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Abstract 
In this paper, we study an optimal insurance model by maximizing the insur-
er’s expected utility in the presence of background risk and belief heterogene-
ity. When the insurance premium is calculated by the generalized Wang’s 
premium principle, we prove the existence and uniqueness of the optimal so-
lution and give a necessary and sufficient condition for the optimal insurance 
policy. With the help of these results, we consider the optimality of no insur-
ance and full insurance and give more concise conditions. 
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1. Introduction 

In the past half century, how to design an optimal insurance policy has attracted 
great attention from academics and practitioners. The study of optimal insur-
ance design has become a cornerstone in insurance economics. As far as we 
know, the pioneering work is attributed to Arrow (1963), in which the optimal 
insurance problem is studied by maximizing the expected utility (EU) of insur-
er’s final wealth. When the reinsurance premium is calculated by expected value 
principle, the stop-loss contract is shown to be the optimal solution. Later Ar-
row’s model has been extended in two directions. One direction is to choose 
other reasonable premium principles for consideration. For example Young 
(1999) studies the optimal insurance design under Wang’s premium principle. 
Kaluszka (2001) investigates optimal reinsurance under mean-variance premium 
principles. The other direction is to choose other optimization criteria. Van 
Heerwaarden et al. (1989) and Chi & Lin (2014) generalize Arrow’s result by as-
suming a quite general optimization criterion that preserves the stop-loss order. 
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Since the 1990s, VaR, TVaR and other risk measures have been widely used by 
the financial and insurance. Their properties have been studied in detail, and 
thus more and more researchers take minimizing risk as optimization criterion 
in literatures such as Cai & Tan (2007), Zhuang, Weng et al. (2016) and Assa 
(2015). 

However, the authors consider the single-risk model in all the above litera-
tures. In fact, an insured may face multiple sources of risks, where one major 
risk is to be insured and other risks such as investment risk and operational risk 
are either uninsurable or not to be insured. These risks are often combined to-
gether and treated as background risk in insurance economics. There are many 
different dependence structures between insurable risk and background risk. For 
more detailed discussion, please refer to Dana & Scarsini (2007), Lehmann 
(2012), Colangelo, Hu, & Shaked (2008) and Colangelo, Scarsini, & Shaked 
(2005). The optimal insurance design with background risk has attracted great 
attention since the early work of Doherty & Schlesinger (1983). They investigate 
the optimal deductible level of the stop-loss insurance when the insured’s initial 
wealth is random. Then this problem has been reconsidered by a number of au-
thors, for example Cai & Wei (2012), Lu et al. (2012) and Chi & Wei (2020). 

In the aforementioned studies, it is assumed that the insured and the insurer 
have the same probability belief for the underlying random loss. Actually, Savage 
(1972) claimed that an individual usually makes decision by his personal view of 
the underlying probability of the random loss. Since both the insured and the 
insurer possess different information about the random loss in an insurance 
contract, it makes sense that we should assume that insurer and insured have 
heterogeneous beliefs. The study of optimal insurance problem with belief hete-
rogeneity has attracted the attention of some researchers recently. The first work 
devoting to the optimal insurance contract with heterogeneous beliefs is attri-
buted to Marshall (1992). Subsequently, there are more literatures that have 
done some exploration in the field of optimal insurance and reinsurance design 
with heterogeneous beliefs. With the heterogeneous beliefs in the sense of mo-
notone likelihood ratio (MLH) order, Jiang et al. (2018) study the pare-
to-optimal insurance contract by maximizing the EU of both two parties. Chi & 
Zhuang (2020) study the optimal reinsurance from the perspective of insurer by 
maximizing the EU of insurer while both the insurer and reinsurer have hetero-
geneous beliefs. Yu & Fang (2020) also study the optimal reinsurance from the 
perspective of insurer by maximizing the EU of insurer but the reinsurance pre-
mium is calculated by distortion premium principle.  

Although there have been many literatures on the optimal insurance problem 
under the assumptions of belief heterogeneity or background risks, there are still 
very few literatures that put these two conditions into the insurance model at the 
same time. In this paper, we study an optimal insurance model by maximizing 
the insurer’s expected utility in the presence of background risk and belief hete-
rogeneity. This model generalizes (Chi & Wei, 2020) because of the presence of 
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the belief heterogeneity between the insurer and the insured. We assume that 
there are no restrictions imposed to the form of belief heterogeneity, hence al-
lowing for much flexibility. We give a necessary and sufficient condition for the 
optimal insurance policy. According to the results, we explore the optimality of 
no insurance and full insurance when the dependence structure between the in-
surable risk X and the background risk Y is assumed to be the positively qua-
drant dependent or negatively quadrant dependent. 

The rest of the paper is organized as follows. In Section 2, we give definitions 
and propose an optimal insurance problem. In Section 3, when the insurance 
premium is calculated by the generalized Wang’s premium principle, we prove 
the existence and uniqueness of the optimal solution and give a necessary and 
sufficient condition for the optimal insurance policy. With the help of these re-
sults, we consider the optimality of no insurance and full insurance and give 
more concise conditions.  

2. Problem Formulation  

Let ( ), FΩ  be a measurable space. We consider a one-period model with an 
insured and an insurer. The insured is endowed with initial wealth 0w  faces 
two sources of risk X and Y, where X is a non-negative bounded random varia-
ble representing an insurable risk and Y is the background risk and may be neg-
ative. The insured is endowed with beliefs given by subjective probability meas-
ure P. Both X and Y are defined on the probability space ( ), ,F PΩ  with finite 
means. In order to reduce the risk exposure, the insured purchases an insurance 
contract for the insurable risk X, in which the insurer covers an amount of risk 
( )f X  and the insured retains the rest of the loss ( ) ( )fI X X f X= − . The 

losses ( )f X  and ( )fI X  are called ceded loss and retained loss, while ( )f x  
and ( )fI x  are known as the ceded loss function and the retained loss function, 
respectively.  

In this paper, we assume that the admissible insurance contract satisfies the 
principle of indemnity, which is expressed as ( )0 f x x≤ ≤ . This principle is 
widely used in insurance. However, this constraint is insufficient to exclude ex 
post moral hazard. In order to reduce ex post moral hazard, Huberman et al. 
(1983) suggest that insurance contract should satisfy the incentive compatible 
constraint, which means that the more the realized loss, the more paid by both 
the insured and the insurer. Mathematically, this implies that both the ceded loss 
function and the retained loss function should be increasing. Therefore, 
throughout the paper, we assume that the admissible set of ceded loss functions 
is given by  

( ) ( ) ( ) ( ){ },  both and are increasing functions: 0 fC f x f x x f x I x= ≤ ≤  

It is shown in Chi & Tan (2011) that the incentive compatible constraint is 
equivalent to ( )0 1f x′≤ ≤ , then the admissible set of ceded loss functions C is 
also written by 
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( ) ( ) ( ){ }: 0 ,0 1C f x f x x f x′= ≤ ≤ ≤ ≤  

Since the insurer covers the risk X, the insured will pay an additional cost in 
the form of insurance premium to the insurer. We denote the insurance pre-
mium by ( )( )f XΠ  which corresponds to the ceded loss ( )f X . In this pa-
per, we assume that the insurer is risk-neutral and make use of generalized 
Wang’s premium principles to price insurance premium. Such a premium prin-
ciple is defined via distortion risk measures, more details about distortion risk 
measures refer to Sereda et al. (2010), and Dhaene et al. (2012). The generalized 
Wang’s premium of a non-negative random variable X is defined as 

( ) ( ) ( )( ) ( ) ( )
0

1 d : 1 Q
gX g Q X x x E X

∞
Π = +ρ > = +ρ∫          (1) 

where 0ρ ≥  is the so-called safety loading factor. ( )g ⋅  is a distortion function 
which is increasing and satisfies ( )0 0g =  and ( )1 1g = . Q defined in ( ), FΩ  
is the subjective probability measure of the insurer. The probabilistic beliefs of 
the insurer may be different from that of the insured, so Q may be different from 
P. 

It is worth noting, in the above definition, when ( )g x x= , the generalized 
Wang’s premium principle recovers the expected value premium principle. Fur-
thermore, when the distortion function is concave and 0ρ = , the generalized 
Wang’s premium principle recovers Wang’s premium principle.  

Let ( )P
XS x  and ( )Q

XS x  be the survival functions of X under probability 
measures P and Q. Define 

( ){ }
( ){ }

: inf : 0

: inf : 0

P
P X

Q
Q X

x x R S x

x x R S x

= ∈ =

= ∈ =
 

then Px  and Qx  are the essential supremum of X under P and Q. Further-
more, Px  and Qx  are finite since X is a bounded random variable.  

With an insurance contract ( )f x , the wealth for the insured is given by 

( ) ( ) ( )( )
( ) ( ) ( )( )

0

0

,

1
f f

Q
g

W X Y w I X Y f X

w Y X f X E f X

= − − −Π

= − − + − +ρ
 

In this paper, we assume that the insured’s preference is characterized with the 
expected utility theory. That is to say, from the view of mathematics, the opti-
mization problem is formulated as 

( )( )max ,P
ff C

E U W X Y
∈

                         (2) 

where ( )U ⋅  is the insured’s utility function. We assume that ( ) 0U ′ ⋅ >  and 
( ) 0U ′′ ⋅ < , which means the utility function is increasing and the insured is 

risk-averse. 

3. Optimal Insurance Contract 

Theorem 3.1. There exists a function *f C∈  such that 
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( )( ) ( )( )* , max ,P P
ff f C

E U W X Y E U W X Y
∈

   =    
 

Proof. We can note that the supremum ( )( )sup ,P
f

f C
E U W X Y

∈

    exists. De-

fine ( )( )sup ,P
f

f C
M E U W X Y

∈

 =   , then there exists a sequence { }, 1nf n C≥ ⊆  

such that  

( )( )lim ,
n

P
fn

E U W X Y M
→∞

  =   

Since it is shown in Chi & Tan (2011) that ( ) ( )f x f y x y− ≤ −  for every 
f C∈  and any , 0x y ≥ , then the sequence { }, 1nf n ≥  is equi-continuous. Fur-

thermore, the sequence { }, 1nf n ≥  is uniformly bounded since X is a bounded 
random variable. According to the Arzela-Ascoli theorem, there exists a subse-
quence { }, 1

knf k ≥  that converges uniformly to a continuous function *f  on 
the closed interval [ ]0, Px . Define ( ) ( )* *

Pf x f x=  for any Px x> . It is easy to 
verify that *f C∈  and ( ) ( )*, ,

nkf f
W X Y W X Y→  a.s. Because  

( ) 0,
nkfW X Y w Y≤ −  and ( )U ⋅  is increasing, we have 

( ) ( )( )
( ) ( )( )( )
( ) ( )( )

( )

*0

0

0

0

,

lim ,

lim inf ,

nk

nk

P P
f

P
fk

P
fk

P

E U w Y E U W X Y

E U w Y U W X Y

E U w Y U W X Y

E U w Y M

→∞

→∞

  − −    
 = − −  

 ≤ − −  
 = − − 

 

where the first equality follows from the continuity of ( )U ⋅  and the inequality  

follows from Fatou’s lemma. This implies ( )( )* ,P
f

M E U W X Y ≤   
. Since  

( )( )* ,P
f

M E U W X Y ≥   
 according to the definition of M, we have  

( )( )* ,P
f

M E U W X Y =   
. Therefore, ( )*f x  is a solution to the problem (2). 

Theorem 3.2. If one of the following conditions is satisfied, the optimal solu-
tion to problem (2) is unique in the sense that ( ) ( )1 2f X f X=  a.s. for any two 
solutions 1f  and 2f . 

1) 0ρ >  and Q is absolutely continuous with respect to P, 
2) ( )0 0P X = > . 
Proof. Assume that 1f  and 2f  are optimal solutions to problem (2), then 

we have ( )( ) ( )( )1 2
, ,P P

f fE U W X Y E U W X Y M   = =    . For any [ ]0,1λ∈ , we 
define ( ) ( ) ( ) ( )1 21f x f x f xλ = λ + −λ . It is easy to see that f Cλ ∈  and hence 

( ) ( )( )1 21 ,P
f fE U W X Y Mλ + −λ

  ≤  . On the other hand, the concavity of ( )U ⋅  
leads to 

( ) ( )( )
( )( ) ( ) ( )( )

1 2

1 2

1 ,

, 1 ,

P
f f

P P
f f

E U W X Y

E U W X Y E U W X Y M

λ + −λ
 
 

   ≥ λ + −λ =   

 

Therefore, we can obtain 
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( )( ) ( )( ) ( )( )1 2
, , ,P P P

f f fE U W X Y E U W X Y E U W X Y M
λ

     = = =       (3) 

This implies that ( )( ) ( )( )1
, , 0P

f fE U W X Y U W X Y
λ

 − =  . Since ( )U ⋅  is 
concave, we have ( )( ) ( )( )1

, , 0f fU W X Y U W X Y
λ

− =  almost surely under P. 
This can imply ( ) ( )

1 2
, ,f fW X Y W X Y=  almost surely under P, or equivalently  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 21 1 a.s.Q Q
g gf X E f X f X E f X− +ρ = − +ρ             (4) 

If condition (1) is satisfied, we have 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 21 1Q Q
g gf X E f X f X E f X− +ρ = − +ρ        

almost surely under Q. This leads to 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 21 1Q Q Q Q
g g g gE f X E f X E f X E f X   − + ρ = − +ρ             (5) 

Using the translation invariance of distortion risk measures and 0ρ > , we ob-
tain ( ) ( )1 2

Q Q
g gE f X E f X=       . Therefore, we obtain ( ) ( )1 2f X f X=  almost 

surely under P by (4).  
If condition (2) is satisfied, noting that ( ) ( )1 20 0 0f f= = , we can get  

( ) ( )1 2
Q Q
g gE f X E f X=        by letting X approximate the zero. Therefore, we 

obtain ( ) ( )1 2f X f X=  almost surely under P by (4).  
Theorem 3.3. The ceded loss function ( )*f x  solves optimization problem 

(2) if and only if ( )*f x  satisfies the following representation 

( ) ( )* *
0

d
x

f x h t t= ∫                        (6) 

( )
( )

( ) ( )
( )

*

0 0
0

1 0

L t
h t k t L t

L t

<
= =
 >

                     (7) 

for all [ )0,x∈ ∞ , where 

( )
( )( ) ( )

( )( )
( ) ( )( )

*

*

,
1

,

P
X tf Q

X
P

f

E U W X Y I
L t g S x

E U W X Y

>
 ′  = − +ρ

 ′  

         (8) 

( )X tI >  is indicator random variable and ( )k t  is measurable and [ ]0,1 -value 
function on [ ) ( ){ }0, : 0t L t∈ ∞ = . 

Proof. For the given ceded loss function ( )*f x  and any admissible ceded 
loss function ( )f x C∈ , we define 

( ) ( ) ( ) ( )

( ) ( )( ) [ ]

* 1 ,

, ,   0,1 .P
f

f x f x f x

E U W X Y
β

β = β + −β

 φ β = β∈ 
 

It is easy to verify that ( )f x Cβ ∈  and ( )φ β  is concave because of the con-
cavity of ( )U ⋅ . Furthermore, since ( )*f x  and ( )f x  are differentiable al-
most everywhere, then there exist two [ ]0,1 -value functions ( )*h x  and ( )h x  
such that ( ) ( )* *

0
d

x
f x h t t= ∫  and ( ) ( )

0
d

x
f x h t t= ∫ . 

If the ceded loss function ( )*f x  is an optimal solution to optimization 
problem (2), the optimality of ( )*f x  implies ( )

1
0

β=
′φ β ≥ , which is equivalent 
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to 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( )( ) ( ) ( ) ( )( )( )( )
( )( ) ( ) ( ) ( )( )( ) ( ) ( )( )

( )( )

*

*

*

*

*

* *
1

* *
0 0

*
0

*
0

, 1

, d 1 d

, d 1

, 1 d

,

P Q
gf

X XP Q
gf

P Q
XX tf

P Q
XX tf

P
f

E U W X Y f X f X E f X f X

E U W X Y h t h t t E h t h t t

E U W X Y h t h t t I g S x

E U W X Y I g S x h t h t t

E U W X Y L

β=

∞

>

∞

>

  ′ ′φ β = − − +ρ −   
  ′= − − +ρ −    
 ′= − ⋅ − + ρ  
 ′= ⋅ − + ρ −  

 ′=   

∫ ∫

∫

∫

( ) ( ) ( )( )*
0

d 0t h t h t t
∞

⋅ − ≥∫
 

Note that the above inequality holds true for any ( )f x C∈ , the result (7) fol-
lows directly. If the ceded loss function ( )*f x  satisfies (6) and (7), then we 
have 

( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

*

*
*

1 0

, ,

1 0 , d 0

P P
ff

P
f

E U W X Y E U W X Y

E U W X Y L t h t h t t
∞

β=

   −    
 ′ ′= φ − φ ≥ φ β = ⋅ − ≥   ∫

 

where the first inequality follows from the concavity of ( )φ ⋅ . Therefore, ( )*f x  
is an optimal solution to optimization problem (2).  

It is worthwhile noting that it is challenging to derive the optimal insurance 
policy directly from Theorem 3.3. We can use this theorem to identify the opti-
mality of some special ceded loss functions, for example no insurance, full in-
surance and stop-loss insurance. In the following, we can derive the necessity 
and sufficiency conditions for the optimality of no insurance and full insurance 
from Theorem 3.3. 

Corollary 3.1. No insurance is optimal to optimization problem (2) if and 
only if 

( ) ( )

( )
( ) ( )( )0

0

1
P

X t Q
XP

E U w X Y I
g S x

E U w X Y
>

 ′ − −  ≤ + ρ
′ − − 

            (9) 

holds for all [ )0,t∈ ∞ . 
Corollary 3.2. Full insurance is optimal to optimization problem (2) if and 

only if 

( ) ( )( ) ( )

( ) ( )( )
( ) ( )( )0

0

1
1

1

P Q
g X t Q

XP Q
g

E U w Y E X I
g S x

E U w Y E X

>
 ′ − − + ρ  ≥ + ρ

 ′ − − +ρ 
      (10) 

holds for all [ )0,t∈ ∞ . 
Obviously, the solution to optimization problem (2) depends on the depen-

dence structure between the insurable risk X and background risk Y. In order to 
get more concise conclusions, we introduce the definitions of positively qua-
drant dependent and negatively quadrant dependent. 

Definition 3.1. Random variables X and Y are called positively quadrant de-
pendent, denoted as ~PQDX Y , if 
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( ) ( ) ( ),P X x Y y P X x P Y y> > ≥ > >              (11)  

holds for all x and y. 
Definition 3.2. Random variables X and Y are called negatively quadrant de-

pendent, denoted as ~NQDX Y , if 

( ) ( ) ( ),P X x Y y P X x P Y y> > ≤ > >              (12) 

holds for all x and y. 
Under the assumption of positively quadrant dependent and negatively qua-

drant dependent, we can get more concise conditions for the optimality of no 
insurance and full insurance in the following theorems. 

Theorem 3.4. If ~NQDX Y X+ , then no insurance is optimal to optimiza-
tion problem (2) if 

( ) ( ) ( )( )1P Q
X XS t g S t≤ +ρ

                    (13) 

holds for all [ )0,t∈ ∞ . 
Proof. We can note that the condition ~NQDX Y X+  is equivalent to  

( ) ( )|P PE v X Y X x E v X Y+ > ≤ +        for any x and any increasing function 
( )v ⋅  such that ( )PE v X Y + < ∞   by the result of Shaked & Shanthikumar 

(2007). Since ( )U x  is a concave utility function, then ( )U x′ −  is an increas-
ing function. Therefore, we have 

( ) ( )0 0|P PE U w X Y X x E U w X Y′ ′   − − > ≤ − −     

which is equivalent to 

( )( ) ( )

( )( )
( )

*

*

0

0

P
X tf P

X
P

f

E U W w X Y I
S t

E U W w X Y

>
 ′ − −   ≤

 ′ − −  

            (14) 

If condition (13) holds, then the result is obtained by Corollary 3.1.  
Theorem 3.5. If ~PQDY X , then full insurance is optimal to optimization 

problem (2) if 

( ) ( ) ( )( )1P Q
X XS t g S t≥ +ρ                    (15) 

holds for all [ )0,t∈ ∞ . 
Proof. Note that ~PQDY X  is equivalent to ( ) ( )|P PE v Y X x E v Y> ≥        

for any x and any increasing function ( )v ⋅  such that ( )PE v Y  < ∞   by the 
result of Shaked & Shanthikumar (2007). Since ( )U x′ −  is an increasing func-
tion, then we have 

( ) ( )( ) ( ) ( )( )0 01 | 1P Q P Q
g gE U w Y E X X x E U w Y E X   ′ ′− − + ρ > ≥ − − +ρ     

which is equivalent to 

( ) ( )( ) ( )

( ) ( )( )
( )0

0

1

1

P Q
g X t P

XP Q
g

E U w Y E X I
S x

E U w Y E X

>
 ′ − − + ρ  ≥

 ′ − − +ρ 
           (16) 

If condition (15) holds, then the result is obtained by Corollary 3.2.  
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4. Conclusion 

In this paper, we consider an optimal insurance problem with background risk 
and belief heterogeneity. We first prove the existence and uniqueness of the op-
timal solution. Then we give a necessary and sufficient condition for the optimal 
insurance policy in Theorem 3.3. With the help of Theorem 3.3, we identify the 
optimality of no insurance and full insurance. 

Admittedly, there are unsolved problems. The optimal insurance form is still 
unclear when an optimal insurance problem is with background risk and belief 
heterogeneity. Furthermore, the influence of belief heterogeneity form on the 
optimal reinsurance strategy is also not discussed. We leave these for future re-
search exploration.  
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