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Abstract 
The stiffness model of the finite element is applied to the Kirchhoff-love 
closed-form plate buckling; buckling is always in focus in plate assemblages. 
The useful Eigen-value solutions are unable to separate a square plate from a 
much weaker long one in the most commonly-used all-simply supported 
plate (SSSS), among others. Spring-values of the Kirchhoff-Love plate are 
sought; once found, displacement-factors can be determined. Comparative 
displacements allow an easier and better evaluation of buckling-factors, pure- 
shear, vibration and so are termed “buckling-displacement-factors”. In test-
ing, many plates in mixed boundary conditions are evaluated for displace-
ment assisted buckling-solutions, first. The displacement-factors made from 
fundamental Eigen-vectors, in a single-pass, are found to be within about 
one-percent of known elastic values. It is found that the Kirchhoff-Love plate 
spring and the finite-element spring, demonstrated, here, in the assemblage of 
beam-elements, are equivalent from the results. In either case, stiffness is first 
assembled, ready for any loading—transverse, buckling, shear, vibration. The 
simply-supported plate draws the only exact vibration solution, and so, in an 
additional new effort, all other results are calibrated from it; direct vibration 
solutions are made for comparison but such results are, hardly, better. In the 
process, interactive Kirchhoff-Love plate-field-sheets are presented, for de-
sign. It is now additionally demanded that the solution Eigen-vector be deve-
lopable into a recognizable deflection-factor. A weaker plate cannot possess 
greater buckling strength, this is a check; to find stiffness the deflection-factor 
must be exact or nearly so. Several examples justify the characteristic buckling 
displacement-factor as a new tool. 
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Vibration, Plate’s-Field-Sheet 

 

1. Introduction 
1.1. Thin Plate Displacement 

In the area of plate bending and displacement, Timoshenko and Krieger [1], re-
mains a veritable source of reference including the contribution of many other 
expert-authors. The closed-form results of these experts are approximately but 
closely re-established by the numerical finite-element process since its inception 
about 1965; plate-stiffness reduces as loaded surface area increases, it was estab-
lished. In the study of buckling here, a new fast but competitive displacement 
solution, based on domain spring-stiffness, is found and described. 

1.2. Buckling-Beam/Plate  

Euler’s Eigen-vector ( sinZ x Lπ ) for his original bar was not developed into a 
displacement-factor, (Δ). Buckling discovery quickly found applications in sta-
bility in frames of construction; in plates making up ships and air-planes, etc. 
With Kirchhoff-Love displacement-theory on the scene, the attendant Euler’s 
buckling displacement-factor should have been found given Euler mode  
( sinW Z x L= π ). 

Give a Value to the Kirchhoff-Love Differential, “(∂4w/∂x4)” 

( )4 44 4 4

4 1xx

w w x x yw x
x w x

H w
y

=
∂ ∂ ∂ ∂∂ ∂ ∂

= =
∂ ∂ ∂

∫∫
∫∫

             (1) 

Find ( ) 5 41 4xxH Z L= π , 76.4977xxH Z= , and,  
* 4 * 0.013077i shapeZW q L D∆ = = -maximum. 

There is nothing to separate this result from the Euler-Bernoulli beam dis-
placement, −5/384 = 0.01302  

A work-energy solution comes for comparison, not that it is essential. The 
reactive-capacity of the plate is first determined in terms of normal and twisting 
reactions for virtual continuous-loading. 

The treatise of Arthur, W. Leissa, [2], 1985, gives a comprehensive discourse 
in buckling, encompassing shear-buckling. The complexities in buckling solu-
tions quickly become apparent in the very first problem in “SSSS” where the 
square-plate and another “1. by 2.” solve exactly the same value of “Ncr ≡ 4” in 
uni-axial compression. Studies by Yaghoobi [3] found that a “1 by 1.5” SSSS- 
plate was 91-percent as strong as square plate in buckling. Experiments in 
buckling [4] [5] [6] show the same trend. The expected buckling-strength ver-
sus aspect-ratio of the “SSSS” plate in uni-axial compression is expected to be 
“Graph-B” rather than the stronger existing graph-A. The difference is impor-
tant and has implications in many other situations including pure-shear. Al-
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ready shown, Euler beam-buckling “ 4 4 2 2w x w xEI F∂ ∂ = ⋅∂ ∂⋅ ” comes with a 
unique deflection factor of “ ( )40.013077 xL EI ” in a fundamental Sine-mode, 
close to the “0.01302 L4/EI” for “Euler-Bernoulli” beam in a polynomial statics 
mode; they play different roles. The buckling load of the “SSSS-plate” cannot 
have the same result between the aspect-ratios of 1.0 and “∞” as exhibited in 
existing monographs, as handed down since [1] [2]. The present study explains 
why it is untenable. 

In Johnarry and Ebitei, [7] [8], buckling was tracked by displacement and the 
Euler-type Curve-B in Figure 1, was achieved; the buckling strength of infinitely 
long “SSSS-plate” reduced significantly below the “4.0” literature value, [1] [2]. 
Similar improvements were found in other cases and especially the pure-shear 
cases [8] [9] [10].  

1.3. Pure-Shear 

Pure-shear must always be investigated in plates, webs, and beam-column joints; in-
deed at all supports. The studies of Johns [9], Rockey [10] give great insights. This 
new spring-capacity solution of the “SSSS-plate” is carried over to the pure-shear case  

and it was found the existing solution, “ ( )( )25.351 4 1xyN a b≡ + + ” was too 

high [9], vis-à-vis a new solution [8], “ ( )( )23.65 4 1xyN a b≡ + + ”. The webs of  

beams in service are highly affected by pure-shear effects leading to wrin-
kling/buckling tending to change an existing shape; Figure 2. Pure shear always 
accompany heavy loading/reaction zones; buckling and pure-shear are compo-
site in nature. It will be shown. 

1.4. Vibration 

Vibration of plates continues to be an on-going study; unforeseen alarming vi-
bration in cable-stayed bridges and recently in the London millennium 
foot-bridge (Year-2000) are recent cases. This is despite major design considera-
tion of vibration in such cable-assisted long spans learning from earlier historic 
failures. Key aspects of early studies in vibration was due to Lord Rayleigh, [11], 
1945, who confirmed that the free-vibration-factor of a simply-supported plate 
was “ 2 44 Dω = π M ”. Many earlier results, up to 1966, were compiled by Bhal-
chandra Ballal, [12] showing that the then best all-clamped square-plate (CCCC) 
result was “ω ≡ 35.98” by “Iguchi” which is now known to be some 2.5% up-
per-bound. More recent extensive study and information on plates in free vibra-
tion are found in Authur M. Leissa [13] and in Xing and Liu, 2008 [14] who 
elaborated Levy-type deflection functions into characteristic equations and de-
terminate de-composition for exact solutions; the lower-bound clamped fre-
quency-factor for the “CCCC” was found [14] to be “ω ≡ 35.112” (lowest ever 
found). Adopting Navier-type conventional plate-bending analysis procedure 
should also yield comparable vibration results. Other simpler solutions are easily 
found equating potential and kinetic energies after Rayleigh-Ritz; or comparing  
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Figure 1. SSSS-plate; buckling-factor vs aspect-ratio; ( )( )sin sinW Z m x a n y bπ= π . 

 

 

Figure 2. Pure-shear trying to distort rectangle of 
I-beams’s web. 

 
of energy-work potentials in a Galerkin solution. Onwuka, et al., [15] used such 
a technique with results, only 2.47-percent higher than Xi and Liu. [14] in fre-
quency-factor, “ω” in the “CCCC”. So there had been good solutions since be-
fore 1966; what is essential now seems to be simpler self-checking design-oriented 
method as found in this new study through calibration from the exactly known 
all-sides simply supported plate. 

The study of natural frequencies of materials and structures take pre-eminent 
stage because of effects of dynamic forces. The British Standard-5400, [16] pre-
scribes dynamic forces in foot bridges as moving point-load of  
“ ( ) ( )180sineF t tω= ⋅ ” Newtons, simplifying dynamic designs. Similar sugges-
tions can be made in other areas; the force “F(t)” can be an equivalent “Catego-
ry-5 hurricane”. 

1.5. Finite-Element, (FE)-Stiffness-Solution and Kirchhoff-Love  
Plate-Stiffness Solution 

The finite-element method basically comes down to “Stiffness-displacement-Load” 
[K]{Δ} = {F} equalit; by comparison, the Kirchhoff-Love plate equation for beam 
(w = Zf(x)) leads to Equation (1), where, [K]{Z} = {qef}. Both springs are basical-
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ly the same; the former is, simply, more elaborate. The {F}, takes different forms 
for bending, buckling, vibration. In the particular case of buckling it is bend-
ing-moment, F ≡ {Mi}; Pcr/Neuler = (Mrelative/Δ)/Neuler ≡ “moyope” in Table 1. In 
Ref. [17] with extensive computer buckling solutions print-outs, it was proved 
that finite-element beam-buckling followed “Sine variation”. For example the 
finite-element solution started as though the Sine-variation was not known 
and the initial loading was uniform, {q}; then replace {q} by the found {M} and 
keep replacing by new {M} until a steady state situation is found in three or 
four iterations. The closed-form solutions were, very accurately, re-established. 
The “FE” analysis in Table 1 for fixed-base sway-portal (Ibeam/Icol = 0.1), buck-
ling analysis is output-Ncr,col = 0.252Neuler. This is virtually the buckling of can-
tilever-column. (notice the steady-state solution). Tbe portal frame case is an 
extended beam analysis and only the beam-column finite-element is tested. By 
calling “Ib/Ic” = ∞(say, 100); “Ncr = Neuler”, and so on For beam from point-1 to 
point-2. length-L, the local stiffness elements are found. The matching Δ-vector 
reads {u, Δ1, θ1, Δ2, θ2] and the relevant force-action vector reads, {N, V1, M1, V2, 
M2}. 

The logical sequence is, “[Klocal] → [Transform] → [Kglobal]; explaining [Klocal] as 
the basic slope-deflection, Table 2, with, r = EI/L; a* = AE/L”; C22 = 12 r/L2; and 
C23 = −6 r/L; C25 = 6 r/L. 

1.6. Objective  

In the “SSSS” plate, among others, buckling Eigen-values are unable to differen-
tiate a square plate from a long one to the detriment of design. It will now be 
possible to specify buckling strength with characteristic displacement-factor to 
overcome this problem. It has already been shown the first Euler bar should have 
specified the characteristic-displacement, “ * 40.013077q L EI∆ = ” from the so-
lution Eigen-vector; it should have been the practice.  

Uni-axial strength versus aspect-ratio buckling curves handed-down by ex-
perts, [1] [2] are connected individual mode-curves with unknown junction-values 
except by extrapolation; the present study will find continuous variation. 

It will be shown that characteristic buckling displacement exists, (akin, to the 
Southwell-plot). Such relative-displacements find near-exact vibration-factors 
through calibration from the exact “SSSS” values.  

2. Applicable Equations 
2.1. Bending and Deflection in Thin Plates 

4 4 4

4 2 2 4

2w w w q
Dx x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                      (2) 

By expressing the deflection-“W” and the load “q” into similar infinite series 
Timoshenko and others have comprehensively explained the solutions for dis-
placements and bending moments. 
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Table 1. Fixed-base portal + mirror, itertn = 3; bars-34; (Ibeam)/(Icol) = 0.1. 

….node Msd mrel = m y; moyope; weight  

…. 1 
…. 2 

…. 3 

…. 4 

…. 5 
…. 6 

…. 7 

…. 8 

…. 9 

…. 10 
…. 11 

…. 12 

…. 13 

…. 14 

…. 15 
…. 16 

…. 17 

…. 18 

…. 19 

…. 20 
…. 21 

…. 22 

…. 23 

…. 24 

…. 25 
…. 26 

…. 27 

…. 28 

…. 29 

…. 30 
…. 31 

…. 32 

…. 33 

…. 34 

49.213 
−2485.434 

−4923.839 

−7172.256 

−9143.320 
−10,760.814 

−11,962.952 

−12,703.617 

−12,953.934 

−12,704.128 
−11,963.758 

−10,761.386 

−9143.571 

−7172.499 

−4924.174 
−2485.545 

49.224 

49.169 

−2485.367 

−4923.784 
−7172.152 

−9143.009 

−10,760.813 

−11,962.858 

−12,703.341 
−12,954.058 

−12,704.064 

−11,963.339 

−10,761.072 

−9143.340 
−7172.343 

−4924.021 

−2485.487 

49.250 

0.00 
−2534.649 

−4973.056 

−7221.474 

−9192.539 
−10,810.034 

−12,012.173 

−12,752.839 

−13,003.156 

−12,753.352 
−12,012.982 

−10,810.612 

−9192.799 

−7221.721 

−4973.403 
−2534.775 

−2534.775 

−2534.775 

−2534.601 

−4973.019 
−7221.388 

−9192.245 

−10,810.052 

−12,012.098 

−12,752-581 
−13,003.299 

−12,753.307 

−12,012.582 

−10,810.316 

−9192.585 
−7221.590 

−4973.269 

−2534.735 

−2534.735 

−0.00 
−0.815 

−1.599 

−2.322 

−2.956 
−3.477 

−3.864 

−4.102 

−4.182 

−4.102 
−3.864 

−3.477 

−2.956 

−2.322 

−1.599 
−0.815 

0.000 

0.000 

−0.815 

−1.599 
−2.322 

−2.956 

−3.477 

−3.864 

−4102 
−4.182 

−4.102 

−3.864 

−3.477 

−2.956 
−2.322 

−1.599 

−0.815 

0.000 

0.000 
0.252 

0.252 

0.252 

0.252 
0.252 

0.252 

0.252 

0.252 

0.252 
0.252 

0.252 

0.252 

0.252 

0.252 
0.252 

0.252 

0.252 

0.252 

0.252 
0.252 

0.252 

0.252 

0.252 

0.252 
0.252 

0.252 

0.252 

0.252 

0.252 
0.252 

0.252 

0.252 

0.252 

0.000 
2.066 

7.954 

16.771 

27.177 
37.585 

46.411 

52.311 

54.383 

52.313 
46.414 

37.587 

27.178 

16.772 

7.954 
2.066 

2.066 

2.066 

2.066 

7.953 
16.771 

27.175 

37.584 

46.410 

52.309 
54.383 

52.312 

46.412 

37.585 

27.177 
16.771 

7.954 

2.066 

2.066 

 
 
 
 

Pcr/Peuler = 0.252; 
Ib/Ic = 0.1; 

[K]{y} = {Msd} 

 
Table 2. Local beam matrix, (Klocal) elements. 

a* 0 0 0 0 

0 −C22 C23 C22 −C25 

0 C25 4r −C25 2r 

0 C22 C25 −C22 C25 

0 C25 2r −C25 4r 

2.2. Plate Buckling-Isotropic 

(a) Bi-axial:  

https://doi.org/10.4236/ojce.2021.111007


T. N. Johnarry 
 

 

DOI: 10.4236/ojce.2021.111007 102 Open Journal of Civil Engineering 

 

( ) ( )2 2 2 24 4 4

4 2 2 4

2 x yN w x N w yw w w
Dx x y y

∂ ∂ + ∂ ∂∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
         (3) 

(b) Uni-axial in X: 

( )2 24 4 4

4 2 2 4

2 xN w xw w w
Dx x y y

∂ ∂∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                (4) 

Many solutions of this are found in Ref. [2] and elsewhere but some are un-
tenable, especially when the compressed ends are simply-supported.  

(c) Pure-Shear:  

( )24 4 4

4 2 2 4

22 xyN w x yw w w
Dx x y y

∂ ∂ ∂∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
              (5a) 

Pure-shear solutions are not as available as the earlier two.  
The method employed, here, is to relate the critical curvature in uni-axial 

compression to the von Misses distortion shear, (σVM), and associated curvature, 
“χVM.” 

4 4 4

4 2 2 4

2 VMxyNw w w
Dx x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂

χ
                (5b) 

[ ] [ ] [ ]2 22
1 2 2 3 3 1

22 VM = − + − + −σ σ σ σ σ σ σ            (5c) 

Or, in respect of curvature, (χ) 

VM VMC= ⋅σ χ                         (6) 

By Equations (5, 6) pure-shear is known with uni-axial buckling curvatures, 
[8]. 

2.3. Plate Vibration with Circular-Velocity-ω, at Time-t 

( )( )2 24 4 4

4 2 2 4

sin2 w t W tw w w
Dx x y y

∂ ∂ ⋅∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂

ωM
            (7) 

Or, with respect to dimension “x, y” only, for the eventual vibration equation, 

( )24 4 4

4 2 2 4

2 modeWw w w
Dx x y y

⋅∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂

ωM
               (8) 

To tie buckling and vibration, the next equation, Equation (9a), ensues; find 
[Kvib], 

( )buc buc vib buc hamonicsK K∆ = ∆ + ∆∑                (9a) 

2 vibK
=ω
M

                          (9b) 

If buckling or elastic displacements were known, an alternate easier method 
using the “SSSS” as calibrator is, 

2 2
next next ssss ssss∆ =⋅ ⋅∆ω ω                       (10a) 
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Or, simply for a constant plate-thickness, even for the same boundary condi-
tions, 

2 2
1 1 2 2∆ =⋅ ∆⋅ω ω                     (10b) 

The implication is that if the (ω2) is known for one aspect-ratio the value for 
another aspect-ratio with known “(Δ2)” is readily found. For example, for the 
“SSSS” with “a/b = 1” and 2

1 389.6ω =  and “Δ1” = 0.00416 then at “a/b” = 2 
with “Δ2” = 0.0106, then, 2

2 152.9ω = , or, ω2 = 12.36; that is all; there is no need 
to solve, afresh, the case, “a/b” = 2 (see Table 3, Table 4). 

Relating the “SSSS” to “CCCC” for any aspect-ratio, the formula applies; for 
example, CCCC at a/b = 1: 0.00128cccc∆ → , then  

( )2 0.00416 0.00128 389.6 1266ccccω → × = , 35.58ccccω =  … a result very diffi-
cult to improve upon, [12] [13] [14] [15].  

3. Spring-Capacity of the Kirchhoff’s Plate Differentials 

By giving finite values of the left-hand differentials, the capacity of a Kirchhoff’s 
plate is identified; this is achieved through valid deflection functions,  
“ shapeW ZW= ”  

( )4 4
4 4

xx

w w x x y
w x

w y
H

x

∂ ∂ ∂ ∂
= ∂ ∂ =

∂ ∂
∫∫

∫∫
                (11) 

( )4 2 2
4 2 2

2
2xy

w w x y x y
w y

w
H x

x y

∂ ∂ ∂ ∂ ∂
= ∂ ∂ ∂ =

∂ ∂
∫∫

∫∫
            (12) 

( )4 4
4 4

yy

w w y x y
w y

w y
H

x

∂ ∂ ∂ ∂
= ∂ ∂ =

∂ ∂
∫∫

∫∫
                (13) 

Taking “ ” as curvature;  

( )2 2
2 2

x

w w x x y
w x

w x y

∂ ∂ ∂ ∂
= ∂ ∂ =

∂ ∂
∫∫

∫∫
                 (14) 

( )2 2
2 2

y

w w y x y
w y

w x y

∂ ∂ ∂ ∂
= ∂ ∂ =

∂ ∂
∫∫

∫∫
                 (15)  

( ) 22

1,2 2 2
x y x xy y+ − +

= ±
  


 

               (16a) 

Or by reference to the Mohr’s circle, for “R” as radius, 

1,2 2
x y R= ±
+




                      (16b) 

These integrals are the outcomes of criterion of buckling as relative-curva- 
ture/deflection resonance. A typical buckling resistance integral is,  

( ) ( )4 4
4 - 4xd xx r xd xcdw x C w w C R∂ ∂ = =                (17) 

The ratio, “ -xx r xcdw w R= ” must always be a scalar constant or else the func-
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tion is inadmissible; indeed this is the inbuilt buckling criteria. Buckling deflec-
tion function, w, must be chosen as to make the ratio, (wxx-r/w), a scalar. The 
domain compliant factor at resonance, Cxd4, is what is left to be found. Multiply 
through and integrate to find it.  

( )4 4
4 4

4xd xcd

w w x x y
C R w x

w x y

∂ ∂ ∂ ∂
⋅ = ∂ ∂ =

∂ ∂
∫∫

∫∫
            (18) 

3.1. Displacement in Bending/Buckling in Rectangular Plate 

The deflection function, w, is taken as 

, ,shp x shp yw Z w w  =                       (19a) 

The “SSCS” is considered in X-hydrostatic load q = q0(x/a); Figure 3. 
Bending was, initially, not the focus of the present study; this has been better 

treated elsewhere [1]. The relative deflections, as found here, needed for the stu-
dies in buckling, pure-shear, vibration are seen to be virtually, interchangeable 
with the bending ones. 

(a): “SSCS”-Plate, Figure 3 

1) [ ][ ]sin sinw Z G x a A x a n y b= ⋅ + ⋅ π                           (19b) 

For n = 1, G = 4.5 and “A” = 0.977. 

2) * 0.482w w x y= ∂ ∂ →∫∫                                       (19c) 

3) 

4

4

xx

ww x y
x

H
w∗

 ∂
∂ ∂ ∂ =

∫∫
                                       (20) 

yielding, → “ 4 4 *0.225 191.42G a w → ”. 

4) 

4

2 22

xy

ww x y
x y

H
w∗

 ∂
∂ ∂ ∂ ∂ =

∫∫
                                   (21) 

yielding, → “ 2 2 *0.45 186.6G wπ → ”. 

5) 

4

4

yy

ww x
H

y
y
w∗

 ∂
∂ ∂ ∂ =

∫∫
                                 (22) 

yielding, → “ ( )4 4 4 *0.384 77.6b n wπ → ”. 
Summing, ( ): 455.6xx xy yyH H H H+ + = ]; noting, this spring-value will solve 

any loading for this plate. 
Find “ ( )1cr shp normH W q∆ = ”.  

Find (qnorm) as [ i i

i

q w
w
⋅

] by quadrature if not constant-q0. 

from points (0.5, 0.75); (0.25. 0.5); (0.5, 0.5); (0.75, 0.5); (0.5, 0.25), 
find, (qnorm) as (0.466q0) and so, ( )1 1.266 1.0 0.466 0.001295cr H∆ → × × × → ; 

cf, 0.0013, [1]. 
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Figure 3. “SSCS” Plate in X-hydrostatic 
bending-load; q0x/a; try case of “a/b = 1”. 

 
The solution is in the context of the “finite-element-method: [K]{Δ} = F. In 

this case [K or H] = 455.6. 
(b): “udl case”: If “qnorm” ≡ q0; udl, Δcr → 0.001295/(0.466) → 0.002779; cf, 

0.0028 [1]. The new method is, therefore, self-checking. 

3.2. Buckling Potential Limits 

Three possibilities are identified relative to X- and Y-axes in emulating the reac-
tive potentials “[∂4w/ ∂x4]; [2∂4w/∂x2∂y2]; [∂4w/∂y4]”. No curvature “ i ” is ever 
applied in practice but “ x ” and “ y ” act jointly.  

1) x xσ   
This is first in contention in uni-axial X-compression; this case easily solves 

Equations (3, 4). 
2) y yσ   
This is out of contention when no load is applied in the Y-axis, whatever the 

value of “ y .” 
3) x avσ   
This “average loading-curvature” situation will always happen and also in 

contention. 1) and 2) are identified in the Mohr’s diagram, Figure 4. 
In effect, two curvature-loading circles ( x , av ) are operative and the larger 

circle gives the required solution for “Nx”. This process softens the stiff con-
straint that the wave numbers “m, n”, must be whole numbers.  

(a). Importance of Curvature, “(𝜕𝜕2w/∂x2)cr”, in Uni-axial-Compression 
Buckling  

The solution of Equation (3). is easy when 
1): when, “ 2 2 2 2w x w y∂ ∂ ≥ ∂ ∂ ”  

or 
2) when, 2 2

x cr w x= = ∂ ∂   
When “ 2 2 2 2w x w y∂ ∂ < ∂ ∂ ”, “ 1 ” may be interpreted as principal loading 

curvature that must align with “(∂2w/∂x2)” approximately or else find (χ) by eq-
uation (20). 

So, Figure 4, explaining Mohr’s loading curvatures will supply the critical so-
lution curvature. 
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Figure 4. Buckling curvature-loading-circles; X-compression; exact if x y≥  . 

 
(b)-Alternate Critical X-Curvature, “(𝜕𝜕2w/∂x2)cr” By Deflection Ratio 
Relying on the deflection coefficients, Δ1, Δ2 at two consecutive locations, “i” 

and “i + 1”, Figure 5(a), the curvature at the second location may be found from 
Equation (17) 

1 ,1 2 ,2

1 2

x x

A A
=

∆ ∆ 
                       (23a) 

A2/A1 = CA, stressed boundary lengths-ratio representing side areas; Figure 
5(b), Figure 5(c).  

Aspect ratio, “s*” gap of 25-percent can be tolerated. 
This equation is similar to Equation (3) as “(Force/Area)(curvature) = Con-

stant” = Kirchhoff’s plate-capacity. 

22
3
atA b= +                         (23b) 

3.3. Deflection-Factor as Part of Buckling Solution 

From Equation (4), put, ( )2 2 *
x wN x q∂ ∂ ≡ ; for a given plate the “LHS” is inva-

riant and once computed can be used for bending, buckling and vibration; “q*” is 
equivalent uniform transverse pressure. That is, ( )1 shapeH w∆ ≡ ; the primitive 
buckling-value is sufficient. The familiarity of “Δ value” gives confidence the so-
lution is on track.  

4. Illustrations: Buckling Including Pure-Shear(Nxy) 
4.1. Buckling-Plate; “SCCC”, Figure 6 

(a); a/b = 0.95; Deflection in Buckling 

[ ][ ]sin 1 cosw Z G x a A x a n y b= ⋅ + ⋅ − π               (24) 

in which, “n = 2;G = 4.5; A = 0.977; b = 1”. 
By Equation (19), find, w* = 0.757. 
By Equation (20), find “Hxx” as ( )4 4 * 40.675 365.74G a w a→ →  

By Equation(21) find “Hxy” as 2 2 2 2 2 20.45 475.24n G a b a→ ⋅ ⋅ →π⋅  

By Equation (22), find “Hyy” as ( )4 4 4 *0.383 788.46n b w→ →π⋅  

Find curvatures, 
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Figure 5. (a) Expected buckling stress-aspect ratio curve; (b)Biaxial stress-form; (b) Uni- 
axial stress form. 

 

 

Figure 6. Buckling-plate “SCCC”; a/b = 
0.95 where “χx-domain = χy-domain”. 

 
 

( )2 2

x

w w x x y

w
χ ∗

∂ ∂ ∂ ∂
= ∫∫                  (25) 

yielding, → “ ( )2 2 * 20.675 18.056K a w a→ ”. 

( )2 2

y

w w y x y

w
χ ∗

∂ ∂ ∂ ∂
= ∫∫                  (26) 

yielding, → “ ( )2 2 2 * 20.383 20.03n b w b≅π⋅ ”. 
Evaluating, a/b = 0.95; [ 218.06 0.95 20.0x = = ]; [ 20.03 20y = ≡ ]; [Hxx = 

448.49; Hxy = 526.58; Hyy = 788.46; H = 1763.53]; 

* -0.95 shp c crs
W H

=
∆ = → ∆ ; find Wshp → (wshp,x)(wshp,y); at x/a = 0.4 and y/b = 0.5, 

wshp → 2.73; (compare the shape-value of “CCCC”-plate at center of bending → 
“wshp = 4”, from function. ( )( )1 cos 2 1 cos 2W Z y a y b−π≡ − π . So, Δcr → 
0.00155. 

Curvature and Buckling Value, (a/b = 0.95), Nx,cr; 

* ,, 0.95
8.93x crx s

N H ρ
=

→ = →  (expected to be exact).  

(b) Try New Aspect-Ratio, a/b = 1; the “SCCC”; H = 1627; χx = 18.88 
(with help of Equation (23)) 

*
2

, 1
1627 18.88 8.73

x s
N

=
→ π→ ; cf. 8.986, [2]; table is skipped similar to Table 

6. 

4.2. CCCC-Plate 

(a) The “CCCC” buckling-plate; “Δ-method”; Table 3 
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1 cos 1 cosm x n yw Z
a b
π π   = − −      

               (27) 

in which,; m, n = 2, … 
(i): a/b = 1; By Equations (20, 21, 22, 25, 26), Hxx = 1168.8; Hxy = 779.2; 

29.608x y cr= = =   ; Hyy = 1168.8; H = 3116.8;  

* 1
31168.8 29.608 10.66

s
N ρ

=
= = ; Δc = 0.00128; cf, 0.00126 [1]; the nearness of 

the primitive-Δ to the final-Δ, (0.00128 to 0.00126), confirms “H” on which “Nx” 
depends. Further, the exactness of the w-function is verified. 

(b) More Results: More results are found in Table 3 
The “CCCC” is sampled in Table 3 in the “Δ-method” to reflect aspect-ratios; 

for “ i ” from “ 1i− ”.  

4.3. The “SSSS” Plate 

(Δ-method), is compiled in Table 4, for “w = Z(sinπx/a)(sinπy/b)”.  

4.4. The “CSCS” Plate, Table 5 

[ ]1 cos sinm xw Z x a
a
π = − π  

                 (28) 

where m = 2; results are displayed in Table 5; at s* = 1 the Δ-factor, 0.00194, are 
very accurate in the same fashion as the “CCCC” plate in Table 3. The results for 
pure-shear match the literature “SSSS” values and so the “SSSS” literature-values 
are untenable. The new “SSSS” pure-shear values as given in Table 4 are only 
about 60% of those of ‘CSCS’ in Table 5.  

 
Table 3. New results of “CCCC” and s*; xN ρ=  ; “ ” By “Δ”; ( i shW H∆ ≡ ); buckling and vibration. 

s* 
(1) 

s∗
∆  

(2) 

CA 
(3) 

∆  

(4) 
(Kbuc) 

(5) 
cr ; [Ref.-2] 

(6) 

𝒳𝒳VM. = 𝒳𝒳/√2 
{Nxy} 
(7) 

Kvib 
(8) 

βδ = 
ʃʃ(w.w∂x∂y / ʃʃ 

w∂x∂y) 
(9) 

8 9ω =  
(10) 

Monitor = 
( )δ δ∆ ∆

(11) 

1 0.00128  29.61 3116.8 10.66ρ, [10.4] 
20.93 

{15.08} 
2856 2.25 

35.6 {37. at for  
m = n = 2} 

- 

1.25 0.00186 1.05 21.72 2146.2 10.01ρ, [9.9] 
 

   −13,600 

1.5 0.00229 1.071 19.00 1746.0 9.3ρ, [9.3] 
 

1599 2.25 26.6 −6326 

1.75 0.00258 1.055 18.06 1547.85 8.68ρ, [8.6] 
 

   −3241 

2.0 0.002784 1.053 17.88 1436.65 8.14ρ, [8.0] 
 

1316 2.25 24.2 −900.0 

2.25 0.002923 1.051 17.88 1368.3 7.75ρ, [7.7] 
 

   0 

2.35 0.002967 1.019 17.88 1348.2 7.64ρ 
 

   0 

2.45 0.003005 1.019 17.88 1331.05 7.54ρ 
 

   0 

2.5 0.003022 1.009 17.88 1323.39 7.50ρ, [7.5] 
 

   0 

2.75 
0.00309 

(0.00302) 
1.045 

18.24 
(17.88) 

1292.5 7.32ρ 
 

1183 2.25 22.9 +473.2 

3 0.00302 1.0526 
18.70 

(17.88) 
1292.5 7.32ρ, [7.35] 

13.22 
{9.91} 
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Table 4. New results of “SSSS” and s*; rx cN ρ=  ; “ ” By “Δ”; ( i shW H∆ ≡ ); buckling, vibration. 

s* 
(1) 

Δ 
(2) 

CA 
(3) 

∆  

(4) 
Kbuc 

(5) 
 ; [Ref.-2] 

(6) 

(Kvb)/ 
𝒳𝒳VM. = 𝒳𝒳/ 

√2 
{Nxy} 
(7) 

Kvib 
(8) 

βδ = 
ʃʃ [ww 

/ 

ʃʃ w]𝝏𝝏x𝝏𝝏y 

(9) 

8 9ω =  

(10) 

Monitor = 
( )δ δ∆ ∆  

(11) 

1 0.00416 - 6.0875 240.34 4.0ρ [4ρ] 
4.30 

{5.66} 
240.3 0.616 19.74 - 

1.25 0.00619 1.06 4.337 161.60 3.78 [>4ρ]     −862 

1.50 0.00798 1.06 3.566 125.36 3.56 [>4ρ]     −431 

1.75 0.00948 1.055 3.174 105.73 3.375 [>4ρ]     −265 

2.0 0.0106 1.051 2.977 93.73 3.195 [4ρ] 
 

93.7  12.3 −173 

2.25 0.0116 1.051 2.859 86.11 3.05 [>4ρ]     −118 

2.50 0.01236 1.0048 2.812 80.85 2.91ρ     −61.8 

2.75 0.0130 1.046 2.797 77.02 2.79ρ     −23.4 

3.00 0.0135 1.043 2.797 74.18 2.69 [4ρ] 
1.98 

{3.80} 
74.2  10.96 0 

3.25 
0.0139 

(0.0135) 
1.04 

2.83 
(2.797) 

72.0 2.60ρ     +82.5 

3.50 0.0135    2.60      

 
Table 5. New results of “CSCS” plate and s*; ex crN ρ=  ; “ ” From “Δ”; ( i shpw H∆ ≡ ). 

s* 
(1) 

s∗
∆  

[Ref-1] 
(2) 

CA. 
(3) 

∆  

(4) 
Kbuc 
(5) 

cr ; [Ref.-2] 

(6) 

𝒳𝒳VM. = 𝒳𝒳/ 
√2 

{Nxy} 
(7) 

Factor = 
ʃʃ ww/w 

(8) 

Kvb 
= 

(9) 

9 8ω =  

(10) 

Monitor = 
( )δ δ∆ ∆  

(11) 

1 
0.001936 
[0.00192] 

- 15.5 1032.18 6.75ρ, [2.75] 
10.96 
{9.54} 

1.178 939 28.2 - 

1.15 0.0029 - 11.63 688.72 6.0ρ, [] 
 

    

1.4 0.00465 1.059 7.68 430.35 5.68ρ, [] 
 

   −2257 (−2144) 

1.65 0.00646 1.057 5.84 309.7 5.37 
 

   −1016 (−903) 

1.90 0.0081 1.054 4.91 246.5 5.09ρ, [] 
 

   −581 (−468) 

2.15 0.0095 1.051 4.54 209.6 4.68ρ, [] 
 

   −257 (−144) 

2.4 0.0107 1.049 4.23 186.3 4.46ρ 
 

   −258 (−145) 

2.65 0.0117 1.046 4.05 170.7 4.27ρ 
 

   −180 (−77) 

2.9 0.0125 1.043 3.96 159.8 4.09ρ; stop!! 
2.80 

{5.79} 
   −113 (0)** 

3.15 0.0132 1.043 3.92 151.79 3.92 
 

   −243 (−130) 

4.5. The “CSCC” Plate; (a/b) = 1, Table 6 

1 cos sinm x yw Z G A y b
a b
π     = − ⋅ + ⋅       

          (29) 
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in which, m = 2;G = 4.5, A = 0.977; proceeding as before sample results are 
shown, (Table 6). 
where for “s* = 1” the buckling load is Nx = 8.2ρ and the vibration-factor, ωcscc, is 
31.97 (cf, 31.44 [12]; these are near exact results. The discrepancy in “ω” is trun-
cation error that can become smaller as the X-wave number, m, goes beyond 
“10”. Results are highly accurate in displacement and buckling factors. 

4.6. The “SCSC” Plate, Table 7 

2sin 1 cosx yw Z
a b
π π = −  

                   (30) 

Find that the aspect ratio, s* = 0.866 is critical where “ χx = χy “. 
Some results are sampled in Table 7; notice that “

, 1cr s
N ∗ =

 is exact at 7.79” All 
displayed are very accurate. 

4.7. Deflection Limit 

In the Tables 3-6, the factor, (δ δ∆ ), exhibits a critical stationary-point, Fig-
ure 7, where “Δlimit” is sampled. 

 

 

Figure 7. ( )-δ δ∆ ∆ : graph to monitor solution. 

 
Table 6. New results of “CSCC” and “s*”; xN ρ=  ; “ ” by “Δ”; ( i shW H∆ ≡ ). 

s* 
(1) 

s∗
∆  

[Ref-18, Oba et al] 

(2) 

CA 
(3) 

∆  

(4) 
Kbu 
(5) 

cr  

; [Ref.-2] 
(6) 

𝒳𝒳VM. = 
𝒳𝒳/ 
𝒳𝒳/√2 
{Nxy} 
(7) 

Kvib 
(8) 

βδ = 
ʃʃ (ww/ 

w) 
(9) 

8 9ω =  

(10) 

Monitor = 
δ δ∆  

(11) 
 

1 
0.0016 

[0.00161] 
- 20 1627 

8.2ρ, 
[8.4] 

14.1 
{11.66} 

1578 1.544 31.97   

1.25 0.0027 
     

 
   

 

1.5 0.00355 
     

 
  

  

1.75 0.00415 
     

 
  

  

2.0 0.00488 
     

 
  

  

2.25 
      

 
  

  

2.50 
      

 
  

  

2.75 
      

 
  

  

3.0 
      

 
  

  

3.25 
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Table 7. New results of “SCSC” Vs “s*”; xN ρ=  ; “ ” by “Δ”; ( i shW H∆ ≡ ). 

Ds* 
(1) 

s∗
∆  

[Ref-1,] 

(2) 

CA 
(3) 

∆  

(4) 

Kbu 
= H 
(5) 

cr  

; [Ref.-2] 
(6) 

𝒳𝒳VM = 𝒳𝒳/ 
𝒳𝒳/√2 
{Nxy} 
(7) 

Kvib 
(8) 

βδ = 
ʃʃ (ww/ 

w) 
(9) 

8 9ω =  

(10) 

Monitor = 
δ δ∆  

(11) 
 

0.866 
0.00163b4 

[0.0016..] 
1 15.5 1224 8.0 

10.96 
{11.}    

  

1.0 
0.001936 
[.00192] 

1.03 13.44 1033. 
7.79 

[7.79]  
 

  
−6774  

1.25 0.00234 1.06 11.79 855 7.35 
 

 
  

−1833  

1.50 0.0026 1.059 11.24 771 6.95 
 

 
  

−1833  

1.75 0.00276 1.055 11.17 724 6.57 
 

 
  

−438  

2.0 0.00287 1.052 11.30 696 
6.24 

[7.15] 
{8.8}  

  
+2091; 
**stop 

 

2.25 0.00295 1.05 11.54 677 5.94 
 

 
  

  

2.5 0.003 1.047 11.88 663 5.65 
 

 
  

  

 
The minimum buckling load, for “very-long” plates, is indicated at that point, 

whatever the values of “m, n or s*”. The relative weakness of a plate is indicated 
in bending-buckling-vibration-analyses [1] [17]. By Yaghoobi [3] the buckling 
strength of the “SSSS” at s* = 1.5 is 91-percent of the value at s* = 1; this is the 
kind of statement sought-after here. This sits well with the ratio of 89-percent in 
Table 3; also experiments [6], showed a “s* = 2 plate was only some 40-percent 
as strong as a “s* = 1” one. In “plate buckling solution based on characteristic 
deflection-factors”, [7], relevance of deflection was focused on. Here, the analysis 
starts with beam-strip solutions that are already fully known; for simply sup-
ported strip, Δc = 5/384 = 0.01302 and the “SSSS” plate ends in this value when it 
is very long or very short; for example check the Δc = 0.0135 in Table 3 in the 
“SSSS” at s* = 3.5; so the size of “Δ” can, also, be used to terminate solutions.  

4.8. Emulating the “SSSS-Plate” for ωvibration-Calibration 

Once the solution of the “SSSS” plate is found, it is only necessary to confirm the 
buckling-vibratory deflection, (Δnext) of any next-plate in any other support con-
figuration so as to emulate the “SSSS”. By Equation (9), 

2 2
new new new ssss ssss ssssω ω∆ = ∆M M                   (31) 

Equation (31) is profoundly important; it implies that if in the process of vi-
bration a boundary condition reduces from a higher to a lower one, the plate will 
not collapse provided there is no significant serviceability damage. A “CCCC” 
plate reducing to “SCCC” only brings higher amplitude until inspection and re-
trofitting.  

The buckling deflection is recommended because [K] is already known, at this 
stage, and from Equation (19b), “ , ,shp x shp yZw w∆ = ⋅ ”. 
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*qZ
H

=                           (32a) 

For example, find the ( 2
ccccω ) from ( 2

ssssω ) as follows, 
From Table 3, “ , 0.00128buck cccc∆ = ”; So, 
“ ( )2 389.635 0.00416 1 0.00128 1266.3ccccω → × × = ; so, 35.585ccccω = ; cf, 

35.112, Xing [14]; 35.8, [13]” 
Using Timoshenko and Kreiger’s, [1] deflection factors make very little dif-

ference, that is  

“ 2 389.6 0.00406 1 0.00126 1255.38ccccω = × × = ; 35.43ccccω = .” 

It is now easy to build up Table 8 covering many plates; extendable; these re-
sults are usually more exact than those from independent computations from, 
“ [ ]{ } [ ]{ }2K ω∆ = ∆M ”  

The method easily detects error entries; in Xing and Liu’s [14] the “CSCC/2” 
plate as “ω = 24.1” was in error; the correct result is “ω = 18.2”; the difference is 
large. The plate “CCCC/2” which has “ωcccc/2 = 24.36” is much stiffer than 
“CSCC/2”, by their deflection results. So, there is near-perfect match for Xing 
and Liu’s results with the “SSSS” as calibrator.  

4.9. Direct Evaluation of Free Vibration from Buckling Stiffness 

This may be achieved by invoking Equation (9). Since buckling attributes are al-
ready listed in the Tables, it is only necessary to compute some additional sym-
pathetic harmonics to evaluate the results. Already found results and new ones 
will be established easily. Indeed, Equation (9a) led to the “CCCC” independent 
results in Table 3.  

(a) Practical Sampling of Vibration-Harmonics  
A “3,1” mode in the “SSSS” means three half-sine waves. The equations may 

be re-visited to find “(ωssss,3,1)2.” 
Test the “CCCC” for (ωcccc,2,1); a/b = 1. This is not an important harmonic as it 

does not amplify the fundamental as shown in Figure 8. The “CCCC” curve in 
the X-direction splits into two modes of “CCSC” each;  

using existing principle to analyse one “CCSC” for “a = 1/2 and b = 1”. 
“{With the mode, ( )( )( )sin 4.5 0.977 1 cos 2Q x a x a y b= + − π ; find  

[ 4 40.89 5839xxH G a→ = ; ( )2 2 2 2 20.59 1886.7xyH n G a bπ= = ; 
4 4 40.507 790.1yyH n bπ= = ; 8516H = ] 

1 0.000117Z H= = ; shpZW∆ = ; 1.34 2.0shpW = ×  at “x = 0.35, y = 0.5”;; So, 
Δ2,1 = 0.000315”}. 

Finally, calibrating from the “SSSS”. 
 

 

Figure 8. 1st and 2nd modes of the “CCCC” plate.  
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Table 8. New results; vibration frequency (ω) derivable from the SSSS-case: calibration. 

SSSS/1.0; 0.00416ssss∆ = ; 389.6 19.738ssssω = = ; ( )2

- 389.6new plate ssss newplateω = ∆ ∆  

 Δ (ωnew)2 ωnew (Ref) 

CCCC/1.0 0.00128 1255 35.43 35.12 [14]; 35.97 [13] 

CCCC/2.0 0.002784 582.2 24.1 24.36, [14] 

SSSS/2.0 0.0106 149.2 12.2 (12.3; Tab-2, here) 

CSCC/1; xi = yi = 0.46 0.0016 988.6 31.83 (31.44; [14]) 

CSCC/2.0; 0.00488 332.1 18.2 (24.1 [14]); incorrect !! 

SSCC/1.0; xi/a = yi/b = 0.397 0.00233 704.1 26.54 (26.87, [14]) 

SSCC/2.0; xi = yi = 0.397 0.00555 292.0 17.4 (17.72, [14]) 

SSCS/1.0 0.0028 578.8 24.06  

SSCS/1.5     

SCCC/1.0 0.00161 1006 31.7 (31.44; [14]) 

SCSC/0.866 0.00163b4. 994 31.53 Searching ! 

SSCS/3.0 0.0065 249.3 15.79  

SSCS/3.5     

SCSC/1 0.001936  28.91;; 28.946, ** 

 
,2,1 389.6 0.00416 0.000315ccccω ×=             (32b) 

→ “71.73 radians; cf, 72.889” [14]. 

4.10. After-Shocks (Harmonics) by Calibration from “SSSS”  

For very speedy processing, Equation (28) for the “SSSS” is modified for other 
plates by interpreting the lengths “a, b” as effective Euler-length-averages be-
tween waves; some refinement will be possible (Figure 9).  

42 2D Jω  = π  M
                     (33a) 

2 2

1 1J
a b

= +                        (33b) 

2 4 2D Sω = π  M
                     (34a) 

where, 

2 2
- - - -

1 1

e av x e av y

S
L L

= +                     (34b) 

For simplicity, the approximation in Equation (34) for the harmonic (≥3) is 
employed (mode = number of peaks) 

-
1

mode numbere avL = .                  (34c) 
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Results improve fast as harmonics increase beyond “2”. 
Some typical results are listed in Table 9 below.  

5. Higher Modes in Buckling; the “SSSS” 

Table 4 has already solved this problem, relying only on the fundamental wave, 
m = n = 1, but the question may be posed: what is the failure mode for a given 
aspect ratio? In combining two neighboring symmetrical waves, the tried Dun-
kerley’s approximate resultant is used to study this question. 

For example; s* = 2.5, try two waves, placed between the actions, 1);  

* 2.5, 1
1, 1

s m
m n C

= =
= = ≡ , or C2.5,1; and 2) 2.5,33, 1m n C= = ≡ ; In details. 
1) [C2.5,1: 1.54xxH = ; 19.2xyH = ; 60.1yyH = ; 80.8H = ; 0.974x = ;  

6.0875y = ; 3.5308av = ; 82.95 8.4xxN ρ= = ] 
2) [C2.5,3: 374xxH = ; 519xyH = ; 180.2yyH = ; 1073H = ; 26.3x = ;  

4.13xxN ρ= ] 
Combining by Dunkerley’s;  

( )8.4 4.13 8.4 4.13 2.77crN ρ= × + = , cf, 2.91 in Table 4 above. This is a fail- 
safe combination.  

So, it can be said the waves.(m = 1, n = 1; m = 3, n = 1) combine for solution 
at aspect ratio, “s* = 2.5” 

6. Discussing the Kirchhoff-Love Plate Field-Sheet 

Several examples of interactive field-sheets are presented to aid design; Tables 
3-7. To start the field-sheet first detect the aspect-ratio for exact spot uni-axial 
buckling result at, Figure 4, “χx = χy”, complete in displacement-factor and cur-
vature-value(χ). Exact harmonic strip functions combinations are found suffi-
cient to re-establish Euler’s strip solutions in plates; hyperbolic functions, with 
more unknowns, are not harmonic and are ruled out when exact results have al-
ready been found. Table 2, and similar ones; to prove that the “Sine-curve” is 
the instability curve, first pretend that buckling curve is not a Sine-curve and 
iterate [K]{Δ} = {M} to a steady state., as in Table 2 

Some results are self-checking; the “CSCC (Tab-5) and SCCC” in Section-4.1 
are close; by 1968 the latter was only found in Russia [18] termed “approximate” 
in Leissa’s, [2] using, 

( ) ( ) 2cos 2 1 cos 2 1 1 cos
2 2

x x yw m m
a a b
π π π   = − − + −     

         (35) 

the present study, explained in Section-4.1; replaces the X-function, to yield eq-
uation (24). 

Both functions lead to approximately same results for limited aspect ratios. 
At s* = 1, “Ncr ≡ 8.73 here, and 8.986” in Ref. [2]; only the present method is 
able to track the strength up to s* = ∞ as demonstrated in Table 5 for CSCC; 
Oba, et al., [20] supplied the comparable displacements; omitted in Timo-
shenko’s works. 
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Table 9. Practical Results on some harmonic-waves (ω). 

Plate (mode); s* (ω); [Ref] 

CCCC (3/1); 1 128.49 131.6, [13] 

CCCC (5/3); 1 335.58 - 

SSSS (5/1); 1 256.6 255.47 [19] 

SSCC (3/1), 1 108.75 114.58. [6] 

CCCC (11/9); 1 42,470.0 - 

 

 

Figure 9. “CCCC”-plate-harmonics: mode-5/3 in X, Y. 

7. Conclusions  

1) The Kirchhoff-Love plate, in a capacity-analysis, has produced very accu-
rate field solutions in buckling displacement-factors interchangeable with elastic 
bending ones. This closeness of the results was not widely known in the past. Rela-
tive displacement-factors are employed in very accurate solutions for buckling, 
pure-shear and vibration. 

2) For self-checking, it is demanded the solution buckling-mode be developa-
ble into recognizable elastic deflection-factor; for example, for the Euler bar Δ = 
0.0103077 checking with the Euler-Bernoulli beam of Δ = 0.01302; for the 
“CCCC” plate, Δ = 0.00128 checking with Timoshenko’s, Δ = 0.00126; etc. 

3) Tracking buckling by displacement-factors has brought to light existing 
large errors in some existing solutions; this study confirms that the strength of 
the “SSSS” plate in uni-axial compression decreases from 4-units at a/b = 1 to 2.6 
units at a/b→∞, and not a constant 4-units; the difference is huge. 

4) The present spring-capacity-solution has brought more meaning to pure-shear 
plate buckling relying on von Misses stress condition; the present pure-shear 
solution for the “SSSS” plate of “ ( )23.6 2.5xyN a b= + ” was never found before. 
The existing literature value of “ ( )25.3 4xyN a b= + ” was found in this study to 
match the strength of the “CSCS” plate; this was a major issue in the sup-
port-zone stability study of webs in beams. 

5) The plate spring values have been shown to produce exact and near-exact 
solutions for vibration-factors-ω. The presence of relative-displacements in the 
studies makes it possible to employ the exactly known “SSSS-ω2” as a calibrator 
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for all other plates. 
6) From the foregoing, the Kirchhoff-Love plate field-sheet is readily com-

pleted for the design of many structures—bridges, buildings and associated struc-
tures. 

7) The stiffness solution method, [K]{Δ} = {F}, akin to finite element solution, 
has worked perfectly when applied to closed form evaluation of the Kirchhoff- 
Love plate. Characteristic buckling displacement-factor from known buckling- 
mode was targeted but in the end, these factors were found within one-percent 
of final elastic bending values; there is yet more to be said. There is now a unique 
characteristic buckling displacement (wave-amplitude frozen in the first mode of 
vibration) distinct from the rigorous elastic displacement; the former standing 
just proud of the latter.  
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Nomenclature 

a, b: rectangular plate dimensions in X, Y; a ≡ longer side; 
δb: change in width of plate; 
s*: aspect ratio, a/b; 
a, b: rectangular plate dimensions in X, Y; a ≡ longer side; 
s*: aspect ratio, a/b; 
E: Young’s modulus of elasticity; 
D: flexural rigidity of plate, (isotropic); ( )23 12 1D Et µ= − ; 
D* = EI/be; 
N: axial compression = ρ⋅ ; 
ρ = Dπ2/b2; 
t: thickness of plate; 
μ: poisson’s ratio; 
w: general deflection symbol; 
wshp-x: shape-function in X-direction; 
Δi: displacement value at point-I; 
Z: displacement-amplitude; 
wxx-r: relative curvature in X-direction ; 
wyy-r: relative curvature in Y-direction; 
wxx-r/w: relative-curvature/deflection ratio; must be a scalar for any solution;  
XX-SC, YY-CC; plate simply and clamped on X-X; and clamped-clamped on 

Y-Y;  
rcap: capacity ratio of axes as, ( ) ( )4 4 4 4w x w y∂ ∂ ∂ ∂ ; 
K, (H) = ( )4 4 4 2 2 4 42D w x w x y w y∂ ∂ + ∂ ∂ + ∂ ∂  = actual domain;  

spring-stiffness of plate;  
 : curvature; 
M : mass; 
ω: Vibration-factor or angular velocity; 
σ :stress symbol; 
F: Generalized applied forces; 
q, (q*): rate of loading; 
r: EI/L; 
a*: EA/L. 
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