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Abstract 
Several possible definitions of local injectivity for a homomorphism of an 
oriented graph G to an oriented graph H are considered. In each case, we 
determine the complexity of deciding whether there exists such a homo-
morphism when G is given and H is a fixed tournament on three or fewer 
vertices. Each possible definition leads to a locally-injective oriented colour-
ing problem. A dichotomy theorem is proved in each case. 
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1. Introduction 

Three natural possible definitions of local injectivity of a homomorphism f 
from an input oriented graph G to a target oriented graph H are: for every ver-
tex ( )x V G∈ , the function f  is injective when restricted to:  

1) The in-neighbourhood ( )N x− ;  
2) ( )N x−  and ( )N x+  separately;  
3) The union ( ) ( )N x N x− +∪ .  
When H is reflexive, that is, has a loop at every vertex, the three definitions 

are different. When H is irreflexive, that is, has no loops, definitions 2 and 3 
coincide. Each of these five situations leads naturally to a notion of locally- 
injective oriented k-colouring. 

Locally-injective homomorphisms (as in possible definition 1) and colourings 
of oriented graphs were first introduced as an example in monadic second order 
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logic [1]. Consequently, by Courcelle’s Theorem, these problems are all solvable 
in polynomial time when the input has bounded treewidth. The same holds for 
the other possible definitions above. 

Possible definition 1 has been studied in previous papers for both irreflexive 
and reflexive targets [2] [3] [4] [5] [6]. A fairly complete theory has been de-
veloped. When the target, H, is reflexive there is a dichotomy theorem charac-
terizing the oriented graphs H for which the problem of deciding the existence 
of a homomorphism to H is Polynomial, and those for which it is NP-complete. 
When H is irreflexive the complexity has been determined when H has maxi-
mum in-degree 3−∆ ≥  or 1−∆ ≤ ; when 2−∆ =  the situation is as rich as 
that for all digraph homomorphism problems, and hence all constraint satisfac-
tion problems [5]. 

Possible definitions 2 and 3 have been studied in [7] [8]. Obstructions to 
(subgraphs that prevent the existence of) homomorphisms to small tourna-
ments are the focus of [8]. Both definitions are considered. Possible definition 3 
is the main focus of [7]. 

Locally-injective colourings of undirected graphs were first explicitly studied 
by Hahn, Kratochvil, Siřan and Sotteau [9]. Subsequent papers have considered 
chordal graphs [10], planar graphs (see [11]) and other graph classes, as well as 
list versions [12]. The complexity of locally-injective homomorphisms has been 
extensively studied by Fiala, Kratochvil, and others (e.g. see [13] [14]). 

The purpose of this paper is to contribute to the theory of locally-injective 
homomorphisms and colourings under possible definitions 2 and 3 above. In 
each of the three cases that arise, the complexity of deciding the existence of a 
homomorphism to H is determined for the four tournaments on at most three 
vertices. These results appear in Sections 3, 4, and 5. Later, in Section 6, these re-
sults are then used to determine the complexity of the associated locally-injective 
oriented colouring problems. 

We conclude this section by noting that the complexity of deciding whether a 
given directed graph G has a homomorphism to a tournament H has been stu-
died [15]. There is a dichotomy theorem: the problem is Polynomial when H 
has at most one directed cycle, and NP-complete when H has at least two di-
rected cycles. The results reported in this paper are first steps towards finding a 
similar theorem for locally-injective homomorphisms. 

2. Notation and Terminology 

An oriented graph is a directed graph G with the property that for any two dif-
ferent vertices x and y, at most one of the arcs ,xy yx  belongs to ( )E G . An 
oriented graph G can be viewed as arising from a simple graph H by assigning a 
direction, or orientation, to each edge. The graph H is called the underlying 
graph of G, and G is referred to as an orientation of H. The converse of an 
oriented graph G is the oriented graph Gc with the same vertex set as G, and arc 
set ( ){ }:yx xy E G∈ . 
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An oriented graph is reflexive if it has a loop at each vertex, and irreflexive if 
it has no loops. The superscript “r”, as in 3

rC , indicates that the oriented graph 
under consideration is reflexive. Oriented graphs without this superscript, as in 
G, are irreflexive. 

We use Pn, Tn, and Tn to denote the directed path on n vertices, the directed 
cycle on n vertices, and the transitive tournament on n vertices, respectively, 

1n ≥ . It will be assumed throughout that C3 has vertex set { }1 2 3, ,c c c  and arc 
set { }1 2 2 3 3 1, ,c c c c c c , and that Tn has vertex set { }0 1 1, , , nt t t −  and arc set 

{ }:i jt t i j< . 
A homomorphism of an oriented graph G to an oriented graph H is a func-

tion ( ) ( ):f V G V H→  such that ( ) ( ) ( )f x f y E H∈  whenever ( )xy E G∈ . 
When H has a loop, any directed graph has a homomorphism to H: map all 
vertices of G to a vertex of H with a loop. Thus, when loops are present, the 
existence of a homomorphism is a non-trivial question only in the presence of 
some side condition like selecting the image of each vertex from a list of possi-
ble images, or local injectivity. The book [16] contains a wealth of information 
about homomorphism of graphs and digraphs. 

We call a homomorphism f of an oriented graph G to an oriented graph H:  
 ios-injective if, for every vertex x of G, the restriction of f to ( )N x−  is in-

jective, as is the restriction of f to ( )N x+ ; and  
 iot-injective if, for every vertex x of G, the restriction of f to  

( ) ( )N x N x− +∪  is injective.  
These two concepts are the same when H is an irreflexive oriented graph, and 

different when H is a reflexive oriented graph. 
The designations “ios” and “iot” arise from the local injectivity being on in- 

neighbourhoods and out-neighbourhoods separately, and on in-neighbourhoods 
and out-neighbourhoods together. In introducing the designations “ios” and 
“iot”, the qualifier “locally” has been dropped as it is part of the definition. 

It is easy to see that the composition of two ios-injective homomorphisms 
is an ios-injective homomorphism, and similarly for iot-injective homomor-
phisms. 

The following structure and its converse will be particularly useful. We define 
the hat H3 to be the oriented graph with vertex set ( ) { }3 0 1 2, ,V H v v v=  and 
edge set ( ) { }3 0 1 2 1,E H v v v v= . See Figure 1. The vertices v0 and v2 will be re-
ferred to as the ends of H3 or 3

cH . Whether or not H is reflexive, in an 
ios-injective or iot-injective homomorphism of H3 or 3

cH  to H, the vertices v0 
and v2 must have different images. 
 

 
Figure 1. The hat and its converse. 
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3. Irreflexive Targets 

In this section we show that, if T is an irreflexive tournament on at most 3 ver-
tices, then the problem of deciding whether a given oriented graph has an 
ios-injective (and hence also iot-injective) homomorphism to T is Polynomial. 
A given oriented graph has an ios-injective homomorphism to T1 if and only if 
it has no edges, and has an ios-injective homomorphism to T2 if and only if it is 
a disjoint union of copies of T1 and T2. A given oriented graph, G, has an 
ios-injective homomorphism to C3 if and only if it has maximum in-degree 1, 
maximum out-degree 1, and has a homomorphism to C3. It follows that G has 
an ios-injective homomorphism to C3 if and only if it is a disjoint union of di-
rected paths, and directed cycles of length a multiple of 3. These conditions are 
easy to check in polynomial time. It remains to consider ios-injective homo-
morphisms to the transitive triple. 

Proposition 3.1. The problem of deciding whether a given oriented graph 
has an ios-injective homomorphism to T3 is Polynomial.  

Proof. Let G be a given digraph. If the underlying graph of G has a vertex of 
degree 3 or more, then G has no ios-injective homomorphism to T3. Hence as-
sume that G is an orientation of a graph with maximum degree at most 2. 
Therefore the underlying graph of G is a disjoint union of paths and cycles, and 
hence has treewidth at most 2. Since ios-injective homomorphism is expressible 
in monadic second-order logic, the statement now follows from Courcelle’s 
Theorem. 


 

4. Ios-Injective Homomorphisms to Small Reflexive Targets 

In this section, we determine the complexity of deciding whether there exists 
an ios-injective homomorphism from a given oriented graph G to the fixed 
oriented graph H when H is one of the four reflexive tournaments on at most 
three vertices. 

It is clear that an oriented graph G has an ios-injective homomorphism to 

1
rT  if and only if it has maximum in-degree at most one and maximum 

out-degree at most one, that is, if and only if neither H3 nor 3
cH  is a subgraph 

of G. Consequently, the only oriented graphs which have an ios-injective ho-
momorphism to 1

rT  are disjoint unions of directed paths and directed cycles. 
Proposition 4.1. The problem of deciding whether a given oriented graph 

has an ios-injective homomorphism to 2
rT  is Polynomial.  

Proof. We describe a reduction to 2-SAT. Associate the vertices t0 and t1 of 

2
rT  with false and true, respectively. Given an oriented graph G, the corres-

ponding instance of 2-SAT has the set of variables ( ){ }:vx v V G∈ . Since no 
oriented graph with a vertex of in-degree at least 3, or a vertex of out-degree at 
least 3, has an ios-injective homomorphism to 2

rT , we can assume that  
( ) 2G+∆ ≤  and ( ) 2G−∆ ≤ . 

The set of clauses is constructed as follows.  
1) If ( )deg 2v+ = , then vx¬  is a clause.  
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2) If ( )deg 2v− = , then vx  is a clause.  
3) If vw E∈ , then v wx x¬ ∨  is a clause.  
4) If v and w are the ends of a copy of H3 or 3

cH , then v wx x∨  and  

v wx x¬ ∨¬  are clauses.  
All clauses in groups (1) and (2) are satisfied if and only if the image of any 

vertex of out-degree 2 is t0 and the image of any vertex of in-degree 2 is t1. All 
clauses in group (3) are satisfied if and only if the mapping corresponding to 
the truth assignment preserves arcs. And finally, all clauses in group (4) are sa-
tisfied if and only if the ends of a copy of H3 or 3

cH  are assigned different im-
ages. It follows that there is an ios-injective homomorphism of G to 2

rT  if and 
only all clauses are satisfied. 


 

We now show that the problem of deciding the existence of an ios-injective 
homomorphism to 3

rC  is NP-complete. Some “gadget” oriented graphs which 
map to 3

rC  only in special ways will be used in the NP-completeness proof. 
For an integer 1d ≥ , the oriented graph Dd is constructed from a directed cycle 

1 2 6 1, , , ,dv v v v  by adding the vertices 1 2 3, , , dx x x  and arcs 2 2 1,t t t tv x x v − , 
1,2, ,3t d=  . 

Lemma 4.2. In an ios-injective homomorphism of Dd to 3
rC  the vertices 

1 4 3 2, , , dx x x −  all have the same image.  
Proof. Let f be an ios-injective homomorphism of Dd to 3

rC . Without loss of 
generality, suppose ( )1 1f v c= . Then ( )2f v  is either c1 or c2. 

Suppose first that ( )2 1f v c= . Then, observing that an ios-injective homo-
morphism of an irreflexive directed 3-cycle to 3

rC  either assigns every vertex 
the same image, or assigns no two vertices the same image, it must be that 
( )1 1f x c= . By injectivity ( ) ( )3 1f v f x≠ , so ( )3 2 ,f v c=  the only other 

out-neighbour of c1. It follows that ( )2 2f x c= . Similarly, ( )4 3f v c≠ , so that 
( ) ( )4 2 2f v f x c= = . Continuing in this way, the vertices 1 2 6, , , dv v v  map to 

1 1 2 2 3 3 1 1 3 3, , , , , , , , , ,c c c c c c c c c c , respectively, and the vertices 1 2 3, , , dx x x  
map to 1 2 3 1 3, , , , ,c c c c c , respectively. 

Now suppose that ( )2 2f v c= . By our observation regarding homomor-
phisms of irreflexive directed 3-cycles, it must be that ( )1 3f x c= . Arguing as 
in the previous paragraph, ios-injectivity implies ( )3 2 ,f v c=  and ( )2 1,f x c=  
which in turn implies ( )4 3f v c= . Continuing in this way, the vertices  

1 2 6, , , dv v v  map to 1 2 2 3 3 1 1 3 3 1, , , , , , , , , ,c c c c c c c c c c , respectively, and the ver-
tices 1 2 3, , , dx x x  map to 3 1 2 3 1 2, , , , , ,c c c c c c , respectively. 


 

For 2d ≥ , let Xd be the oriented graph constructed from Dd by adding d new 
vertices 1 2, , , dn n n  and the arcs belonging to { }3 2 3 1, : 1,2, ,i i i ix n n x i d− + =  , 
where addition is modulo 3d. The following is a consequence of Lemma 4.2. 

Corollary 4.3. In an ios-injective homomorphism of Xd to 3
rC , the vertices 

of the directed cycle 1 1 4 2 1, , , , , ,dx n x n n x  must all be assigned the same image. 
Futher, any partial mapping in which these vertices are all assigned the same 
image can be extended to an ios-injective homomorphism of Xd to 3

rC .  
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Theorem 4.4. The problem of deciding if a given oriented graph G has an 
ios-injective homomorphism to 3

rC  is NP-complete.  
Proof. The transformation is from 3-colouring of graphs with minimum de-

gree at least 3. Suppose a graph G is given. For each vertex ( )x V G∈ , regard 
the edges incident with x as being in 1-1 correspondence with the integers 

( )1,2, ,degG x  so that it is meaningful to talk about the ith edge incident with 
x. Construct a digraph G' as follows. For each vertex ( )x V G∈  there is a copy 
of ( )degG xX . (Note that ( )deg 3G x ≥ .) Each edge of G is replaced by an 
oriented path on three vertices. Suppose ( )wz E G∈  is the ith edge incident 
with w and the jth edge incident with z. Add a new vertex wzu  and arcs from 
vertex in  of the copy of ( )degG wX  corresponding to w, and from vertex jn  
of the copy of ( )degG zX  corresponding to z, to wzu . The transformation can be 
accomplished in polynomial time. We will show that G is 3-colourable if and 
only if there is an ios-injective homomorphism of G' to 3

rC . 
Suppose that G is 3-colourable, and fix a 3-colouring using the colours 

1 2 3, ,c c c . If the colour of x is ci, then map vertices 1 1 4 2 1, , , , , ,dx n x n n x  of the 
copy of ( )degG xX  corresponding to x to ci and extend this to an ios-injective 
homomorphism to 3

rC . The ends of each oriented path that replaced an edge of 
G are now assigned different images, and the mapping so far can be extended to 
the remaining vertex of each oriented path that replaced an edge of G. 

Suppose G' has an ios-injective homomorphism to 3
rC . Then, in each copy 

of ( )degG xX , all vertices of the directed cycle ( )1 1 4 2 1deg, , , , , ,
G wx n x n n x  are as-

signed the same image. Assign this colour to x. By the construction of G'  and 
ios-injectivity, adjacent vertices of G are assigned different colours. 


 

We conclude this section by showing that the problem of deciding whether a 
given oriented graph G has an ios-injective homomorphism to 3

rT  is NP-com- 
plete. A useful technical lemma is established first. 

Lemma 4.5. Let F be the oriented graph in Figure 2. Then for { }0 1 2, ,x t t t∈ , 
there exists an ios-injective homomorphism of F to 3

rT  that maps u to x, and 
any such homomorphism also maps v to x.  

Proof. We sketch the proof that in an ios-injective homomorphism of F to 

3
rT  that maps u to t1, the vertex v also maps to t1. 
Referring to Figure 2, it is straightforward to check that in any ios-injective 

homomorphism of F to 3
rT , the vertices labelled 0 2,t t  must map to 0 2,t t , 

respectively. It is also easy to check that the vertices labelled a must have the 
same image, and similarly for the vertices labelled b, e and f. It will follow from 
the argument below that the vertices labelled c must have the same image, and 
similarly for the vertices labelled d. 

We show that the vertices labelled t1 must map to t1. Suppose u maps to t1. 
Then by injectivity its out-neighbour labelled c maps to t0 or t2. Since c has 
in-degree 2, it must map to t2. Therefore d maps to t0. The in-neighbour of c 
labelled t1 must map to t1 or t2. But its in-neighbour labelled b has an out- 
neigh-bour labelled t2, so the in-neighbour of c labelled t1 must map to t1. By  
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Figure 2. The oriented graph F in Lemma 4.5. 
 
injectivity, the out-neighbour labelled a of this vertex must map to t1, so the 
symmetrically located vertex labelled a must also map to t1, and its in-neighbour 
labelled t1 must map to t1. A similar argument shows that the other vertices la-
belled t1 must map to t1. 

We now show that v maps to t1. By the above argument and injectivity, the 
vertex labelled c on the right of the figure maps to t2. A symmetric argument 
shows that the vertex labelled d on the bottom of the figure must map to t0. 
Now, by injectivity, v maps to t1, as wanted. 

Similar arguments show that if u maps to t0 then so does v, and if u maps to 
t2 then so does v. 


 

Theorem 4.6. The problem of deciding if a given oriented graph has an 
ios-injective homomorphism to 3

rT  is NP-complete.  
Proof. The transformation is from 3-edge colouring of cubic graphs [17]. 

Suppose such a graph G is given. Construct a graph G' as follows. For each 
( )x V G∈ , regard the edges incident with x as being in 1-1 correspondence 

with the integers 1, 2, 3 so that it is meaningful to talk about the ith edge inci-
dent with x. 

Let H4 denote the orientation of 1,3K  in which there is a vertex of in-degree 
3. In the sequel we refer to H4 as an in-star. Start with a collection of ( )V G  
disjoint copies of H4. Let Sx denote the copy of H4 corresponding to vertex x. 
Regard the leaves of each oriented graph Sx to be in 1-1 correspondence with 
{ }1,2,3 . Suppose ( )xy E G∈  is the ith edge incident with x and the jth edge 
incident with y. Add a new copy of the oriented graph F shown in Figure 2 
and identify the vertices labelled u and v having in-degree one with the ith leaf 
of Sx and the jth leaf of Sy. The transformation may be accomplished in poly-
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nomial time. We claim that G is 3-edge-colourable if and only if G' has an 
ios-injective homomorphism to 3

rT . 
Suppose G has a 3-edge-colouring ( ) { }0 1 2: , ,f E G t t t→  (the colours are 

the vertices of 3
rT ). For any edge xy of G, map the vertices labelled u and v in 

the corresponding copy of F to ( )f xy . Finally, map the centre of each in-star 
of G' to its only possible image, t2. 

Conversely, suppose G' has an ios-injective homomorphism to T3. For each 
edge xy of G, the vertices labelled u and v in the corresponding copy of F in G' 
must have the same image. Use this for the colour of xy. The resulting assign-
ment is a 3-edge-colouring because the leaves of each in-star Sx in G' must have 
different images. 


 

5. Iot-Injective Homomorphisms to Small Reflexive Targets 

In this section we consider the complexity of deciding whether there exists an 
iot-injective homomorphism from a given oriented graph G to the fixed 
oriented graph H, when H is one of the four reflexive tournaments on at most 
three vertices. 

It is clear that an oriented graph has an iot-injective homomorphism to 1
rT  

if and only if it contains no oriented path on three vertices, that is, if and only if 
it is a disjoint union of copies of T1 and T2. 

We now turn our attention to 2
rT . No orientation of a graph with a vertex of 

degree three has an iot-injective homomorphism to 2
rT . Thus, if G admits an 

iot-injective homomorphism to 2
rT , then the underlying graph of G is a dis-

joint union of paths and cycles. The following proposition can be proved us-
ing a reduction to 2-SAT, or by an appeal to Courcelle’s Theorem. 

Proposition 5.1. The problem of deciding whether a given oriented graph 
has an iot-injective homomorphism to 2

rT  is Polynomial.  
We next consider iot-injective homomorphism to 3

rC . Consider the family of 
oriented cycles   such that each B∈  is comprised of two disjoint perfect 
matchings oriented in opposite directions; that is, ( ) { }0 1 2 1, , , kV B v v v −=   and 
( ) { } { }0 1 2 3 2 2 2 1 0 2 1 2 1 2 2 2 3= , , , , , ,k k k k kE B v v v v v v v v v v v v− − − − −∪  . 
Lemma 5.2. Let B∈  have order n. Then (1) B has an iot-injective ho-

momorphism to 3
rC  if and only if 0n ≡  (mod 6), and (2) B has an iot- 

injective homomorphism to 3
rT  if and only if 0n ≡  (mod 4).  

Proof. Let B∈ . 
We first consider iot-injective homomorphism of B to 3

rC . Suppose B has n 
vertices. Let x be a vertex of out-degree two. Without loss of generality x maps 
to c1. Then its out-neighbours map to c1 and c2. Let y be the out-neighbour that 
maps to c1. Its out-neighbour must map to c2. Continuing in this way, starting 
from x, the images of consecutive vertices are 1 1 2 2 3 3 1 1, , , , , , , ,c c c c c c c c  . 
Therefore an iot-injective homomorphism exists if and only if 0n ≡  (mod 6). 

We now consider iot-injective homomorphism of B to 3
rT . Suppose B has 

n vertices. Let x be a vertex of out-degree two. Then x maps to t0 or t1. 
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Suppose first that x maps to t0. Let v be an out-neighbour of x. If v were 
mapped to t0, then its other in-neighbour must also map to t0, in violation of 
injectivity. Therefore, the out-neighbours of x map to t1 and t2. Let y be the 
out-neighbour that maps to t2. Then y’s other in-neighbour, z, must map to t1 
and z’s other out-neighbour, a, must also map to t1. The vertex a has another 
in-neighbour, b. By injectivity, b maps to t0. Continuing in this way, starting 
from x, the images of consecutive vertices are 0 2 1 1 0 0 2 1 1 0, , , , , , , , , ,t t t t t t t t t t . 
Therefore 0n ≡  (mod 4). 

Now suppose x maps to t1. As above, the out-neighbours of x map to t1 and 
t2. Let y be the out-neighbour that maps to t1. The vertex y has another in- 
neigh-bour, z, which by injectivity maps to t0. Now, following the same argu-
ment as in the previous paragraph we have that, starting from x, the images of 
consecutive vertices are 1 1 0 2 1 1 1 0 2 1, , , , , , , , , ,t t t t t t t t t t . Again, 0n ≡  (mod 4). 

It now follows that an iot-injective homomorphism exists if and only if 0n ≡  
(mod 4). 


 

Corollary 5.3. For 1t ≥ , let 6tB ∈  have 6t vertices. In any iot-injective 
homomorphism f of 6tB  to 3

rC  we have ( ) ( )i jf v f v= , when i j≡  (mod 
6).  

Proof. This follows from the argument in Lemma 5.2. 


 
Theorem 5.4. The problem of deciding whether an oriented graph has an 

iot-injective homomorphism to 3
rC  is NP-complete.  

Proof. The transformation is from 3-colouring of connected graphs [18]. 
Suppose such a graph G is given. Construct a graph G' as follows. For each 

( )x V G∈ , regard the edges incident with x as being in 1-1 correspondence with 
the integers ( )1,2, ,deg x  so that it is meaningful to talk about the ith edge 
incident with x. Replace every vertex ( )x V G∈  with a copy Rx of ( )6 deg xB ⋅  
where, without loss of generality, the vertices ( ) ( )6 , 0 deg 1i xx V R i x∈ ≤ ≤ − , 
have in-degree 2. Suppose xy is the ith edge incident with x and the jth edge in-
cident with y. Construct an oriented path Pxy by adding a new vertex txy and 
joining each of ( ) ( )6 1 xix V R− ∈  and ( ) ( )6 1 yjy V R− ∈  to it by adding a directed 
path of length two (the midpoint of each such directed path is a new vertex). 
The transformation can be carried out in polynomial time. We claim that G is 
3-colourable if and only if G' has an iot-injective homomorphism to 3

rC . 
Suppose G has a 3-colouring ( ) { }1 2 3: , ,f V G c c c→ . For each vertex x, map 

the vertices ( )0 6 6 deg, , , xx x x ⋅  of Rx to ( )f x . By Corollary 5.3, this partial 
mapping extends to an iot-injective homomorphism of Rx to 3

rC . We claim 
that this mapping of the oriented cycles Rx extends to the oriented paths Pxy, 
where ( )xy E G∈ . Since adjacent vertices in G must receive different colours, 
this mapping of the copies of ( )6 deg xB ⋅  assigns the vertices ( )0 6 6 deg, , , xv v v ⋅  of 
Rx a different image than it assigns the corresponding vertices of Ry. Suppose, 
without loss of generality, that the vertices ( )0 6 6 deg, , , xv v v ⋅  of Rx are mapped 
to c1 and the corresponding vertices of Ry are mapped to c2. The in-neighbours 
of the vertices in Rx are mapped to c1 and c3, while the neighbours of the cor-
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responding vertices in Ry are mapped to c2 and c1. The vertex txy can be mapped 
to c3 and the assignment extended to an iot-injective homomorphism of Pxy to 

3
rC . This proves the claim, and completes the proof of the implication. 
On the other hand, suppose G' has an iot-injective homomorphism to 3

rC . 
Fix such a mapping. Then, for each ( )v V G∈ , the vertices  

( ) ( )0 6 6 deg, , , vvv v v V R⋅ ∈  all have the same image; assign this to be the colour 
of vertex v of G. 

We claim that vertices x and y that are adjacent in G are assigned different 
colours. Suppose not. By symmetry of 3

rC , assume both are assigned c1. Sup-
pose also that xy is the i-th edge incident with x and the j-th edge incident with 
y. Then, the vertices ( ) ( )6 1 xix V R− ∈  and ( ) ( )6 1 yjy V R− ∈  both map to c1. By 
construction, ( )6 1ix −  has two in-neighbours in Rx and one out-neighbour on the 
directed path to txy, and similarly for ( )6 1jy − . Since both ( )6 1ix −  and ( )6 1jy −  
map to c1, in each case their in-neighbours must map to c1 and c3. By injectivity, 
in each case their out-neighbour on the directed path to txy must map to c2. 
Therefore txy has 2 in-neighbours that map to c2, which violates injectivity. This 
proves the claim, and completes the proof. 


 

Finally, we consider iot-injective homomorphism to 3
rT . The following 

lemma can be proved similarly to Lemma 4.5. The proof of Lemma 4.5 relies 
only on injectivity on in-neighbourhoods or out-neighbourhoods, and never 
both at the same vertex. 

Lemma 5.5. Let F be the oriented graph in Figure 2. Then For { }0 1 2, ,x t t t∈ , 
there exists an iot-injective homomorphism of F to 3

rT  that maps u to x, and 
any such homomorphism also maps v to x.  

The proof of the following theorem is similar to that of Theorem 4.6 and is 
omitted. For details, see [7]. 

Theorem 5.6. The problem of deciding whether an oriented graph has an 
iot-injective homomorphism to 3

rT  is NP-complete.  

6. Colourings 

Recall that a (proper) oriented k-colouring of an oriented graph G is a homo-
morphism to a tournament on k vertices. We therefore make the following de-
finitions:  

1) A proper ios-injective oriented k-colouring of an oriented graph G is an 
ios-injective homomorphism to an irreflexive tournament on k vertices.  

2) An improper ios-injective oriented k-colouring of an oriented graph G is 
an ios-injective homomorphism to a reflexive tournament on k vertices.  

3) An improper iot-injective oriented k-colouring of an oriented graph G is 
an iot-injective homomorphism to a reflexive tournament on k vertices.  

A proper iot-injective oriented k-colouring of a graph G would be an iot- 
injective homomorphism to an irreflexive tournament on k vertices. Since 
tournaments have no directed 2-cycles, these are the same as proper ios-injective 
oriented k-colourings. 
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For each fixed integer k and each injective colouring problem defined above, 
we will determine the complexity of deciding whether a given oriented graph 
G has an injective colouring with k colours. The approach to proving NP- 
completeness is similar to that for oriented colourings that are injective on in- 
neighbourhoods [2] [6]: prove that it is NP-complete to decide the existence of 
an injective homomorphism of the given type to the tournament , 4mU m ≥ , 
that consists of a directed three cycle dominated by every vertex of a transitive 
tournament of size 3m − , and then obtain the desired result as a corollary. We 
consider the three situations in turn after establishing a useful lemma. 

Lemma 6.1. Let G be an oriented graph such that Um is a subgraph of G. For 
{ }ios, iot∈ , if G has a  -injective homomorphism to a tournament T (re-

spectively, reflexive tournament rT ), then Um (respectively, r
mU ) is a subgraph 

of T.  
Proof. The tournament Um has the property that every two different vertices 

have a common in-neighbour or a common out-neighbour. Hence no two of its 
vertices can be assigned the same image by a  -injective homomorphism. 
Consequently, the image of G must contain Um. 


 

6.1. Proper Ios-Injective Colourings 

Theorem 6.2. For each fixed 4m ≥ , the problem of deciding if a given 
oriented graph has an ios-injective homomorphism to Um is NP-complete.  

Proof. We first show that the problem of deciding whether a given oriented 
graph G has an ios-injective homomorphism to U4 is NP-complete. The trans-
formation is from the problem of deciding if a given cubic graph is 3-edge- 
colourable [17]. Let G be a given cubic graph. Construct an oriented graph G' 
by replacing each edge xy of G by an oriented path Pxy with vertices 

1 2 3 4, , , , ,x v v v v y  and arcs 1 1 2 2 3 3 4 4, , , ,xv v v v v v v yv . The transformation can be 
accomplished in polynomial time. We claim that G is 3-edge-colourable if and 
only if there is an ios-injective homomorphism of G' to U4. 

Suppose that G is 3-edge colourable. Then, for each vertex x of G, each of 
the colours 1, 2 and 3 appears on an edge incident with x. An ios-injective ho-
momorphism of G' to U4 is obtained by mapping all vertices of G to the vertex 
of out-degree 3 in U4, assigning the colour of the edge xy to the vertices v1 and 
v4 of Pxy, and extending this pre-colouring to the vertices v2 and v3 of Pxy. 

Suppose that there is an ios-injective homomorphism of G' to U4. Every ver-
tex of G has out-degree 3 in G' , so an ios-injective homomorphism of G'  to U4 
must map it to the unique vertex of out-degree 3 in U4. Similarly, the vertices v1, 
v2, v3, and v4 in each oriented path Pxy have positive in-degree in G', so an 
ios-injective homomorphism of G' to U4 must map each of them to a vertex of 
the directed 3-cycle. In any such mapping, v1 and v4 map to the same vertex, 
and the three out-neighbours of each vertex of G (in G') map to different ver-
tices of the 3-cycle. Assigning each edge xy of G the image of the vertex v1 (and 
v4) in Pxy gives a 3-edge-colouring of G. 
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NP-completeness of ios-injective homomorphism to Um follows from NP- 
completeness of ios-injective homomorphism to U4. Given an instance G of 
ios-injective homomorphism to U4, construct G' by adding the new vertices 
belonging to ( ) ( ) ( ){ }: , 1,2, , 4iV x x V G i m d x−′ = ∈ = − −  and the arcs  

( ) ( ) ( ){ }: , 1,2, , 4ix x x V G i m d x−∈ = − − . Since m is a constant, the transfor-
mation can be accomplished in polynomial time. Each vertex of G in G' has 
in-degree 4m −  and therefore cannot map to the 4m −  vertices of Um with 
in-degree less than 4m − . An ios-injective homomorphism of G to U4 can be 
extended to an ios-injective homomorphism of G' to Um. 


 

Corollary 6.3. Let k be a fixed positive integer. If 3k ≤ , the problem of 
deciding if a given oriented graph G has a proper ios-injective oriented k- 
colouring is Polynomial. If 4k ≥ , the problem of deciding if a given oriented 
graph G has a proper ios-injective oriented k-colouring is NP-complete.  

Proof. An oriented graph G has a proper ios-injective oriented k-colouring if 
and only if kG U∪  has an ios-injective homomorphism to Uk.   

6.2. Improper Ios-Injective Colourings 

Theorem 6.4. For each fixed 4m ≥ , the problem of deciding if a given 
oriented graph has an ios-injective homomorphism to r

mU  is NP-complete.  
Proof. The transformation is from the problem of deciding whether there ex-

ists an ios-injective homomorphism of a given oriented graph G to 3
rC , which 

is NP-complete by Theorem 4.4. Suppose the oriented graph G is given. We 
may assume that ( ) 2G+∆ ≤  and ( ) 2G−∆ ≤ , otherwise G cannot have an 
ios-in-jective homomorphism to 3

rC . 
Construct G' from G as follows. For each ( )x V G∈ , if x has in-degree at 

most one in G, add a set of 2m −  new vertices and arcs joining each of them 
to x. If x has in-degree two in G, do the same using a set of 3m −  new vertices. 
The transformation can be accomplished in polynomial time. We claim that G 
has an ios-injective homomorphism to 3

rC  if and only if G' has an ios-injective 
homomorphism to r

mU . 
An ios-injective homomorphism of G to 3

rC  can clearly be extended to an 
ios-injective homomorphism of G' to r

mU . 
Suppose f is an ios-injective homomorphism of G' to r

mU . Since each vertex 
( )x V G∈  has in-degree at least 1m −  in G' and every vertex of r

mU  not be-
longing to the copy of 3

rC  has in-degree at most 3m − , the vertex x must map 
to a vertex of the directed 3-cycle in r

mU . The restriction of f to ( )V G  is the 
desired mapping. 


 

Corollary 6.5. Let k be a fixed integer. If 2k ≤ , the problem of deciding if a 
given oriented graph G has an improper ios-injective oriented k-colouring is 
Polynomial. If 3k ≥ , the problem of deciding if a given oriented graph G has 
an improper ios-injective oriented k-colouring is NP-complete. 

Proof. When 3k =  the transformation is from the problem of deciding 
whether there exists an ios-injective homomorphism of a given oriented graph 
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G to 3
rC , which is NP-complete by Theorem 4.4. Since there is no ios-injective 

homomorphism of Dd (from Lemma 4.2) to 3
rT , an oriented graph G has an 

improper ios-injective oriented 3-colouring if and only if 6G D∪  has an 
ios-injective homomorphism to 3

rC . 
When 4k ≥ , the transformation is from the problem of deciding whether 

there exists an ios-injective homomorphism of a given oriented graph G to r
kU . 

Given an oriented graph G, the transformed instance of improper ios-injective 
oriented k-colouring is the oriented graph kG U∪ . The claim that this graph 
has an improper ios-injective oriented k-colouring if and only if G has an 
ios-injective homomorphism to r

kU  follows from Lemma 6.1.   

6.3. Improper Iot-Injective Colourings 

Theorem 6.6. For each fixed 4m ≥ , the problem of deciding if a given oriented 
graph has an improper iot-injective homomorphism to r

mU  is NP-complete.  
Proof. The transformation is from the problem of deciding whether there ex-

ists an iot-injective homomorphism of a given oriented graph G to 3
rC , which 

is NP-complete by Theorem 4.4. Given an oriented graph G, the transformed 
instance G' is constructed by starting with G and proceeding as follows. For 
each vertex ( )x V G∈ , add a copy of 3mT −  and arcs from each of its vertices 
to x. Then for every vertex t of each copy of 3mT −  that was added, add three 
vertices, , ,a b ct t t , and arcs from t to each of them. The oriented graph G has an 
iot-injective 3

rC -colouring if and only if G' has an iot-injective r
mU -colouring. 


 

The proof of the following is identical to that of Corollary 6.5, except for re-
placing “ios” by “iot”. 

Corollary 6.7. Let k be a fixed integer. If 2k ≤ , the problem of deciding 
whether an oriented graph has an improper iot-injective k-colouring is Poly-
nomial. If 3k ≥ , the problem of deciding whether an oriented graph has an 
improper iot-injective k-colouring is NP-complete.  

For a given oriented graph G, we denote by ( ) ( ), r
ios iosG Gχ χ  and ( )r

iot Gχ , 
the smallest number of colours in a proper ios-injective oriented colouring, an 
improper ios-injective oriented colouring, and an improper iot-injective oriented 
colouring of G, respectively. The superscript “r” is used to designate the im-
proper colourings because the target graph being reflexive is what allows adja-
cent vertices to be assigned the same colour. A project for future research is to 
find tight bounds for these parameters. The upper bounds should be exponen-
tial in the in-degree and out-degree consider the disjoint union of all tourna-
ments on a fixed number of vertices. Weak upper bounds can be obtained using 
the methods in [2] [4] [6] [7]. Tight bounds and efficient algorithms for trees 
can be obtained as in [2] [4] [7]. 
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