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Abstract 
Let ( ),G V E=  be a graph and mC  be the cycle graph with m vertices. In 

this paper, we continued Yeh’s work [1] on the distance labeling of the cycle 
graph mC . An n-set distance labeling of a graph G is the labeling of the ver-
tices (with n labels per vertex) of G under certain constraints depending on 
the distance between each pair of the vertices in G. Following Yeh’s notation 
[1], the smallest value for the largest label in an n-set distance labeling of G is 

denoted by ( ) ( )1
n Gλ . Basic results were presented in [1] for ( ) ( )2

1 mCλ  for all 

m and ( ) ( )1
n

mCλ  for some m where 3n ≥ . However, there were still gaps 

left unstudied due to case-by-case complexities. For these uncovered cases, we 

proved a lower bound for ( ) ( )1
n

mCλ . Then we proposed an algorithm for 

finding an n-set distance labeling for 3n ≥  based on our proof of the lower 
bound. We verified every single case for 3n =  up to 500n =  by this same 
algorithm, which indicated that the upper bound is the same as the lower 
bound for 500n ≤ . 
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1. Introduction 

The mathematical field of Graph Theory first came into prominence after Euler 
published his paper on the Königsberg 7 bridges problem. Following that, nu-
merous mathematicians expanded the field and created new classifications of 
graphs as well as new problems, such as the famous 4 color problem (which is a 
special case of the T-coloring of graphs). There have long been many real world 
applications from graph theory, such as radio transmission and map coloring. 
The issue that arises with these types of problems is a conflict of organization. 
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Vertices must be carefully positioned so that edge crossing can be avoided un-
der certain circumstances, and with increasingly complicated situations, comes 
a need for greater detail and precision in its graph labeling. For example, in the 
case of radio transmissions, signals within close vicinity cannot overlap and 
therefore must be assigned to avoid conflicts. Each radio station is assigned a 
unique radio frequency. The closer the locations for radio stations are, the greater 
the risk for signal interference. To solve this, our paper will signify radio stations 
as vertices and radio frequencies as labels and make it into a graphing problem. 

The problem of T-coloring of graphs has long been heavily researched. Start-
ing in the 1980s, a new application of this problem was the issue of channel fre-
quency assignment [2] [3] [4] [5]. Another wave of research on this topic began 
in 1990s, with an effort to more efficiently assign radio channels by using non 
negative integers, whereas channels at close distances receive frequencies further 
apart in value than channels at far apart distances [6] [7] [8] [9]. This should 
prevent signal interference between radio stations close to each other. In partic-
ular, Griggs and Yeh’s work in [6] on graph labeling with a condition at distance 
2 vertices is of great importance. They proposed a new way to label a graph. Given 
a graph ( ),G V E=  and a positive integer d, an ( )2,1dL  labeling of G is a real- 
valued function [ ): 0,f V → ∞  such that, for any two vertices x and y in G,  

( ) ( )
2 if and are adjacent;

if and have distance two apart.
d x y

f x f y
d x y


− ≥ 


 

The ( )2,1dL -labeling number, denoted by ( ),G dλ , is the smallest integer m 
such that G has an ( )2,1dL -labeling [ ]: 0,f V m→ . When 1d = , Griggs and 
Yeh proved that ( ) 2,1 2Gλ ≤ ∆ + ∆ , where ∆  is the maximum degree of G. Their 
result was later improved by Král’ and Skrekovski [10], who proved ( ),1Gλ ≤

2 1∆ + ∆ −  when 2∆ ≥ . 
Recently, Yeh continued his previous work in [6]: instead of assigning a sin-

gle number to a vertex, he assigned a set of numbers to each vertex. Let [k] be  

the integer set { }0,1,2,..., k  and [ ]k
n

 
 
 

 be the set of all n-subsets of [k]. Given  

a positive integer k and non-negative integers 1δ  and 2δ  with 1 2δ δ≥ , an 

( ) ( )1 2,nL δ δ -labeling is a function [ ]:
k

f V
n

 
→  

 
 such that, for any two vertices x 

and y in G,  

( ) ( ) 1

2

if and are adjacent;
if and have distance two apart;

x y
f x f y

x y
δ
δ


− ≥ 


 

where ( ) ( ) ( ) ( ){ }min : andf x f y a b a f x b f y− = − ∈ ∈  is the defined set dif- 
ference. Figure 1 is an illustration of the above definition. 

The smallest k satisfying the above definition is called the ( ) ( )1 2,nL δ δ -labeling 
number of G and denoted by ( ) ( )1 2; ,n Gλ δ δ . In particular, when 1 2 1λ λ= = , 

( ) ( );1,1n Gλ  is denoted by ( ) ( )1
n Gλ  for short. Yeh applied this idea and obtained  
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Figure 1. Illustration of ( ) ( )1 2,nL δ δ -labeling. 

 
the exact value of ( ) ( )1

n Gλ  for several types of graphs: trees, wheels, the square 
lattice, the hexagonal lattice, and the triangular lattice. For the cycle graphs mC , 
Yeh has completely solved the problem for ( ) ( )2

1 mCλ . (Note: There was a typo 
in Corollary 3.5 [6], where the results there should be read only for ( ) ( )2

1 mCλ .) 
For the general cases when 3n ≥ , Yeh proved that  

( ) ( )

( )
( )
( )1

3 1 if 0 mod3 ;
3 if 1 mod3 and 3 1;
3 if 2 mod3 and 6 2;
3 otherwise.

n
m

n m
n m m n

C
n m m n
n

λ

= − ≡
= ≡ ≥ +

= ≡ ≥ +
≥

 

In this paper, we will expand on Yeh’s work for ( ) ( )1
n

mCλ  with 3n ≥  on the 
following uncovered cases: 

1) ( )1 mod3m ≡  with 4,7, ,3 2m n= − ; 
2) ( )2 mod3m ≡  with 5,8, ,6 1m n= − .  
For the rest of this paper, we will refer any of the above unstudied cases as an 

uncovered case. Our goal is to fill in the gaps and find out the ( ) ( )1
n

mCλ  for the 
uncovered cases. 

2. ( ) ( )n
mC1λ  for m 4=  and m 5=  

Yeh [6] proved that, if G is a graph with diameter 2 and order m, then ( ) ( )1
n Gλ =  

1mn − . Since both 4C  and 5C  have diameter 2, as shown in Figure 2, the 
following is a direct consequence of Yeh’s observation. 

Lemma 1 ( ) ( )1 4 4 1n C nλ = −  and ( ) ( )1 5 5 1n C nλ = − . 

3. Proving Lower Bound for ( ) ( )n
mC1λ  for Uncovered Cases 

In order to obtain a general formula for the lower bound of ( ) ( )1
n

mCλ  for un-
covered m values given in Section 1, we first introduce the following lemma: 

3.1. Upper Bound for Label Repetition 

Lemma 2 In any ( ) ( )1,1nL -labeling of mC , no label can be used more than 

3
m 
  

 times.  

Proof. We will prove the lemma by contradiction. Let ( ) { }1 2, , ,m mV C v v v=  , 
where iv  is adjacent to 1iv +  for each i with 1 1mv v+ = , shown in Figure 3. 
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Figure 2. Cyclic graphs for 4m =  and 5m = . 
 

 

Figure 3. Cyclic graph with m vertices. 
 

Let 
3
mp  =   

. Without loss of generality, we may assume that a label “ a ” is  

assigned to 1v  and is used 1p +  times in an ( ) ( )1,1nL -labeling of mC . Let 
( )1,2, , 1ix i p= +  be the distance between a pair of adjacent “ a ” labels in the 

cyclic order (Please refer to Figure 3). The total distance is m because there are 
m vertices:  

1 2 1 .px x x m++ + + =  

This implies that  

1 2 1

1 1
min 3.

1 1 3
p

ii p

x x x m mx
p p m

+

≤ ≤ +

+ + +
≤ = < =

+ +



 

Thus the smallest ix  must be either 1 or 2; in other words, there are two vertices 
of mC  with distance at most two receiving the same label “ a ”. This contradicts 
the distance labeling condition for ( ) ( )1,1nL , and thus Lemma 2 is proved.       

3.2. Lower Bound for ( ) ( )n
mC1λ  for All Uncovered Cases 

Theorem 1 For all integers m and n with , 3m n ≥ ,  

( ) ( )1 1,n
m

mnC
p

λ
 

≥ − 
 

 

where 
3
mp  =   

.  

Proof. In any ( ) ( )1,1nL -labeling of mC , each vertex receives m labels. So 
there are together mn labels (counting the repetition of each label). By Lemma 2, 
each distinct label can only be repeatedly used at most p times. This implies that 
there are at least mn/p distinct labels. Also labels can start from 0 and ( ) ( )1

n
mCλ  

is the largest label, we have ( ) ( )1 1n
mC mn pλ ≥ −   .                       
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4. ( ) ( )n
mC1λ  for n 3=  

We find all values for ( ) ( )3
1 mCλ . 

Theorem 2  

( ) ( )

( )
( ) ( )

3
1

8 if 0 mod3 ;
9 if 1 mod3 with 10 or 2 mod3 with 20;
10 if 7,11,14,17;
11 if 4,8;
14 if 5.

m

m
m m m m

C m
m
m

λ

≡
 ≡ ≥ ≡ ≥= =
 =
 =

 

Proof. By Yeh’s work [6] and Lemma 1, we only need to prove the theorem 
for the uncovered cases when 7,8,11,14,17m = . By Theorem 1,  

( ) ( )3
1

10 if 7,11,14,17;3 1
11 if 8.

3

m

mmC
m m

λ

 
  = ≥ − =  =   
    

 

On the other hand, we can prove that the above lower bounds are also upper 
bounds by constructing actual label assignments. 

For 7m = , the following label assignment meets the ( )1,1L -labeling re-
quirement. (Each block of three labels is assigned to a vertex of 7C  in the cyclic 
order. Similar label assignments are applied for other uncovered cases  

8,11,14,17m =  below.) 
0 1 2 || 3 4 5 || 6 7 8 || 9 10 0 || 1 2 3 || 4 5 6 || 7 8 9 || 
This indicates: ( ) ( )3

1 7 10Cλ ≤  
For 8m = , the following label assignment meets the ( )1,1L -labeling require- 

ment: 
0 1 2 || 3 4 5 || 6 7 8 || 9 10 11 || 0 1 2 || 3 4 5 || 6 7 8 || 9 10 11 || 
This indicates: ( ) ( )3

1 8 11Cλ ≤  
For 11m = , the following label assignment meets the ( )1,1L -labeling re-

quirement: 
0 1 2 || 3 4 5 || 6 7 8 || 9 10 0 || 1 2 3 || 4 5 6 || 7 8 9 || 10 0 1 || 2 3 4 || 5 6 7 || 8 9 

10 || 
This indicates: ( ) ( )3

1 11 10Cλ ≤  
For 14m = , the following label assignment meets the ( )1,1L -labeling re-

quirement: 
0 1 2 || 3 4 5 || 6 7 8 || 9 10 0 || 1 2 3 || 4 5 6 || 7 8 9 || 10 0 1 || 2 3 4 || 5 6 7 || 8 9 

10 || 0 1 2 || 3 4 5 || 6 7 8 || 
This indicates: ( ) ( )3

1 14 10Cλ ≤  
For 7m = 1 , the following label assignment meets the ( )1,1L -labeling re-

quirement: 
0 1 2 || 3 4 5 || 6 7 8 || 9 10 0 || 1 2 3 || 4 5 6 || 7 8 9 || 10 0 1 || 2 3 4 || 5 6 7 || 8 9 

10 || 0 1 2 || 3 4 5 || 6 7 8 || 9 10 0 || 3 4 5 || 6 7 8 || 
This indicates: ( ) ( )3

1 17 10Cλ ≤  
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By combining the upper and lower bounds together, we conclude that  
( ) ( )3

1 10mCλ =  when 7,11,14,17m =  and that ( ) ( )3
1 8 11Cλ = .              

5. ( ) ( )n
mC1λ  for n 4=  

In this section, we find all values for ( ) ( )4
1 mCλ . 

Theorem 3  

( ) ( )

( )
( ) ( )

4
1

11 if 0 mod3 ;
12 if 1 mod3 with 13 or 2 mod3 with 26;
13 if 7,10,14,17,20,23;
14 if 11;
15 if 4,8;
19 if 5;

m

m
m m m m
m

C
m
m
m

λ

≡
 ≡ ≥ ≡ ≥
 == 

=
 =


=

 

Proof. By Yeh’s work [6] and Lemma 1, we only need to prove the theorem 
for the uncovered cases when 7,8,10,11,14,17,20,23m = . By Theorem 1,  

( ) ( )4
1

13 if 7,10,14,17,20,23;
4 1 14 if 11;

15 if 8;3

m

m
mC m

m
m

λ

  =   ≥ − = =
    =    

 

On the other hand, we can prove that the above lower bounds are also upper 
bounds by constructing actual label assignments. 

For 7m = , the following label assignment meets the ( )1,1L -labeling re-
quirement: 

0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 
This indicates: ( ) ( )4

1 7 13Cλ ≤  
For 8m = , the following label assignment meets the ( )1,1L -labeling require- 

ment: 
0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 14 15 || 0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 

14 15 || 
This indicates: ( ) ( )4

1 8 15Cλ ≤  
For 10m = , the following label assignment meets the ( )1,1L -labeling re-

quirement: 
0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 0 1 2 

3 || 4 5 6 7 || 8 9 10 11 || 
This indicates: ( ) ( )4

1 10 13Cλ ≤  
For 11m = , the following label assignment meets the ( )1,1L -labeling re-

quirement: 
0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 14 0 || 1 2 3 4 || 5 6 7 8 || 9 10 11 12 || 13 14 

0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 
This indicates: ( ) ( )4

1 11 14Cλ ≤  
For 14m = , the following label assignment meets the ( )1,1L -labeling re-

quirement: 

https://doi.org/10.4236/ojdm.2022.123005


A. Shen, J. Shen 
 

 

DOI: 10.4236/ojdm.2022.123005 70 Open Journal of Discrete Mathematics 
 

0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 0 1 2 
3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 

This indicates: ( ) ( )4
1 14 13Cλ ≤  

For 17m = , the following label assignment meets the ( )1,1L -labeling re-
quirement: 

0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 0 1 2 
3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || || 0 1 2 3 || 4 
5 6 7 || 8 9 10 11 || 

This indicates: ( ) ( )4
1 17 13Cλ ≤  

For 20m = , the following label assignment meets the ( )1,1L -labeling re-
quirement: 

0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 0 1 2 
3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || || 0 1 2 3 || 4 
5 6 7 || 8 9 10 11 || 12 13 0 1 || 4 5 6 7 || 8 9 10 11 || 

This indicates: ( ) ( )4
1 20 13Cλ ≤  

For 23m = , the following label assignment meets the ( )1,1L -labeling re-
quirement: 

0 1 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 0 1 2 
3 || 4 5 6 7 || 8 9 10 11 || 12 13 0 1 || 2 3 4 5 || 6 7 8 9 || 10 11 12 13 || 0 1 2 3 || 4 5 6 
7 || 8 9 10 11 || 12 13 2 3 || 4 5 6 7 || 8 9 10 11 || 12 13 2 3 || 4 5 6 7 || 8 9 10 11 || 

This indicates: ( ) ( )4
1 23 13Cλ ≤  

Here is the general process of label assignment for 4n =  and 23m = , whose 
complete data set is: 0 1 2 3 4 5 6 7 8 9 10 11 12 13.  

1) We iterate this data set repeatedly by combining 4 labels in a group and as-
signing this group to one node.  

2) This process continues until we finish the 23rd node. 
Please note that there is something special with the label assignment for  

23m = . For the last two repetitions of the data set, the “0” and “1” were taken 
out, indicated by the bold numbers. This is to avoid violation of ( )1,1L -labe- 
ling requirements. This algorithm will be explained in detail in the next section. 

By combining the upper and lower bounds together, we conclude that  
( ) ( )4

1 13mCλ =  when 7,10,14,17,20,23m = , ( ) ( )4
1 11 14Cλ =  and  

( ) ( )4
1 8 15Cλ = .                                                    
There is not a general formula for the uncovered cases. For any given n value, 

we need to work on each corresponding uncovered m value individually. 

6. Algorithm for Finding Upper Bound for All Uncovered  
Cases 

We have proven the lower bound for all the uncovered cases. In this section, we 
will work on the upper bound. We will use the prove-by-construction method 
and provide a general algorithm to find label assignment for all the uncovered 
cases based on the proved lower bound. The finding of such label assignment 
gives an upper bound to ( ) ( )1

n
mCλ . 
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6.1. Sample Case of ( ) ( )C6
1 35λ  

We will use the following case to illustrate how we will construct the label as-
signment for all the vertices based on the lower bound. 

6n =  (number of labels per vertex)  
35m =  (number of vertices)  

The lower bound is calculated according to Section 3.2: 
11p =  (max number of repetitions per label)  
19L =  (lower bound of ( )1,1L  for ( ) ( )6

1 35Cλ )  
Data set available for the labels to be used for each vertex: 0, 1, 2, 3, … 16, 17, 

18, 19.  
Initial label assignment:  
0 1 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 0 1 2 3 || 4 5 6 7 8 9 || 10 

11 12 13 14 15 || 16 17 18 19 0 1 || 2 3 4 5 6 7 || 8 9 10 11 12 13 || 14 15 16 17 18 
19 || 0 1 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 0 1 2 3 || 4 5 6 7 8 9 || 
10 11 12 13 14 15 || 16 17 18 19 0 1 || 2 3 4 5 6 7 || 8 9 10 11 12 13 || 14 15 16 17 
18 19 || 0 1 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 0 1 2 3 || 4 5 6 7 8 9 
|| 10 11 12 13 14 15 || 16 17 18 19 0 1 || 2 3 4 5 6 7 || 8 9 10 11 12 13 || 14 15 16 17 
18 19 || 0 1 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 0 1 2 3 || 4 5 6 7 8 9 || 

 

Initial label assignment for the first and last two vertices: 
 

 
 

Violations found: 
 4 labels (0, 1, 2, 3) in 1mV −  are overlapping with that of 1V : distance 2 

type of violation;  
 2 labels (4, 5) in mV  are overlapping with that of 1V : distance 1 type of 

violation, which requires more corrective shifts towards the left;  
 4 labels (6, 7, 8, 9) in mV  are overlapping with that of 2V : distance 2 

type of violation.  
Corrections:  
(1) Use two arrays 1mD −  and mD  to record the minimum displacement needed 

for each label position in 1mV −  and mV , in case a corrective shift (to the 
left) is needed for a violation. [ ] 0mD i =  indicates no violation for the ith 
position in mV . [ ]1 0mD i− =  indicates no violation for the ith position in 

1mV − . 
(2) Assignment of displacement values for 1mV − :  
 [ ]1 0 0mD − =  because [ ]1 0 18mV − = , and 18 does not overlap with any 

labels in 1V ; 
 [ ]1 1 0mD − =  because [ ]1 1 19mV − = , and 19 does not overlap with any 
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labels in 1V ; 
 [ ]1 2 3mD − =  because [ ]1 2 0mV − = , and 0 overlaps with a label in 1V ; 0 

needs to shift at least 3 positions towards left to resolve this violation; 
 [ ]1 3 4mD − =  because [ ]1 3 1mV − = , and 1 overlaps with a label in 1V ; 1 

needs to shift at least 4 positions towards left to resolve this violation; 
 [ ]1 4 5mD − =  because [ ]1 4 2mV − = , and 2 overlaps with a label in 1V ; 2 

needs to shift at least 5 positions towards left to resolve this violation; 
 [ ]1 5 6mD − =  because [ ]1 5 3mV − = , and 3 overlaps with a label in 1V ; 3 

needs to shift at least 6 positions towards left to resolve this violation; 
(3) Assignment of displacement values for mV :  
 [ ]0 7mD =  because [ ]0 4mV = , and 4 overlaps with a label in 1V ; 4 

needs to shift at least 7 positions towards left to resolve this distance 1 
type of violation; 

 [ ]1 8mD =  because [ ]1 5mV = , and 5 overlaps with a label in 1V ; 5 
needs to shift at least 8 positions towards left to resolve this distance 1 
type of violation; 

 [ ]2 3mD =  because [ ]2 6mV = , and 6 overlaps with a label in 2V ; 6 
needs to shift at least 3 positions towards left to resolve this violation; 

 [ ]3 4mD =  because [ ]3 7mV = , and 7 overlaps with a label in 2V ; 7 
needs to shift at least 4 positions towards left to resolve this violation; 

 [ ]4 5mD =  because [ ]4 8mV = , and 8 overlaps with a label in 2V ; 8 
needs to shift at least 5 positions towards left to resolve this violation; 

 [ ]5 6mD =  because [ ]5 9mV = , and 9 overlaps with a label in 2V ; 9 
needs to shift at least 6 positions towards left to resolve this violation; 

(4) [ ] [ ]( )max 1max ,m mD D i D i−=  for all i.  
(5) Use of maxD  for corrections. 
In order to accomplish the corrective displacement for the above labels, we 

will shift every label maxD  positions toward the left for the last two vertices. 
This indicates that we need to create maxD  extra positions from the previous 
vertices. A divide-and-conquer strategy is used. 

 

 
 

In this case, a complete data set has 20 numbers (0, 1, 2, 3, …, 16, 17, 18, 19) 
available to use for the label assignment. We can safely remove 2 numbers from 
each data set to help with the shift-left task, because three consecutive vertices 
need a total of 18 different labels to avoid violation of ( )1,1L  rules. These two 
numbers can be any number from 0 to 19. For example, 

Complete data set : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Shrinked data set : 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Alternative shrinked data set : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 (6.1) 

Without loss of generality, we will remove the first two numbers (0, 1) from 
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each of the last 4 data sets as indicated in (6.1), creating a total of 8 extra posi-
tions for the later data to fill in. This will satisfy the maxD  required for resolving 
violations. 

New label assignment: 
0 1 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 0 1 2 3 || 4 5 6 7 8 9 || 10 

11 12 13 14 15 || 16 17 18 19 0 1 || 2 3 4 5 6 7 || 8 9 10 11 12 13 || 14 15 16 17 18 
19 || 0 1 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 0 1 2 3 || 4 5 6 7 8 9 || 
10 11 12 13 14 15 || 16 17 18 19 0 1 || 2 3 4 5 6 7 || 8 9 10 11 12 13 || 14 15 16 17 
18 19 || 0 1 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 * * 2 3 4 5 || 6 7 8 9 
10 11 || 12 13 14 15 16 17 || 18 19 * * 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 
18 19 * * 2 3 4 5 || 6 7 8 9 10 11 || 12 13 14 15 16 17 || 18 19 * * 2 3 4 5 || 6 7 8 9 
10 11 || 12 13 14 15 16 17 ||  

New label assignment for the first and last two vertices: 
0 1 2 3 4 5 || 6 7 8 9 10 11 || … || 6 7 8 9 10 11 || 12 13 14 15 16 17  

 

We now have no more violations! Please note the spots marked with * within 
the groups of bold numbers. These are the positions which were originally occu-
pied by 0 s and 1 s. 

Therefore, we successfully constructed the label assignment with the lower 
bound. This means that the lower bound is also the upper bound for n = 6 with 
m = 35. Thus, we have ( ) ( )6

1 35 19Cλ = . 

6.2. General Algorithm for Finding Label Assignment Based on  
Lower Bound 

In this section, we provide a general algorithm to find the label assignment for 
the purpose of finding the upper bound of ( ) ( )1

n
mCλ  with 3n ≥  for the fol-

lowing uncovered cases: 
( )
( )

1) mod 3 with an1 4,7, ,3 2;

2

d

2) mod3 w 5,8,it ,6 1.h

m m n

m m n

≡ = −

≡ = −





            (6.2) 

Number of uncovered vertices:  

( ) ( ) ( ) ( )3 2 7 3 1 6 1 8 3 1 2 2 2 3 4M n n n n n= − − + + − − + = − + − = −  

For each m value listed in (6.2):  
(1) Calculate the following parameters: 

3
mp  =   

; p is the maximum number of repetitions per label. 

1mnL
p

 
= − 
 

; L is the lower bound for ( ) ( )1
n

mCλ . 

( )3 1r L n= − − ; r is the number of labels which can be safely removed from  

each data set without violation of ( )1,1L . 

(2) Initialize index, whose value ranges from 0 to L; One complete data set 
runs from 0 to L. 

(3) Initial label assignment: 
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For each of the m vertices 
For each of the n positions available for labels  

Assign a proper index to each label position; 
Increase index by 1; 
If (index > L) reset index =0; 

Complexity: mn . 
(4) Print out the initial label assignment for the first and last two vertices: 

1 2 1, , ,m mV V V V− . 
Complexity: 4n. 

(5) Check possible violation of requirement for ( )1,1L : we only need to 
check 1mV −  against 1V , and mV  against both 1V  and 2V . 
Use two arrays 1mD −  and mD  to record the minimum displacement 
needed for each label position in 1mV −  and mV , in case a corrective shift 
(to the left) is needed for a violation. [ ] 0mD i =  indicates no violation 
for the ith position in mV . [ ]1 0mD i− =  indicates no violation for the ith 
position in 1mV − . 
Step 1: Compare each label of 1mV −  with that of 1V . Any overlapped 
labeling indicates a violation of distance 2 type, and the corresponding 

[ ]1mD i−  will be recorded. Complexity: n2. 
Step 2: Compare each label of mV  with that of 1V . Any overlapped 
labeling indicates a violation of distance 1 type which requires more cor-
rective shifts toward left, and the corresponding [ ]mD i  will be recorded. 
Complexity: n2. 
Step 3: Compare each label of mV  with that of 2V . Any overlapped 
labeling indicates a violation of distance 2 type, and the corresponding 

[ ]mD i  will be recorded. Complexity: n2. 
Step 4: [ ] [ ]( )max 1max ,m mD D i D i−= . This is the minimum corrective dis-
placement needed to shift every label of the last two vertices toward left 
to avoid ( )1,1L  violation; Complexity: 2n . 

(6) If max 0D = , no violations; label assignment is done for this m value. 
(7) If max ! 0D = , adjust label assignment: 

maxD
num

r
 =   

; 

For the first p num−  data set, use index values from 0 to L to assign la-
bels; 
For the rest of data set, only use index values from r to L to assign labels; 
Complexity: mn . 

(8) Print out the updated label assignment for the first and last two vertices: 

1 2 1, , ,m mV V V V− . 
Complexity: 4n. 

(9) Check possible violation of requirement for ( )1,1L : 
We only need to check 1mV −  against 1V , and mV  against both 1V  and 

2V . Use similar methods described in step 1 to step 4 listed above. 
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Complexity: 23 2n n+ . 
(10) If max 0D = , no violations; the updated label assignment works for this m 

value. Otherwise, print out error message: Failed label assignment for 
,n m= ∗ = ∗ . 

6.3. Runtime and Complexity 

From Section 6.2, we can figure out that the runtime complexity to calculate 
( ) ( )1
n

mCλ  and find a no-violation cyclic label assignment for a given pair of 
( ),n m  is:  

22 6 12mn n n+ +                         (6.3) 

Applying (6.3), the runtime complexity to calculate ( ) ( )1
n

mCλ  and find a 
no-violation cyclic label assignment for all the uncovered m values with a given 
n value is: 

( ) ( )
3 2 6 1

2 2 3 2

7,10, 8,11,
2 6 12 2 6 12 33 13 72

n n

m m
mn n n mn n n n n n

− −

= =

+ + + + + = + −∑ ∑
 

 (6.4) 

The complexity of (6.4) is in the order of n3. 
When we run the program for all the n values from 3 to N, the runtime com-

plexity is: 

( )
4 3 2

3 2

3

33 125 85 20333 13 72 146
4 6 4 6

N

n

N N N Nn n n
=

+ − = + − − −∑      (6.5) 

The complexity of (6.5) is in the order of 4N . 
Laptop configuration: 4 core, 8 thread, i7, 8 GB ram, 100 GB hard drive. 
Runtime and size of output file when only the label assignment for the first 

and last two vertices were printed: 
 

 
 

Runtime and size of output file when label assignment for all the vertices were 
printed: 
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6.4. Results 

We tested our algorithm for every n value from 3 to 500 and every case was suc-
cessful. A sample case for 500n =  is listed below: 
 

 
 

Our results demonstrate that we can use the lower bound to construct the la-
bel assignment without violation of ( )1,1L  for n values up to 500. This indi-
cates the upper bound is the same as the lower bound. Therefore, we have: 

Conjecture: For all integers m and n with m, n ≥ 3, the smallest possible value 
for the largest label needed is given by  

( ) ( )1 1n
m

mnC
p

λ
 

= − 
 

                    (6.6) 

where n is the number of labels per vertex, m is the number of vertices, and 

3
mp  =   

 is the maximum number of repetitions per label. 

We did not continue with n values bigger than 500 in our code, because the 
output file size went over 4 GB with 500n =  when we only print out the first 
and last two vertices, and the output file size went over 22 GB with 200n =  
when we print out label assignment for every vertex. Practically, 500n =  is 
large enough to demonstrate the feasibility of our algorithm, and the correctness 
of (6.6). 

7. Conclusions 

In this paper, we studied the label assignment for cycle graphs, and we focused 
on the ( ) ( )1

n
mCλ  for the m values which were left uncovered by [1] due to their 

case-by-case complexities. We achieved a lower bound, expressed by Theorem 1, 
for all the uncovered m values. Moreover, based on the lower bound, we devel-
oped an algorithm in Section 6.2 to construct a no-violation label assignment for 
all vertices in order to find the corresponding upper bound. We ran every single 
case for 500n ≤  and obtained successful label assignments. 

Theoretically, our algorithm can be used for any 3n ≥  to find a feasible label 
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assignment. Anybody interested in uncovered cases for 500n >  is welcome to 
verify the label assignment using our algorithm. 
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