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Abstract 
Gender differences are investigated from the viewpoint of cognitive neuros-
cience in the domain of spatial ability. Five task types of geometric problems 
are used for the collection of task-evoked fMRI data. Although there was no 
gender-difference in task performance, we found gender differences in neural 
activity. Some of the important gender differences that we found are 1) that there 
are far more joint neuro-activations among the brain regions, co-activations 
or reverse-activations, in males than in females, 2) that the two types of joint 
activations were nearly half and half in females while it was mostly co-activations 
in males, 3) that males tend to have more co-activations in the left hemis-
phere than expected while females tend to have more between-hemisphere 
co-activations than expected, and 4) that the left-right pairs of BA's are more 
highly associated than average for males while they are far less associated 
than average for females. 
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1. Introduction 

Spatial ability is the ability that is employed for executing cognitive tasks such as 
generating, storing, retrieving, and transforming visuo-spatial information. This 
ability is known to produce robust gender differences favoring males [1]-[7]. It is 
also reported in the literature that males usually perform better on mental rota-
tion tasks than females [8]-[16]. As correlates of gender differences in spatial 
ability, biological factors such as sex hormones associated with the phase of the 
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menstrual cycle [13] [17] [18] [19] [20] or the ratio of the 2nd to 4th finger 
length [14] [21] [22] [23], bodily measures [24], and structural brain morpholo-
gy [25], and environmental factors such as gender role socialization [26] [27] 
and the level of education [1] [28] [29] [30] have been inspected. Although some 
supporting hypotheses for gender differences in spatial ability, such as an evolu-
tionary hypothesis [31] [32] [33] [34] [35], a gender similarity hypothesis [36] 
[37], and a functional lateralization hypothesis [38]-[45] were proposed, the is-
sue of gender difference in spatial ability is yet wide open. 

In this study, we analyzed functional magnetic resonance imaging (fMRI) data 
of task performances and explored gender differences in spatial ability by using 
five task types of spatial ability in an effort to refine the neurocognitive under-
standing of spatial ability. The five task types consist of picture completion (PC), 
mental rotation (MR), surface development (SD), aperture passing (AP), and 
hole punching (HP). We found gender differences in neural correlates and acti-
vations in response to the five task types. We also saw a gender difference in the 
functional relationship among brain regions. 

2. Method 
2.1. Participants 

61 young healthy undergraduate students (27 males and 34 females) participated 
in the study. They were recruited by announcements on the bulletin boards of a 
local university and all of them majored in natural sciences or engineering. All 
the participants reported no history of psychiatric or neurological abnormality 
and submitted the signed informed consent forms. 

2.2. Data Acquisition and Task Types 

fMRI data were acquired from an ISOL FORTE scanner (ISOL Technology, 
Gyeonggi, Korea) operating at 3 Tesla. A total of 177 whole-brain images were 
collected using a T2*-weighted single-shot echo-planar imaging (EPI) sequence 
(repetition time (TR) = 3000 msec, echo time (TE) = 35 msec, number of slices = 
36, slice thickness = 3 mm, matrix size = 64 × 64, the field of view = 220 mm × 
220 mm). Subjects performed 5 types of spatial ability tasks during the scanning. 
In a block designed experiment, 15 problem sets (5 task types × 3 problem sets) 
were presented in a random order to each subject. A set of problems were pre-
sented at regular intervals (21 seconds) after instructions on how to solve prob-
lems (6 seconds). Fixations were provided before a subsequent problem set (9 
seconds). As shown in Figure 1, each problem was displayed in two figure frames, 
one for a stimulus and the other for a test probe. If the test probe corresponded 
appropriately to the stimulus figure, that is, 1) in picture completion if the test 
probe fitted the stimulus, 2) in mental rotation if the test probe was rotated to 
match the stimulus, 3) in surface development if the test probe was constructed 
by folding the stimulus, 4) in aperture passing if the test probe was a projection 
from the stimulus, and 5) in hole punching if the stimulus was acquired by  
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Figure 1. Sample problems of the five task types. 

 
unfolding the test probe, a subject was supposed to answer ‘Yes’ or ‘No’ by 
pressing the left or right mouse button, respectively. The overall performance of 
the tasks was measured as discriminability, that is, hit rate minus false alarm 
rate. The cognitive complexity of the five task types of spatial ability was meas-
ured by task scores. 

2.3. fMRI Data Analysis 

Preprocessing and statistical analysis of the fMRI data were carried out using the 
SPM8 software (Wellcome Trust Centre for Neuroimaging, University College 
London, London, UK). The preprocessing steps included spatial realignment to 
the mean volume of a series of images, normalization into the same coordinate 
frame as the MNI-template brain, and smoothing using a Gaussian filter of 8 
mm FWHM. The fMRI data were then analyzed statistically for each participant 
and the analysis results were used for random-effects analysis. In random-effects 
analysis, we used a factorial design for repeated measures ANOVA with gender 
as a between-group factor and task type as a within-group factor. We checked 
for an interaction effect between gender and task type and for consistent gender 
differences in neural activation across the five task types. In all statistical infe-
rences, we determined the statistical significance at the height threshold of an 
uncorrected p-value less than 0.001 and the cluster extent threshold of more 
than ten voxels. 

3. Results 
3.1. Trend in Task Scores 

We saw no significant gender difference in the mean of the task scores with the 
p-value, 0.052. For more detailed description of the difference, the 95% simulta-
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neous confidence intervals of the difference are given in Table 1 and the box-
plots of the task scores in Figure 2. For convenience’ sake, we will label the five 
task types, PC, MR, SD, AP, and HP, respectively, by 1, 2, ···, 5. 

We can apparently see a trend of the mean scores across the task types as dis-
played in panel (a) of Figure 3. The mean scores are decreasing in the order of 
PC, MR, AP, SD, and HP. The difference among the score means is displayed in 
panel (b) by grouping. The task scores in the same parentheses suggest no sig-
nificant difference between them at the significance level 0.05. For both sexes, 
task type 1 and each of task types 3, 4, and 5 are significantly different in the 
context of task scores, and so are task types 2 and 5. The score grouping is 
slightly different between males and females in that task types 4 (AP) and 5 (HP) 
are significantly different in females while they are not in males. As for males,,  

 
Table 1. The 95% simultaneous confidence intervals of the differences of means, 

M Fµ µ− . 

Task type Lower limit Upper limit 

1 (PC) −1.83 3.57 

2 (MR) −1.96 6.32 

3 (SD) −2.69 6.61 

4 (AP) −2.88 3.87 

5 (HP) −0.08 7.77 

 

 
Figure 2. Boxplots of task scores. 
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Figure 3. Comparison of the mean task scores between male and female for the 5 task types. In panel (b), the task types in the 
same group (in parentheses) are regarded as of equal mean task scores at the significance level 0.05α = . (a) Mean task scores; (b) 
Multiple comparison of mean task scores. 
 

task types 3, 4, and 5 belong to the same score group while only task types 3 and 
5 (i.e., SD and HP) belong to the same score group for females. 

3.2. Gender Difference in Neural Activity for All the Tasks 

While there was no significant gender difference in task scores, we could see sig-
nificant gender differences in neural activities. Across the five task types, males 
showed higher activations consistently in the occipital cortex (OC) (BA 17, 18, 
19), left prefrontal cortex (PFC) (BA 44) and posterior parietal cortex (PPC) (BA 
7, 23), whereas females showed higher activations consistently in the left PPC 
(BA 40). In repeated measures ANOVA, an interaction effect between gender 
and task type was shown in the OC. 

3.3. Cross-Correlations of Neural Activation 

Let ktX  denote the activity level at brain region k in response to task type t. 
Then the cross-correlation ( ), 0kt lucorr X X =  means, under the Gaussian as-
sumption, that the activity level at brain region k in response to task type t is in-
dependent of the activity level at brain region l in response to task type u. In 
other words, a high activity level at brain region k in solving a problem of task 
type t does not necessarily imply a high (or low) activity level at brain region l in 
solving a problem of task type u. 

Figure 4 summarises the cross-correlations of the activity levels among the 82  
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Figure 4. Gender-difference in cross-correlations of the brain activitivation in response to the 5 task types across the 82 BA’s. For 
each BA-pair, the number ( kln ) of the task-type pairs are counted whose correlations are significant ( 0.05α = ), and the distribu-
tion of , 1 82kln k l≤ ≤ ≤ , is given in histogram for each sex. 
 

Table 2. Frequency table of 7kln ≤ . 

Sex 
kln  

0 1 2 3 4 5 6 7 

F 1585 507 308 266 168 142 75 64 

M 261 301 354 408 422 362 293 246 

 
Brodmann areas (BA’s). For each BA-pair, BA’s k and l (1 , 82k l≤ ≤ ), we 
counted the number kln  of the task-type pairs for which the brain activity levels 
are correlated significantly. Note that 0 25kln≤ ≤  for all ,k l . The histograms 
in the figure show the distribution of kln . We can see a dramatic gender differ-
ence in the distribution. A part of the frequency table is given in Table 2 as a 
zoom-in for the histograms. This apparent difference indicates that brain re-
gions are more associated functionally in males than in females. The number of 
the BA-pairs for which 0kln =  is 1585 which is about a half (48%) of the total 
number of BA-pairs (=3321). If we consider up to the numbers of 1kln ≤ , it is 
2092 (63%) for females and 562 (17%) for males. This is a strong indication that 
there is a far less functional association among the brain regions for females than 
for males. We may interpret this as that: males are more co-operative in brain 
activity than females as far as the problem solving of geometric problems is con-
cerned. 

Another question we were interested in was if there is a stronger association 
between the left-right counterparts of BA than between every other pair of BA’s. 
We can see a gender difference in Table 3. As for the male, the association be-
tween the left-right counterparts of BA is a more often occurrence than it is among  
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Table 3. Quantiles of kln  for two types of BA pairs. (a) For males; (b) For females. 

(a) 

Brain regions 
Proportion (%) 

10 20 30 40 50 60 70 80 90 

Left-right pairs 5 7 9 10 11 13 14 17 19 

All the other pairs 2 3 4 4 5 6 7 8 10 

(b) 

Brain regions 
Proportion (%) 

10 20 30 40 50 60 70 80 90 

Left-right pairs 0 0 0 1 1 1 2 2 5 

All the other pairs 0 0 1 1 2 2 3 4 7 

 
the other pairs of BA’s. The asymptotic z-score of the Mann-Whitney-Wilcoxon 
(MWW) test [46] is 6.79 (with its upper tail probability near 0), which strongly 
indicates a higher left-right association of BA’s than the average of the associa-
tions among the BA’s. The phenomenon is quite a contrary for females, as can 
be seen in the table. The left-right association is shown to be weaker than aver-
age with the asymptotic z-score of the MWW test −4.40 (with its lower tail 
probability near 0). In a nutshell, there are more pairwise left-right BA associa-
tions than average in males while there are fewer of them than average in fe-
males. We need a little bit of prudence here in that the MWW test is used under 
the assumption that kln ’s are independent of each other. As a matter of fact, 
they may not be independent. We however used this test as an approximate sur-
rogate to measure the difference between the two pair types of BA’s, left-right 
counterpart pairs and the other type of pairs. 

So far we have investigated significance of the association without regard to 
the sign of the correlation. If the correlation is positive, we may interpret the as-
sociation of a pair of BA’s as co-activation; otherwise, as reverse-activation. Ta-
ble 4 summarizes the analysis result of the pairwise activation patterns. The pat-
terns are surprisingly contrasting between males and females. Among the asso-
ciations between BA’s, they are mostly due to co-activation for males while they 
are divided nearly half and half between the two types of activities for females. 
This result seems to be well in tune with the findings by [47] in the context of 
neural processing efficiency. 

We were also interested in whether there are more co-activations or re-
verse-activations between hemispheres than within hemispheres or vice versa. 
To further investigate in this line, we took each of the numbers in Table 4 into 
three pieces, one corresponding to the mutual activations of the BA’s in the left 
hemisphere, another in the right hemisphere, and a third between hemispheres. 
This refinement is summarized in Table 5. For instance, the value 1518 for males 
in Table 4 is broken into three pieces, 409, 746, and 363. 409 BA-pairs co-activate  
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Table 4. Co-activation and reverse-activation counts of BA’s. The numbers are of the 
BA-pairs for each task type which are significant at the significance level 0.05. “+” (“-”) 
stands for co-activation (reverse-activation). 

Sex 

Task type 

1 2 3 4 5 

− + − + − + − + − + 

M 26 1518 0 2408 2 1637 0 2253 0 2249 

F 178 196 180 171 152 156 175 172 180 183 

 
Table 5. Co-activation and reverse-activation counts of BA’s between and within hemis-
pheres. The numbers are of the BA-pairs for each task type which are significant at the 
significance level 0.05. “L” and “R” stand for the left and right hemispheres, respectively, 
and “Between” for “between hemisphere”. 

Task 
type 

Male Female 

Co-activation Co-activation Reverse-activation 

L Between R L Between R L Between R 

1 409↑ 746 363 35 115↑ 46 41 84 53 

2 608 1225 575 34 93 44 52 76↓ 52 

3 455↑ 788↓ 394 28 95↑ 33 37 70 45 

4 606↑ 1124 523 38 107↑ 27 39 92 44 

5 589 1114↓ 546 34 108↑ 41 40 85 55 

Note (1) The ↑ in the “L” column means that its value significantly larger than its coun-
terpart in the “R” column at the significance level 0.05α = . (2) The ↑ in the “Between” 
column means that the number of the between-hemisphere BA-pairs which co-activate 
(or reverse-activate) are significantly larger (↓ for smaller) than the number of the with-
in-hemisphere BA-pairs which co-activate (or reverse-activate) at 0.05α = . 

 
in the left (L) hemisphere, 363 BA-pairs in the right (R) hemisphere, and 746 
between-hemisphere BA-pairs. We ignored the reverse-activation for males since 
there were only 28 such cases. 

It is obvious in Table 5 that, in males, there are a larger or equal number of 
co-activations in the left hemisphere than expected. On the other hand, the be-
tween-hemisphere co-activations occur at least as often as expected in females. 
There are no significant differences in the number of reverse-activations in fe-
males except that the between-hemisphere reverse-activation occurs less often 
than expected for task type 2. In a nutshell, males tend to use the left hemisphere 
more often than expected and, as for females, between-hemisphere co-activations 
are more often than expected. 

The two types of joint activations in females are displayed in Figure 5, which 
is obtained by applying the modelling method as proposed in [48]. Co-activation 
BA-pairs are connected by red lines and reverse-activation BA-pairs by blue 
lines. We can see in the figure that the two types of joint activations occur over 
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almost the same brain regions each other and that some brain regions are 
functionally connected with other regions more in co-activation than in re-
verse-activation and vice versa. It is obvious in the figure that a brain region 
co-activates with another region while it reverse-activates with a third. As a vis-
ual aid, we added a figure of the joint activations for the five task types in Figure 
6. 

To sum up the analysis results of correlations, as long as the problem solving 
of geometric problems are concerned, 1) brain regions are far more associated 
functionally in males than females (Table 2), 2) the left-right pairs of BA’s are 
more highly associated than average for males while they are far less associated 
than average for females (Table 3), 3) the association between brain regions are 
mostly due to co-activation for males while, for females, only half of the associa-
tions are due to co-activation and the other half by reverse-activation (Table 4), 
and 4) males tend to have more co-activations in the left hemisphere than ex-
pected while females tend to have more between-hemisphere co-activations than 
expected (Table 5). 

4. Concluding Remarks 

In the correlation analysis, we tried to investigate functional connectivity among  
 

 
Figure 5. Inferior view of co-activation (in red) and reverse-activation (in blue) between 
brain areas of a female participant. 
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Figure 6. Co-activation (in red) and reverse-activation (in blue) graphs for females from three viewpoints, lat-
eral, anterior, and inferior. 
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brain regions from two viewpoints. In one of them, we counted the number 
( kln ) of task type pairs for which a certain pair of BA’s, say BA’s k and l, are 
correlated significantly. For each k l≠ , 0 25kln≤ ≤ . A larger kln  can be in-
terpreted as a stronger correlation between BA’s k and l. There was no signifi-
cant functional connectivity for nearly half (48%) of the BA-pairs for females 
while it is only 8% for males. This is a global look at functional connectivity 
without regard to the task type. 

A refined description of the functional connectivity for each task type is that 
males are found to have more or as many co-activations of BA’s in the left he-
misphere as expected, while females are found to have more or as many 
co-activations between hemispheres as expected. This result is well in tune with 
the gender difference in the structural connectome of the brain found in [49]. As 
for the patterns of functional connectivity, the connectivity is shown to be via 
co-activation for males while it is divided almost half and half into co-activation 
and reverse-activation for females. 

The result of this work is limited in interpretation in the sense that the data 
for this work is from college students majoring in natural sciences or engineer-
ing. However, it is worthwhile to note that male and female students could get 
the same performance scores on spatial ability tasks while the neural activity pat-
tern was quite contrasting between males and females, as was found in the paper. 
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