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Abstract 
A dominating set of a graph G is a set of vertices that contains at least one 
endpoint of every edge on the graph. The domination number of G is the or-
der of a minimum dominating set of G. The (t, r) broadcast domination is a 
generalization of domination in which a set of broadcasting vertices emits 
signals of strength t that decrease by 1 as they traverse each edge, and we re-
quire that every vertex in the graph receives a cumulative signal of at least r 
from its set of broadcasting neighbors. In this paper, we extend the study of 
(t, r) broadcast domination to directed graphs. Our main result explores the 
interval of values obtained by considering the directed (t, r) broadcast domi-
nation numbers of all orientations of a graph G. In particular, we prove that 
in the cases 1r =  and ( ) ( ), 2, 2t r = , for every integer value in this interval, 

there exists an orientation G


 of G which has directed (t, r) broadcast do-
mination number equal to that value. We also investigate directed (t, r) 
broadcast domination on the finite grid graph, the star graph, the infinite grid 
graph, and the infinite triangular lattice graph. We conclude with some direc-
tions for future study. 
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1. Introduction 

Throughout this work we let G denote a finite simply connected graph, and let 
( )V G  and ( )E G  denote its vertex and edge set, respectively. A dominating 

set of a graph G is a subset ( )S V G⊆  of vertices such that every vertex of G is 
either in S or is adjacent to a vertex in S by an edge in ( )E G . The domination 
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number of G, denoted ( )Gγ , is the minimal cardinality of a dominating set of 
G. That is,  

( ) { }min : is a dominating set of .G S S Gγ =            (1.1) 

The concept of graph domination was first introduced by Claude Berge in the 
1950’s and 1960’s [1], and the terms dominating set and domination number 
were first formally defined by Oystein Ore in 1962 [2]. Thousands of papers 
have since been published on the subject, and many long-standing conjectures 
have been made. For a comprehensive volume on developments and results in 
this very active area of research, we recommend the texts by Haynes, Hedetniemi 
and Slater [3] [4]. In these texts, the authors also summarize many interesting 
variants of graph domination and provide a plethora of open problems. 

Among the many variants of the graph domination problem, one important 
variant is distance domination. Distance domination allows a vertex in the do-
minating set to “dominate” not only the vertices directly adjacent to it, but it also 
allows for that vertex to “dominate” all vertices within a certain distance of it. 
More precisely, a distance-k dominating set of a graph G is a set ( )S V G⊆  of 
vertices such that every vertex ( )v V G∈  is either in S or there exists a vertex 
s S∈  such that the distance between v and s is at most k. In other words, S is a 
distance-k dominating set of G if and only if we can reach any vertex w in G by 
following a path of length at most k which starts on a vertex in S and terminates 
at w. Note that the length of a path is just the number of edges in that path. Sim-
ilar to the standard domination number of a graph, the distance-k domination 
number of a graph G is the minimal cardinality of a distance-k dominating set of 
G. We remark that distance-k domination is a generalization of standard domi-
nation, as the definition of standard domination is equivalent to that of distance-1 
domination. 

The concept of distance domination was first motivated in 1991 by Henning, 
Oellermann, and Swart [5], and many problems related to this graph parameter 
which are stated in the previously mentioned works of Haynes, Hedetniemi, and 
Slater [3] [4] remain open and motivate further study. Some recent works on 
distance-k domination include work on finding upper bounds for the distance 
domination numbers of finite grid graphs by Farina and Grez [6], as well as 
work by Drews, Harris, and Randolph on the density of distance dominating sets 
for the infinite grid graph in [7]. Hassan, Al Hassan, and Mostafa recently de-
termined the signed domination number of cartesian product of two paths is [8]. 

For positive integer parameters t and r, a further generalization of a graph’s 
domination number is known as the (t, r) broadcast domination number, first 
defined by Blessing, Insko, Johnson, and Mauretour in 2014 [9]. This is a two- 
parameter family of graph invariants which generalizes standard domination 
and distance domination. The concept of broadcast domination can first be un-
derstood with the following analogy: consider a set of broadcast towers placed 
on a subset of the vertices of a graph, each with a known signal strength t (the 
easiest graph to picture is a grid, but the process works in the same way on all 
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graphs). Each tower gives itself signal strength t, each neighbor of this tower 
receives signal strength t − 1, each neighbor’s neighbor receives signal strength t 
− 2, and so on, until the signal from a tower dies out (i.e., reaches zero). If there 
are multiple towers whose signal reaches a single cell phone (a vertex of G that is 
not a tower), those signal strengths are added together. Then, given a positive 
integer r, the (t, r) broadcast domination number of G is the minimal number of 
towers of signal strength t needed to ensure that every vertex of the graph rece-
ives signal strength at least r. 

The (t, r) broadcast domination parameter, first studied by Blessing et al. in 
[9], has since been studied extensively in the graph theory literature. This para-
meter has been studied on small grid graphs in [10], and its density has been 
studied on infinite grid graphs in [7] [9] [11], on the King’s lattice in [12], and 
on triangular finite and infinite graphs in [13]. Moreover, [14] features many 
open problems for future study in this area. 

In this paper, we expand on the study of domination by introducing a new 
domination variant which we henceforth refer to as directed (t, r) broadcast do-
mination. Colloquially, the directed (t, r) broadcast domination number is found 
by taking a directed graph and repeating the standard (t, r) broadcast domina-
tion process, but we only allow signal to travel in the same direction as each of 
the graph’s arcs. Note that this means that signal cannot travel “both ways” as it 
was previously able to over an edge in the undirected case. Hence, it is necessar-
ily harder for signal to propagate from the towers toward other vertices within 
the graph. An application of directed (t, r) broadcast domination arises by ask-
ing questions of standard (t, r) broadcast domination in networks on which “re-
sources” travel only in a single direction. Such settings include irrigation systems, 
electrical circuits, and regions of cities which are dense in one-way streets. We 
emphasize that the introduction of directed (t, r) broadcast domination is a ma-
jor contribution of this paper, which is the first to define the concept and study 
results arising from this new graph parameter. Moreover, we remark that all re-
sults in this paper provide a new direction for research, thereby opening many 
new avenues for future work in this area. 

Overview 

The remainder of this paper is organized as follows. We begin with Section 2, 
which provides some important and technical definitions along with the neces-
sary notation to make our understanding of domination theory and (t, r) broad-
cast domination precise. In Section 3 we investigate the directed (t, r) broadcast 
domination interval ( ,t rDBDI ), which is the smallest interval of integers con-
taining the (t, r) broadcast domination number of each orientation of a graph G. 
We focus first on the ,t rDBDI  on arbitrary graphs (Theorems 3.1 and 3.2). 
Next, we find intervals contained in the ,t rDBDI  of some small grid graphs 

,m nG  (Proposition 3.10). Additionally, we prove tight bounds on the ,t rDBDI  
for the star graph Sn (Propositions 3.12, 3.13, 3.14) and the fullness of this inter-
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val (Theorem 3.15). Then, in Section 4 we introduce the density of directed (t, r) 
broadcast domination on the infinite grid, focusing on the case ( ) ( ), 2, 2t r = , 
where we give examples of orientations of the infinite grid which achieve efficient 

tower density 1
3

, 1
2

, and 2
3

 (Theorem 4.2). The paper concludes with Section  

5, which provides numerous directions for further research in directed (t, r) 
broadcast domination. 

2. Technical Definitions and Background 

In this paper we follow the notation presented in Blessing et al. [9]. In this sec-
tion we introduce all of the background needed to make our approach precise. 
For the interested reader we recommend Chartrand and Zhang’s text [15] as a 
good resource for further background in graph theory. We now begin with some 
basic graph theory concepts. 

A graph G is an ordered pair ( ) ( )( ),V G E G  where ( )V G  is a set of vertic-
es and ( )E G  is a multi-set of edges. An edge is a subset of ( )V G  of size one 
or two. A directed graph (digraph) is a graph whose edges are ordered pairs of 
vertices. To differentiate between directed and undirected edges, we henceforth 
refer to directed edges as arcs. Parallel arcs refers to a set of multiple arcs starting 
and ending at the same pair of vertices, and a loop is an arc that begins and ends 
at the same vertex. A simple digraph is a digraph without parallel arcs or loops. 
A vertex v is incident to an edge e if v e∈ . Two vertices 1 2,v v  are adjacent if 
there exists an edge e such that 1 2,v v e∈ . Lastly, an oriented graph is a simple 
digraph that does not contain doubly directed arcs, meaning that if (u, v) is the 
arc from vertex u to v, then there is no arc (v, u) from v to u. In other words, an 
oriented graph is a simple digraph where each edge is assigned a specified orien-
tation. 

We now introduce formally the concept of (undirected) (t, r) broadcast do-
mination following the conventions and notation of Blessing et al. [9]. To do so, 
we need to define the notion of transmission strength t of a broadcasting vertex 
and the notion reception strength r of an receiving vertex. 

Definition 2.1. Throughout we let { }: 1, 2,3,t∈ =  . Given two vertices  
( ),u v V G∈ , the distance between u and v, denoted ( ),d u v , is the minimum 

length of the paths connecting u and v. We say that ( )v V G∈  is a broadcasting 
vertex of transmission strength t if u transmits a signal of strength ( ),t d u v−  
to every vertex ( )u V G∈  with ( ),d u v t< . In the case where ( ),d u v t≥ , then 
the broadcast vertex of transmission strength t does not transmit any signal to 
the vertex u.  

Definition 2.2. Given a vertex v and integer t, the distance t neighborhood of 
v is defined as ( ) ( ) ( ){ }: ,tN v w V G d w v t= ∈ < . If v is selected to be a broad-
casting vertex, then we call ( )tN v  the broadcasting neighborhood of v. Given a 
set of broadcast vertices ( )S V G⊆ , each with transmission strength t, we say 
that the reception at vertex ( )w V G∈  is  
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( )
( )

( )( ), .
tv S N w

r w t d w v
∈ ∩

= −∑                   (2.1) 

That is, the reception ( )r w  is the sum of transmissions from neighboring 
broadcast vertices in S.  

Definition 2.3. A set ( )S V G⊆  is called a (t, r) broadcast dominating set if 
every vertex ( )w V G∈  has a reception strength ( )r w r≥ . For a finite graph G, 
the minimal cardinality among all broadcast dominating sets of G is called the (t, 
r) broadcast domination number of G and is denoted ( ),t r Gγ .  

Example 2.4. Figure 1 gives an example of a (3, 2) broadcast dominating set 
of an undirected 3-by-5 grid graph. To convince oneself that this set achieves the 
(3, 2) broadcast domination number requires proving that no sets of size 2 can 
sufficiently dominate the graph. One way of proving this claim could be to ob-
serve that all six vertices in the leftmost two columns cannot simultaneously re-
ceive sufficient reception unless at least two towers are placed somewhere within 
the leftmost three columns. Then, one can observe that such a placement would 
necessarily leave a vertex in the rightmost column with insufficient reception.  

Example 2.5. For a given graph, there may be many possible broadcast do-
minating sets of minimal cardinality. Figure 2 illustrates two examples of (3, 1) 
broadcast dominating sets with cardinality equal to 2, which is the (3, 1) broad-
cast domination number of the 3-by-5 grid graph.  

It is important to note that the dominating sets presented in Figure 1 form 
only a subset of all of the possible (3, 1) dominating sets of the 3-by-5 grid graph. 

Directed (t, r) Broadcast Domination 

Now, we introduce directed (t, r) broadcast domination, the main object of study  
 

 

Figure 1. An example of a minimal (3, 2) dominating set of the 3-by-5 grid graph is 
shown. Towers are highlighted in red, and values/sums within vertices denote the recep-
tion at those vertices. 
 

 

Figure 2. Two examples of minimal (3, 1) dominating sets of the 3-by-5 grid graph. 
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in this paper. The following are previous definitions which we extend to an 
orientation G



 of G. That is, we orient all of the edges of G, letting G


 be the 
resulting digraph, and define (t, r) broadcast domination on G



. 
Definition 2.6. Let { }: 1, 2,3,t∈ =  . Given two vertices ( ),u v V G∈



 the 
distance from u to v, denoted ( ),d u v , is the minimum length of the directed 
paths from u to v. We say that ( )u V G∈



 is a broadcasting vertex of directed 
transmission strength t if it transmits a signal of strength ( ),t d u v−  to every 
vertex ( )v V G∈  with ( ),d u v t< . Once again, vertices which are distance at 
least t from u receive signal of strength 0 from u.  

Note that in directed graphs it is not necessarily the case that ( ) ( ), ,d u v d v u= . 
Also note that if there is no directed path from u to v, then ( ),d u v = ∞ . Fur-
thermore, we adopt the following two conventions. Firstly, the transmission 
strength is omitted when it is clear from context. Secondly, this paper uses the 
terms “broadcasting vertex” and “tower” interchangeably. Now we continue with 
other important definitions. 

Definition 2.7. Given a vertex ( )v V G∈


 and positive integer t, the distance t 
out-neighborhood of v is defined as ( ) ( ) ( ){ }: ,tN v w V G d v w t+ = ∈ < . Likewise, 
the distance t in-neighborhood of v is defined as  

( ) ( ) ( ){ }: ,tN v w V G d w v t− = ∈ < . If v is selected to be a broadcasting vertex, 
then we call ( )tN v+  the broadcasting out-neighborhood of v. Given a set of 
broadcast vertices ( )S V G⊆



, each with transmission strength t, we say that the 
directed reception at vertex ( )w V G∈



 is  

( )
( )

( )( ), .
tv S N w

r w t d v w
−∈ ∩

= −∑                 (2.2) 

That is, the directed reception ( )r w  is the sum of the out-transmissions 
from its in-neighboring broadcast vertices in S.  

Definition 2.8. A set ( )S V G⊆


 is called a directed (t, r) broadcast domi-
nating set if every vertex ( )w V G∈



 has a directed reception strength ( )r w r≥
 . 

For a finite digraph G


, the minimal cardinality among all broadcast dominat-
ing sets of G



 is called the directed (t, r) broadcast domination number of G


 
and is denoted ( ),t r Gγ



.  
For any simple graph G there are ( )2 E G  orientations of the edges of G. Let 

  be the set of all orientations of the edges of the graph G. Then we are inter-
ested in determining possible values of ( ),t r Gγ



 whenever G∈


 . This moti-
vates the following. 

Definition 2.9. Let ( ) ( ){ }, ,: |t r t rA G G Gγ= ∈
 

 . The directed (t, r) broadcast 
domination interval of a graph G, denoted ( ),t rDBDI G , is the interval [ ],d D , 
where ( )( ),min t rd A G=  and ( )( ),max t rD A G= . 

Colloquially, the directed (t, r) broadcast domination interval of G is smallest 
contiguous interval of integers which contains all possible values of ( ),t r Gγ



 for 
G∈


 . Such a concept is motivated by the case in which signal (or some other 
resource) may only travel in a single direction, but the user maintains control 
over that direction. For example, a factory manager may wish to establish a traf-
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fic pattern for a factory line in her facility, and she may want to know the dis-
crepancies between different directions of travel throughout the plant. She may 
also wish to know how drastic such trade-offs could be, for which knowing the 
width of the ,t rDBDI  would be useful. (We remark as an aside, that in a similar 
spirit, directed cliques in directed random graphs have been recently been inves-
tigated with applications to directed social networks and citation networks [16].) 
A main result of this paper establishes that for any graph G and  
( ) ( ){ } ( ){ }, 2, 2 ,1 : 1t r t t∈ ∪ ≥ , given any any integer in ( ),t rk DBDI G∈ , there 
exists G∈



 , such that ( ),t r G kγ =


. This is the content of Theorem 3.2, which 
we prove in Section 3. The introduction of these novel definitions serves as the 
first contribution of this paper to the study of (t, r) broadcast domination. 

3. The Directed (t, r) Broadcast Domination Interval 

This section concerns the directed (t, r) broadcast domination interval, first dis-
cussing arbitrary graphs before focusing on stars and small grid graphs. 

3.1. Results on Arbitrary Graphs 

One interesting question surrounding the directed (t, r) broadcast domination 
interval is whether the name interval is actually appropriate. Namely, given a 
graph G and fixed values t and r, does ( ) [ ], ,t rDBDI G d D=  contain all integer 
values within this interval. In other words, for all [ ],b d D∈ ∩ , does there ex-
ist an orientation G



 such that ( ),t r G bγ =


? In this section, we show that in the 
case 1r =  the answer is yes, and we conjecture this to be true for all r-values. 
Our first result shows that for a fixed t and for 1r = , flipping an arc in any 
orientation of a graph cannot change the directed (t, r) broadcast domination 
number of the graph by more than 1. 

Lemma 3.1. Let t be any positive integer. Given a graph G, let 0G


 and 1G


 
be two orientations of G where 1G



 can be obtained from 0G


 by flipping (re-
versing the direction of) a single arc. Then ( ) ( ),1 0 ,1 1 1t tG Gγ γ− ≤

 

.  
Proof. Without loss of generality, suppose 0G



 is the starting orientation, and 
let ( ),a u v=  be the arc which is flipped to obtain 1G



 so that a becomes 
( ),a v u′ = . If ( )S V G⊆  is a (t, 1) directed broadcast dominating set of 0G



 
with ( ),1 0tS Gγ=



, then { }S v∪  is a (t, 1) directed broadcast dominating set 
of 1G



 as we have now ensured that v has reception 1t ≥  since it is now a 
tower. Moreover, the size of a directed (t, 1) broadcast dominating set has in-
creased by at most 1. Again, note that because v is now a broadcasting vertex, the 
transmission strength at v has strictly increased if v was not previously a broad-
casting vertex, or it has stayed the same if v was already a broadcasting vertex. 
Thus, the directed reception at all other vertices is at least what it was using the 
dominating set S. This implies that ( ) ( ),1 1 ,1 0 1t tG Gγ γ≤ +

 

. A visual representa-
tion of this argument is shown in Figure 3. To obtain the reverse inequality, 
suppose the directed (t, r) broadcast domination number could decrease by 
more than 1 after flipping a single arc. This would imply that flipping that same  
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Figure 3. The graphs 0G


 and 1G


 are shown on the left and right, respectively, with the 
flipped arc highlighted in green. Because the tail of the flipped arc becomes a broadcast-
ing vertex, its transmission strength strictly increases, even if it receives signal from other 
towers. 
 
arc once again would cause the directed (t, r) broadcast domination number to 
increase by more than 1, a contradiction, since we assumed S  was the directed 
(t, 1) broadcast domination number of the initial orientation 0G



.  
Theorem 3.2. Given a graph G, let ( ) [ ],1 ,tDBDI G d D= . Then, for every 

[ ],b d D∈ ∩ , there exists an orientation bG


 with ( ),1t bG bγ =


.  
Proof. Let ( ) [ ],1 ,tDBDI G d D= . Let ,d DG G

 

 be the orientations of G which 
achieve directed (t, 1) broadcast domination numbers d and D, respectively. No-
tice that DG



 can be obtained from dG


 by a series of arc flips. As we perform 
these arc flips, the directed (t, 1) broadcast domination number of the resulting 
graph can never change by more than one, as we established in Lemma 3.1. This 
implies that at some point each integer value in [ ],d D∩  was attained.  

Interestingly, an identical argument, as that presented in Theorem 3.2, also 
holds in the case ( ) ( ), 2, 2t r = . This is because signal from any broadcasting 
vertex reaches only that broadcasting vertex’s immediate out-neighborhood. As 
a result, we have the following. 

Theorem 3.3. Given a graph G, let ( ) [ ]2,2 ,DBDI G d D= . Then, for every 
[ ],b d D∈ ∩ , there exists an orientation bG



 with ( )2,2 bG bγ =


.  
Proof. The argument is identical to that of Lemma 3.1 and Theorem 3.2. Con-

sider graphs 0G


 and 1G


 as before. Because signal form any broadcasting ver-
tex reaches only the out-neighborhood of that vertex, flipping such an arc causes 
at most one vertex to lose sufficient reception. To mitigate this, include that ver-
tex in the set of broadcasting vertices for 1G , and the resulting set forms a di-
rected (2, 2) broadcast dominating set. As a result, ( ) ( )2,2 1 2,2 0 1G Gγ γ− ≤

 

, and 
by symmetry we have that ( ) ( )2,2 0 2,2 1 1G Gγ γ− ≤

 

. This immediately proves the 
desired result.  

It is important to illustrate, however, that the same argument does not hold in 
general for arbitrary t and r. Figure 4 shows that on a path on seven vertices 
with ( ) ( ), 10,8t r = , attempting to make the vertex which becomes the new tail 
of the flipped arc a broadcasting vertex does not create a directed (t, r) broadcast 
dominating set. 
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Figure 4. For ( ) ( ), 10,8t r = , the strategy used in Lemma 3.1 does not hold. In the fol-

lowing example, the resulting set of vertices of the bottom graph does not form a directed 
(10, 8) dominating set. Broadcasting vertices are highlighted in red, and the arc which 
was flipped is highlighted in green. 
 

Let TG


 denote the transpose orientation of G


, which orients every arc in 
G


 in the opposite direction in TG


. The following is another known result 
from 2013 about digraph parameters. While it appears to be useful in proving 
the fullness of the directed (t, r) broadcast domination interval for arbitrary t 
and r, the first condition is often not true for the directed (t, r) broadcast domi-
nation number of a graph’s orientation. 

Theorem 3.4. (Theorem 2.1, [17]) Suppose β  is an integer-valued digraph 
parameter with the following properties for every oriented graph G



:  
1) ( ) ( )TG Gβ β=

 

.  
2) If ( ) ( ),u v E G∈



 and 0G


 is obtained from G


 by replacing (u, v) by (v, u) 
(i.e., reversing the orientation of one arc), then ( ) ( )0 1G Gβ β− ≤

 

.  
Then for any two orientations 1G



 and 2G


 of the same graph G,  

( ) ( ) ( )
2 1 2

E G
G Gβ β

 
− ≤  

  

 

.  

For the directed (t, r) broadcast domination parameter, failure of the first 
condition in Theorem 3.4 is perhaps most easily seen on the star on n vertices, 
shown in Figure 5. 

Moreover, for some graphs and given some positive integers t and r, flipping 
an arc may change the (t, r) broadcast domination number by more than 1, 
making Lemma 3.1 not possible to generalize for arbitrary t and r. An example 
of an instance where an arc flip changes the directed (5, 3) broadcast domination 
number of a graph from two to four can be seen in Figure 6. 

3.2. Results on Small Grid Graphs  

In this section, we turn our attention to the directed (t, r) broadcast domination 
interval on small grid graphs, a family of graphs discussed in [9]. Before doing so, 
we begin with the definition of a grid graph and an observation about the rela-
tionship between the standard (t, r) broadcast domination number of a graph G 
and the directed (t, r) broadcast domination number of G



, an orientation of 
that graph. 

Before defining the grid graph, we recall that the Cartesian product of graphs 
G and H, denoted G H , has vertex set ( ) ( )V G V H× , and it has edge set 
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Figure 5. For ( ) ( ), 2,1t r = , the digraph G


 on the left has domination number 1, while 

the digraph TG


 on the right has domination number 8. Broadcasting vertices are hig-
hlighted in red. 
 

 

Figure 6. Flipping the rightmost arc of the graph on the left increases the directed (5, 3) 
broadcast domination number from 2 to 4 (an increase of more than 1). Showing Lemma 
3.1 does not hold for 1r >  in general. The graph on the right depicts the resultant graph 
and dominating set, with the flipped arc highlighted in green. 
 

( ) ( ) ( ){ }{ { } ( ){
{ } ( )}}

1 1 2 2 1 2 1 2

1 2 1 2

, , , such that and , ;

or and , .

E G H u v u v u u v v E H

v v u u E G

= = ∈

= ∈



  (3.1) 

Definition 3.5. For positive integers m, n, the grid graph with m rows and n 
columns, denoted ,m nG , is the graph obtained by taking the Cartesian product 

m nP P , where iP  denotes the path graph on i vertices.  
Now, we state a key observation about the directed (t, r) broadcast domina-

tion number. 
Observation 3.6. Given a graph G, let G



 be an arbitrary orientation of G. 
For positive integers t and r, ( ) ( ), ,t r t rG Gγ γ≤



.  
Observation 3.6 follows from the fact that a (t, r) broadcast dominating set of 

G


 is also necessarily a (t, r) broadcast dominating set of G, as G can be thought 
of as the result of replacing every singly-directed edge in G



 with a doubly-direc- 
ted one, allowing reception to flow more freely within the undirected graph. 
Given this observation, a natural question to ask is when this inequality becomes 
an equality. In other words, does there always exist an orientation G



 of a graph 
G for which ( ) ( ), ,t r t rG Gγ γ=



? 
To answer this question, we first highlight some known results for undirected 

grid graphs. In 2014, [9] give formulae for the (t, r) broadcast domination num-
bers for ,m nG  when { }2,3,4,5m∈  for arbitrary 0n ≥  and small t, r. The au-
thors determine these dominating patterns using an algorithm that proves that a 
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certain pattern of broadcasting vertex placement is the optimal domination num-
ber. Some of these results are summarized below. 

Theorem 3.7. (Theorems 2.1-2.5, [9]). 
1) For 3n ≥ , the (2, 2) broadcast domination number of the 3 × n grid is  

( )2,2 3
4 .
3n
nGγ ×

 =   
                     (3.2) 

2) For 4n ≥ , the (2, 2) broadcast domination number of the 4 × n grid is  

( )2,2 4
62 .

4n
nG nγ ×
− = −   

                  (3.3) 

3) For 5n ≥ , the (2, 2) broadcast domination number of the 5 × n grid is  

( )2,2 5
22

7n
nG nγ ×
+ = +   

                  (3.4) 

4) For 3n ≥ , the (3, 1) broadcast domination number of the 3 × n grid is  

( )3,1 3 .
3n
nGγ ×
 =   

                     (3.5) 

5) For 4n ≥ , the (3, 1) broadcast domination number of the 4 × n grid is  

( )3,1 4
1 3 5 1.

7 7 7n
n n nGγ ×
+ + +     = + + +          

           (3.6) 

While Blessing et al. [9] provide formulae for ( ) ( ), 3, 2t r =  as well, we focus 
on this subset of results because of our considerations in the previous section. In 
light of Observation 3.6, these values immediately provide lower bounds for the 
directed (t, r) broadcast domination intervals of their corresponding directed 
grid graphs for the same values t and r, assuming these graphs can each be 
oriented to preserve the undirected (t, r) broadcast dominating sets. The follow-
ing observations argue that these lower bounds are in fact tight. 

Observation 3.8. In the case ( ) ( ), 2, 2t r = , the process of directing edges is 
simple: make all broadcasting vertices sources, thereby making all non-broadcasting 
vertices sinks. Since each vertex in G is either a broadcasting vertex or a neigh-
bor of at least two broadcasting vertices, it suffices to observe that, for every 
non-broadcasting vertex v in ( )V G , its resulting in-neighborhood in the di-
rected graph G



 remains its previous neighborhood in the undirected graph G. 
Similarly, for every broadcasting vertex, its resulting out-neighborhood is exactly 
its neighborhood in the undirected graph G. Thus, each vertex gets the same re-
ception as it previously did in the undirected graph. 

Observation 3.9. In the case ( ) ( ), 3,1t r = , the intuition behind orienting the 
graph is to direct edges such that signal can travel as far outward from the 
broadcasting vertices as possible. We again begin by making all broadcasting 
vertices sources. Then, for each vertex which is an out-neighbor of a broadcast-
ing vertex, direct the remainder of its not-already-directed edges outward. All 
other edges are incident to two non-broadcasting vertices which are each at a 
distance 2 away from any broadcasting vertex. This means that each of these 
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non-broadcasting vertices receives signal 1 from that broadcasting vertex and 
cannot propagate signal further. As a result, this last set of edges can be oriented 
arbitrarily to complete the construction of a directed grid graph which maintains 
the (3, 1) dominating set. We are guaranteed that this set must in fact form a (3, 
1) dominating set because, for any broadcasting vertex v, the broadcasting 
out-neighborhood of v in the oriented graph is exactly the broadcasting neigh-
borhood of v in the undirected graph.  

Now, for { }2,3,4m∈  we provide intervals of integers which are properly 
contained in the ( )2,2 ,m nDBDI G . Note that since we have shown in the previous 
section that the (2, 2) and (3, 1) directed broadcast domination intervals of a 
graph must be full, finding an orientation which achieves a domination number 
greater than the lower bound immediately implies the existence of orientations 
which achieve all values in between as well. For each of the following small grid 
graphs, the upper bound is achieved by an orientation of ,m nG  which achieves 
the maximum possible number of vertices with in-degree 1. Note also that the 
OEIS sequence A000111 counts half the number of alternating permutations on 
n letters. We let A000111(n) denote the nth term of this sequence. We can now 
state the next result. 

Proposition 3.10. Let 1n ≥ . Then  

1) ( )2,2 2,
3 2,

2n
nDBDI G n +  ⊇     

. 

2) ( )2,2 3,
4 3 2 3 4,
3 2 4n
n n nDBDI G  + +      ⊇ +            

. 

3) ( )2,2 4,
6 3 2 3 42 ,

4 2 4n n
n n nDBDI G n k − + +      ⊇ − + +            

, where  

( ) ( )A000111 1 A000111 ,nk n n= +                 (3.7) 

which represents the number of towers in the fourth row with n columns.  
Proof. As previously stated, the orientation of ,m nG  which achieves the mi-

nimal value within its respective interval is achieved by orienting the graph to 
preserve the dominating sets stated in [9]. The maximal values within these giv-
en intervals are equivalent to the maximum possible number of vertices of their 
respective grid graphs with in-degree equal to 1. Note that any vertex with 
in-degree equal to 1 must be a broadcasting vertex, because it cannot receive suf-
ficient reception from its broadcasting in-neighborhood, even if it is a direct 
out-neighbor of a tower. For 10n = , examples of orientations with maximized 
numbers of vertices with in-degree 1 are given in Figures 7-9. To verify that 
these values do in fact correspond to the maximum possible number of vertices 
with in-degree 1 can be proven by contradiction as follows. Suppose that it is 
possible in each of these instances to have one more vertex with in-degree 1. 
Then since  

( )
( ) ( ) ,

v V G
deg v V G−

∈

=∑                    (3.8) 
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Figure 7. An example of the grid graph 2,10G  which achieves ( )2,2 2,
3 2  

2n
nGγ + =   

.  

 

 

Figure 8. An example of the grid graph 3,10G  which achieves  

( )2,2 2,
3 2 3 4  

2 4n
n nGγ + +   = +      

. Note that the graph in Figure 7 is a subgraph.  

 

 

Figure 9. An example of the grid graph 4,10G  which achieves  

( )2,2 4,
3 2 3 4    

2 4n n
n nG kγ + +   = + +      

. Note that the graph in Figure 8 is a subgraph. 

 
there must exist a vertex with an impossibly large in-degree for the given equa-
tion to still hold. 

Unfortunately, showing set equality as opposed to the set containment proven 
in Proposition 3.10 would require proof that all orientations of these grid graphs 
achieve (t, r) broadcast domination interval strictly within this interval. In the 
case of (2, 2) domination, we conjecture that the proof lies in the fact that a ver-
tex must be a dominating vertex if and only if it has in-degree at most 1, imply-
ing that the orientations above maximize the number of such vertices achieve the 
maximal (2, 2) broadcast domination number. 

To aid in further understanding the directed (t, r) broadcast domination in-
tervals on small grid graphs, we provide Sage Code [18], which calculates the di-
rected (t, r) broadcast domination interval of an arbitrary grid graph given arbi-
trary positive integers t and r. This program utilizes a dynamic programming 
algorithm, adapted from a similar program used in [9]. 

https://doi.org/10.4236/ojdm.2022.123006


P. E. Harris et al. 
 

 

DOI: 10.4236/ojdm.2022.123006 91 Open Journal of Discrete Mathematics 
 

3.3. Results on a Common Graph Family 

In the previous section, we found an interval of directed (t, r) broadcast domina-
tion numbers which is contained in a (potentially larger) directed (t, r) broadcast 
domination interval of small grid graphs. In this section, we walk through a full 
characterization of the directed (t, r) broadcast domination interval for the star, 
a common and relatively simple-to-understand family of graphs. We begin by 
formally defining a star below. 

Definition 3.11. A star on n vertices, denoted Sn, consists of a single central 
vertex to which n − 1 leaf vertices are adjacent.  

In general domination theory, the star is a simple example of a graph with 
domination number 1, as the central vertex is adjacent to all other vertices in the 
graph. Additionally, characterizing the undirected (t, r) broadcast domination 
number of a star is also quite easy. Specifically, if t r> , then ( ), 1t r nSγ = . Oth-
erwise, ( ),t r nS nγ = . However, once we consider all orientations of Sn, we see 
that characterizing the directed (t, r) broadcast domination interval of a star be-
comes noticeably more involved. What follows is a full classification of  

( ),t r nDBDI S  for 3n ≥ . 
Proposition 3.12. Let Sn be the star graph on n vertices with 3n ≥ , and let t, 

r be integers such that t r= . If 1t r= = , then ( ),t r nS nγ =


 for all orientations 

nS


 of Sn. If 2t r= = , then ( ) [ ], 1,t r nDBDI S n n= − .  
Proof. The case 1t r= =  is trivial because all vertices must be broadcasting 

vertices regardless of the graph orientation. If 2t r= = , notice in Figure 10 that 
regardless of the orientation of the graph, all leaves must be broadcasting vertic-
es. This is because each leaf receives reception of strength at most 1 from the 
central vertex, but even this reception is insufficient to dominate that leaf, so 

( )2,2 1nS nγ ≥ −  is necessary. In the case that at most 1 leaf is a source, the cen-
tral vertex does not receive sufficient reception from leaves and must be a 
broadcasting vertex. In the case that at least 2 vertices are sources, the central 
vertex receives reception at least 2 and need not be a broadcasting vertex. Thus 

( ) [ ]2,2 1,nDBDI S n n= − .  
Proposition 3.13. Let Sn be the star graph on n vertices with 3n ≥ , and let t, 

r be integers. If 2t r= > , then ( ) [ ], 2,t r nDBDI S n= . 
 

 

Figure 10. If fewer than two leaves are sources, the center must be a broadcasting vertex. Flipped arcs are shown in green, and 
broadcasting vertices are highlighted in red. 
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Proof. Let s denote the number of source leaves in an orientation of Sn, and let 
s
nS  denote the orientation of the star with s source leaves. To show that  

( ) [ ], 2,t r nDBDI S n= , we start with 0
nS , the leftmost graph in Figure 11. The 

central vertex is required to be a dominating vertex because it has in-degree zero, 
and all leaves receive insufficient reception from this central vertex, requiring 
them each to be dominating vertices as well and making the domination number 
in this orientation n. Flipping one arc, we move to the case 1

nS , where now the 
single source leaf and the central vertex form the dominating set because each 
sink leaf receives reception ( ) ( )1 2t t r− + − ≥ . Both of these orientations are 
shown in Figure 10. We now proceed to flip the remaining arcs, one at a time, 
so that s increases from 1 to n − 1. Each of these flips increases ,t rγ  by 1 be-
cause a leaf which has previously been a sink is now a source, and therefore it 
receives insufficient reception and must be added to the set of broadcasting ver-
tices. The initial and final such orientations are shown in Figure 12. Since this 
construction iterates over all possible orientations of Sn, we conclude by exhaus-
tion that ( ) [ ], 2,t r nDBDI S n= . 

Proposition 3.14. Let Sn be the star graph on n vertices with 3n ≥ , and let t, 
r be integers. If t r> , then ( ) [ ], 1, 1t r nDBDI S n= − .  
 

 

Figure 11. The cases 0
nS  and 1

nS  are shown. Flipped arcs are shown in green, and 
broadcasting vertices are highlighted in red. 
 

 

Figure 12. The cases 2
nS  and 2n

nS −  are shown. Flipped arcs are shown in green, and 
broadcasting vertices are highlighted in red. 
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Proof. Once again, let s denote the number of source leaves in an orientation 
of Sn, and let s

nS  denote the orientation of the star with s source leaves. To 
show that ( ) [ ], 1, 1t r nDBDI S n= − , we start with 0

nS . The central vertex is re-
quired to be a dominating vertex because it has in-degree zero, and all leaves re-
ceive sufficient reception from this central vertex, making the domination num-
ber of this orientation 1. We now proceed to flip the orientation of each edge so 
that s increases from 0 to n − 1. If ( ) ( ), 2,1t r = , each of these flips increases the 
domination number by 1 except for the last flip, when s increases from n − 2 to n 
− 1. This is because the set of broadcasting vertices gains the last leaf vertex but 
loses the central vertex when this arc is flipped. This case is highlighted in Fig-
ure 13. For all other values of (t, r), meaning all instances when 2t r− ≥ , each 
of these arc flips increases the domination number of the resulting graph by 1 
except for when s increases from 1 to 2. This is true because when 2s ≥ , the 
central vertex no longer needs to be a dominating vertex, as all vertices receive 
reception at least ( )2 2t −  from the source leaves. Note that, given the con-
straints, ( )2 2t r− ≥  for all 3,t t r≥ > , so this is indeed sufficient reception. 
This case is highlighted in Figure 14 and Figure 15. In either case, we get that 

( ) [ ], 1, 1t r nDBDI S n= − . 
 

 

Figure 13. The case ( ) ( ), 2,1t r = . Green arcs denote arcs which have been flipped from the original orientation 0
nS . 

 

 

Figure 14. Orientations 0
nS  and 1

nS  with t r> . Green arcs denote arcs which have 

been flipped from the original orientation 0
nS , and broadcasting vertices are highlighted 

in red. 
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Figure 15. All other orientations with t r> . Green arcs denote arcs which have been 
flipped from the original orientation 0

nS , and broadcasting vertices are highlighted in 
red. 
 

We remark that this result leads to a noteworthy result about the ( ),t r nDBDI S . 
Theorem 3.15. Let , , ,t r d D  be positive integers such that  

[ ] ( ),, t r nd D DBDI S=  and t r≥ . Then, for every [ ],x d D∈ , there exists an 
orientation 

xnS


 such that ( ), xt r nS xγ =


. In other words, the directed (t, r) 
broadcast domination interval of a star on n vertices is always full.  

Proof. By exhaustion, using the previous propositions within this section.  
As exhibited by the star graph, finding the directed (t, r) broadcast domina-

tion interval can be very difficult, even for simple families of graphs. Moreover, 
even if finding a dominating “strategy” may be straightforward, proving that the 
interval resulting from that “strategy” is equal to that graph’s (t, r) directed 
broadcast domination interval can be quite difficult, as exhibited by our findings 
from this section and from Section 3.2. 

4. On Directed (t, r) Broadcast Domination of the Infinite  
Grid  

We now shift our discussion to (t, r) broadcast domination on the infinite grid 
graph, denoted by ×  . In previous literature, Blessing et al. and Harris et al. 
discuss efficient domination of the infinite Cartesian and triangular lattices, re-
spectively [9] [13]. In this section, we introduce and provide some initial results 
when considering the extension of their work on efficient (t, r) broadcast domi-
nation of the infinite Cartesian lattice to the directed variant. We remark that 
because the infinite grid cannot have a finite domination number, efficiency is 
instead measured as follows. Intuitively, an efficient broadcast dominating set is 
one which wastes the least amount of signal possible. We give a rigorous defini-
tion of this idea below, and we note that this definition holds for any orientation 
G


 of G. 
Definition 4.1. ([13]) A (t, r) broadcast dominating set S for s is said to be ef-

ficient if for all ( )u V G∈ ,  

( ) ( )
( ) ( )

if , for all
, if 0 , for exactly one .

r d u v t r v S
r u

r d u v d u v t r v S
 ≥ − ∈=  − ≤ < − ∈

    (4.1) 
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In other words, non-broadcasting vertices far away from broadcasting vertices 
receive only the minimum required signal and do not “waste” signal by receiving 
more than they need. Of course, vertices which are relatively close to broadcast-
ing vertices are not penalized for having more than the minimum required re-
ception because they must continue transmitting signal to vertices which are 
farther away. 

Now equipped with a notion of efficiency, we present our main result. 
Theorem 4.2. There exist orientations of the graph ×   that achieve effi-

cient directed (2, 2) broadcast domination densities of 1
3

, 1
2

, and 2
3

.  

Proof. The proof is via construction. To give each of these results, consider the 
orientations in Figure 16 and note that the number of vertices used in every  

horizontal line are 1
3

 and 2
3

 of the total number of vertices, respectively.  

Motivated by Theorem 4.2 and our prior study of the directed (t, r) broadcast 
domination interval, we pose the following open problems for further study. 

Question 4.3. Does every rational number 
1 2,
3 3

d  ∈   
 appear as a (2, 2)  

directed broadcast domination density? If not, classify the rational numbers in 
that interval that do appear.  

Question 4.4. Is there a (2, 2) directed broadcast domination density d such 

that the density d is irrational, i.e., c1 2,
3 3

d  ∈ ∩  
 ? 

One may also ponder the implications of periodic tower placement on various 
topological surfaces. 

Question 4.5. Do the three (t, r) directed broadcast dominating sets given in 
Figure 16 result some (t, r) broadcast domination set on a finite toroidal grid? 
More generally, for any orientation of the grid which results in a rational density 
of towers, is it possible to realize that orientation and domination density on the 
toroidal grid?  

We provide a partially negative answer to Question 4.5 by noting that the in-

finite grid achieving tower density 1
3

 in Figure 16 can be oriented to have an  

 

 

Figure 16. Left to right: orientations of the infinite grid which efficiently achieve (2, 2) 

broadcast vertex density 1 1 2, ,
3 2 3

, respectively. In the leftmost graph, some arcs are not 

shown to denote that these arcs may be oriented arbitrarily without changing the density. 
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aperiodic orientation (by orienting the missing arcs accordingly), but this orien-
tation always has rational tower density. We know that regardless of the orienta-
tion of the missing arcs, the resulting (t, r) broadcast dominating set remains ef-
ficient because those missing arcs carry no signal. Of course, this infinite grid 
may also be oriented periodically to achieve the same effect, and we note that 
one reason for this flexibility in orienting the arcs is that no signal travels along 
these arcs. In other words, for each of these arcs (u, v) left blank in Figure 16, 
the signal at the tail u is only 1, so the signal at v coming from u is 0. 

Still, it is the case that all three of these domination densities are realizable as 
dominating sets on the same toroidal grid, and it is important to note that this 
fact might help us determine which rational numbers are possible dominating 
densities. Exploring this further may provide connections to topology and also 
provide an answer to Question 4.3. 

Interestingly, the orientations of the infinite grid depicted in Figure 16 also 
grant a sub-interval of ( )2,2 ,m nDBDI G , as we detail below. 

Proposition 4.6. Given integers , 6m n ≥ ,  

( )
( )

( )

2,2 ,

2, if mod 3 0
3

2 1
, if mod 3 1

3

2 2
, if mod3 2

3 2

m n

mnd n

m n
d m nDBDI G

m n md m n

   ≡    
 −  + ≡ ⊇  
   
 −    + + ≡         

    (4.2) 

where the lower bound  

( )( )

( )( )

2 2
6 if mod3

3

2 2
5 if mod3

3

m n
m n

d
m n

m n

 + + 
− ≡ 

 = 
+ +  − ≡/ 

 

             (4.3) 

is the best-known upper bound on ( ) ( ),2,2 m nGγ  previously established by 
Blessing et al. ([9], Theorem 3.8). 

Proof. To achieve the upper bound of this interval, orient the grid as in Figure 
17. Then, align the leftmost column of ,m nG  with a column of the infinite graph 
of density 2/3 which contains only towers, as in Figure 17. Now, using this start-
ing column, bound a rectangular region of dimensions m by n to create the di-
rected graph ,m nG



. The density of vertices with out-degree greater than 0 de-
pends on whether the rightmost column of the rectangular region is in a column 
of the infinite grid which contains only towers, or whether it is 1 or 2 columns to 
the right of such a column. 

To count the number of red vertices in the rectangular region, we let m, n de-
note the number of rows and columns in the rectangular region, respectively. 
Then we consider three separate cases when mod3n  is 0, 1, or 2. In the first 
case, one third of the rows will have only red vertices, while the two to the right 
of it will have equally many red and non-red vertices. Thus the overall density of  

https://doi.org/10.4236/ojdm.2022.123006


P. E. Harris et al. 
 

 

DOI: 10.4236/ojdm.2022.123006 97 Open Journal of Discrete Mathematics 
 

 

Figure 17. A region in which the leftmost column of a 4 × 6 grid graph is aligned with a 
column of the infinite grid containing only towers. 
 

red vertices is 
2

3
mn 

  
. In the second case, we break this grid into two sub-grids:  

the first being a grid with n − 1 columns which falls into the previous case, and 
the second being a grid with 1 column and all red vertices. Thus the overall  

number of red vertices is 
( )2 1
3

m n
m

− 
+ 

 
. In the third case, we follow a similar  

pattern, again breaking the grid into a sub-grid with n − 2 columns which falls 
into the first case, then a column of all red vertices, and then a column with 
every other vertex red. This grid achieves an overall red vertex density of  

( )2 2
3 2

m n mm
−   + +     

. 

We first claim that the set of towers within this region on the infinite graph 
also forms a dominating set of ,m nG



. Furthermore, we claim that this set is mi-
nimal, thereby achieving the domination number of ,m nG



. 
To establish the first claim, notice that all vertices within this region with 

in-degree 0 or 1 are dominating vertices because having in-degree 0 or 1 implies 
that such a vertex can receive reception of at most 1 from a neighbor. All other 
vertices have in-degree at least 2 in ,m nG



 are non-dominating vertices. This im-
plies that the set of dominating vertices in ,m nG



 forms a dominating set of the 
graph. 

The second claim is established by the fact that every vertex with in-degree 0 
or 1 must be a dominating vertex, as it cannot receive sufficient reception from 
only a single other vertex. Additionally, any vertex with in-degree greater than 1 
is not a dominating vertex. Thus, this set of dominating vertices is a minimal (2, 
2) broadcast dominating set. 

The lower bound of this interval was proven by Blessing et al. for undirected 
grids, and it still holds when we direct all edges away from the broadcasting 
towers as in the left image in Figure 16 ([9], Theorem 3.8). 

It is also important to note that, much like in the case of finite graphs, there 
exist infinite grid graphs that cannot be oriented to preserve their (t, r) broadcast 
dominating sets. One example is on the infinite triangular grid, which cannot be 
oriented to preserve the (4, 3) dominating set given by Harris et al. in [13].  

Example 4.7. As pictured in Figure 18, it is impossible to orient the triangular  
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Figure 18. It is impossible to orient the triangular lattice and achieve the efficient (4, 3) 
dominating set. The problematic arcs are highlighted in red. 
 
lattice to preserve the dominating set given by Harris et al. in [13]. In order for 
the distance-3 out-neighborhood of each broadcasting vertex to be preserved, 
the black arcs in this figure must be oriented away from the broadcasting vertic-
es. This figure shows just one possible orientation, as some of these black arcs 
may be reversed from their pictured orientations while preserving the distance-3 
out-neighborhood of the dominating vertices. However, under no orientation of 
the red edges can signal travel “both ways,” which would be required for the set 
to be a (4, 3) dominating set. As pictured in Figure 18, the reception at vertex v 
would be ( ) 3r v =

  if the red edge incident to it were doubly-directed, but 
orienting that edge only allows for ( ) 2r v ≤

 .  

5. Future Directions 

In Section 3, we prove that the directed (t, r) broadcast domination interval is 
full when 1t r≥ =  and in the isolated case ( ) ( ), 2, 2t r = . We conjecture that 
this is true for arbitrary 1t r≥ ≥ . One direction of study is proving or providing 
a counterexample to the following. 

Conjecture 5.1. Let t and r be positive integers such that t r≥ . Given a graph 
G, let ( ) [ ], ,t rDBDI G d D= , where  

( ){ },min : is an orientation oft rd G G Gγ=
 

           (5.1) 

and 

( ){ },max : is an orientation of .t rD G G Gγ=
 

           (5.2) 

For every [ ],b d D∈ ∩ , there exists an orientation bG


 with ( ),t r bG bγ =


.  
We also study directed (t, r) broadcast domination on small grid graphs. 

There are many possible directions for further study, chief of which would be 
finding a closed formula for the directed (t, r) broadcast domination interval of 
an arbitrary finite grid graph. 
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Research Project 5.2. Let , , ,t r m n  be positive integers, and let 1t r≥ ≥ . 
Find a formula for ( ), ,t r m nDBDI G  as a function of , ,t r m  and n.  

Lastly in Section 3, we study the directed (t, r) broadcast domination interval 
for the star graph. In light of those results, one could study the directed (t, r) 
broadcast domination interval of other graph families. 

Research Project 5.3. Let t and r be positive integers such that 1t r≥ ≥ . For 
a family of graphs, find the ,t rDBDI  of that graph family as a function of t, r, 
and the number of vertices in the graph. Examples of interesting graphs to con-
sider include cycles, tournaments (directed complete graphs), and spiders (a 
collection of paths which all share one endpoint).  

In Section 4, we introduce directed (t, r) broadcast domination on the infinite 
grid, and we show an orientation of the infinite grid which efficiently achieves  

broadcasting vertex densities 1
3

, 1
2

, and 2
3

 when ( ) ( ), 2, 2t r = . One future 

direction of study concerns answering the following question. 

Question 5.4. Let ( ) ( ), 2, 2t r = . For 
1 2,
3 3

d  ∈ ∩   
 , does there exist an orien- 

tation of the infinite Cartesian grid which achieves tower density d? If not, for 

which rational numbers 
1 2,
3 3

d  ∈   
 can densities be achieved?  

There are many other ways to study directed (t, r) broadcast domination on 
the infinite grid. One potential direction could be to explore other known effi-
cient (t, r) broadcast dominating patterns (i.e., those studied in [9]), asking 
whether there exist orientations of their respective infinite graphs which still al-
low that dominating pattern to form a directed (t, r) broadcast dominating set. 
Another avenue for further study is to investigate other values of t and r not pre-
viously studied. 
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