular, there always exists a vertex ( )0 \v V G F∈  such that  
( ) ( )( )0 \ 0N v V G F = . This contradicts to the choice of F. Thus, we get 
( )1 5Gκ ≥ . So ( )1 5Gκ = . 
Subcase 2. 4m ≥ . 
Let { }0 13 1 21 22 1 2, , , , ,n m mF w w w w w w= . Then 0G F−  is disconnected and  
( ) ( )( )0\ 1N v V G F ≥  for every ( )( )0\v V G F∈ . Thus, we get  
( )1

0 6G Fκ ≤ = . Now, we show ( )1 6Gκ ≥ . Suppose ( )F V G⊂  is a 1-good- 
neighbor cut of G, then G F−  is disconnected and ( ) ( )( )\ 1N v V G F ≥  
for ( )( )\v V G F∈ . Thus, there exist a component C with 2C ≥  such that 
( ) 1Cδ = . Notice that each pair nonadjacent vertices of G has at most two 
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common neighbor vertices and two adjacent vertices of G has no common 
neighbor vertices in G, then we get ( ) 6N C ≥ . This means 6F ′ ≥ . So, we get 

( )1 6Gκ ≥ . 
Case 2. 2g = . 
Subcase 1. 3 4m≤ ≤ . 
Consider 2g = , so here 4n ≥ . Let { }0 ijF w=  for 2,j n=  and 1 i m≤ ≤ . 

Clearly, 0G F−  is disconnected and ( ) ( )( )0\ 2N v V G F ≥  for every  
( ) 0\v V G F∈ . Thus ( )2

0 2G F mκ ≤ =  while 3 4m≤ ≤ . On the other hand, 
suppose ( )F V G⊂  is a 2-good-neighbor cut of G, then G F−  has a compo-
nent C with 4C ≥  and ( ) 2Cδ = . Notice that G is 4-regular and each pair 
nonadjacent vertices has at most two common neighbor vertices and two adjacent 
vertices has no common neighbor vertices in G, it follows that ( ) 2N C m≥  for 
3 4m≤ ≤ . This means 2F m≥  and we get ( )2 2G mκ ≥ . Thus ( )2 2G mκ =  
for 3 4m≤ ≤ . 

Subcase 2. 5m ≥ . 
Let { }0 ijF w=  for 3,i m=  while 1,2j =  and 1,2i =  while 3,j n= . It is 

clear that 0G F−  is disconnected and ( ) ( )( )0\ 2N v V G F ≥  for every  
( ) 0\v V G F∈ . So we get ( )2 8Gκ ≤ . On the other hand, suppose ( )F V G⊂  is 

a 2-good-neighbor cut of G, then G F−  has a component C with 4C ≥  and 
( ) 2Cδ = . Consider G is 4-regular, we similarly get ( ) 8N C ≥ . Thus ( )2 8Gκ ≥ . 

So, we get ( )2 8Gκ = . 
Case 3. 3g = . 
Consider 3g = , so here 6n ≥ . Let { }0 ijF w=  for 3,j n=  and 1 i m≤ ≤ . 

Then 0G F−  is disconnected and ( ) ( )( )0\ 3N v V G F ≥  for every  
( ) 0\v V G F∈ . So, we have ( )3

0 2G F mκ ≤ =  for 6n ≥ . On the other hand, if 
3 4m≤ ≤ , by Lemma 2.1, we have ( ) ( )3 2 2G G mκ κ≥ = . Thus ( )3 2G mκ =   
 

 

Figure 4. ( )3
6 6 12C Cκ × = . 
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for 3 4m≤ ≤ . If 5m ≥ , suppose F is a 3-good-neighbor cut of G, it is not dif-
ficult find that ijw F∈  for all i if ijw F∈  for some i and j. Combine this with 

( ) ( )( )\ 3N v V G F ≥  for every ( ) \v V G F∈ , we have 2F m≥  and  
( )3 2G mκ ≥ . So, we get ( )3 2G mκ = . 

This completes the proof. 
Example: The 3-good-neighbor connectivity of 6 6C C×  is 12 with  
{ }31 32 33 34 35 36 61 62 63 64 65 66, , , , , , , , , , ,F w w w w w w w w w w w w= , which is shown in Fig-

ure 4.  

3. Concluding Remark 

In this paper, we focus our attention on the g-good neighbor connectivity of 
some Cartesian product graphs. We have determined the g-good-neighbor con-
nectivity of the Cartesian product of two complete graphs mK  and nK  for  

40
2

m ng + − ≤ ≤   
, mesh m nP P×  for 0 2g≤ ≤ , cylindrical grid m nP C×  and  

torus m nC C×  for 0 3g≤ ≤ . But the g-good neighbor connectivity of the Car-
tesian product for the general graphs is still unknown, even for the bounds. In 
the future, we will devote ourselves to this research. 
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