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Abstract 
Homeostasis creates self-organized synchrony of the body’s reactions, and de-
spite the energetically open system with intensive external and internal inte-
ractions, it is robustly stable. Importantly the self-organized system has scal-
ing behaviors in its allometry, internal structures, and dynamic processes. 
The system works stochastically. Deterministic reductionism has validity only 
by the great average of the probabilistic processes. The system’s dynamics 
have a characteristic distribution of signals, which may be characterized by 
their frequency distribution, creating a particular “noise” 1/f of the power 
density. The stochastic processes produce resonances pumped by various noise 
spectra. The chemical processes are mostly driven by enzymatic processes, 
which also have noise-dependent resonant optimizing. The resonance fre-
quencies are as many as many enzymatic reactions exist in the target. 
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1. Introduction 

All parts of the biosystems are energetically open. The micro and macro envi-
ronment have a decisional influence on their processes. The system exchanges 
energy and information with its environment. According to a well-defined bal-
ance, the processes are dynamic and interconnected with each other, the ho-
meostasis [1]. This dynamic stability is self-organized [2], and despite the inten-
sive interactions, it is robustly stable at large order of magnitudes [3]. The dy-
namic stability is regulated and controlled by the homeostatic feedback mechan-
isms [4], keeping the balance between promoters and suppressors in the com-
plete system [5]. The living network is undoubtedly not a simple addition of its 
parts [6]. It forms a complex structure [7]. Theoretical biology faces a severe 
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challenge of complexity [8]. 
Regardless of its living of lifeless state build forms, the natural structures are 

far from the possibility to describe them in the frame of Euclidean geometry 
with straight lines and circles. The natural structures are self-organized and 
mostly form fractal structures [9]. The fractal geometry in life makes it possible 
to categorize the living species by their allometric comparison [10] comparison 
of complex morphogenetic differences [11]. This type of universality of the 
complex feedback mechanisms controls the dynamic equilibrium maintaining 
the homeostasis [12]. Fractal models represent an excellent approach to ex-
plaining the living processes’ structural development [13], even for the genetic 
code structure [14]. 

The genetic code construction uses Kronecker products (KP) of matrixes with 
binary numbers. The construction of KP sequences the same template and so 
represents fractals too [15] [16]. The generated nucleotide sequences characte-
ristic of various living systems form a fractal pattern. An extension of KP con-
struction introduces blocks and a multifractal approach [17], which fits the liv-
ing complexity [18]. 

The fractal description is suitable for extending the dynamic physiological 
processes and analyzing the fractal properties in time [19]. The time-fractal stu-
dies are based on the research of the structure of various signals [20] [21]. The dy-
namism of the energetically open living systems dominantly involves self-organizing 
processes allowing their fractal description [22]. The time fractals reflect the com-
plex space-time approach developed a new discipline, fractal physiology [23] [24], 
expressing the collectivity of the processes [25]. 

The modulation of the external bioelectromagnetic signals has well-explained 
principles. The carrier frequency helps in the selection mechanisms, while its 
modulation supports homeostasis by its time fractal (1/f) frequency distribution 
[26]. The modulation could have multiple effects locally and systematically. The 
local force for the homeostatic control acts as a further selection factor regarding 
the lost control of the tumorous cells. Furthermore, the modulation forces the 
healthy dynamical order providing a compulsory process for apoptosis of the 
out-of-control cells. HRV may characterize the homeostasis [27], presenting the 
complexity of the system. 

The well applied time-fractal current flow may activate the structural fractals in 
the living systems, and the personal fractal structure could modify the time-fractal 
pattern, too [28]. The fundamentally nonlinear physiological system dynamics 
work on the edge of chaos, a border of order and disorder showing a constant 
dynamic interplay between these states [29]. The challenge of the homeostatic 
equilibrium is the apparent chaos. The chaos looks complete randomness only. 
However, the chaos in biosystems results from the stochastic self-organizing and 
the energetically open system, which directly and permanently interacts with the 
environment. Its structural and temporal structure is fractal, which appears in 
the fundamental arrangements of the self-similar building and dynamism of the 
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energy exchanges internally and externally. The living processes are complex. 
They are in self-organized criticality (SOC) [30], which is formulated, as the “life 
at the edge of chaos” [31]. This chaos is the realization of a well-organized sto-
chastic (probabilistic) system [32]. The chaos is only an ostensible complete dis-
order [33]. 

2. Methods 
2.1. Fluctuations 

An organism has a finite number of possible states. These states could be cha-
racterized in terms of operational quality utilizing a diagnostic parameter (sig-
nals). All signals have an average in time, and the signals fluctuate around this 
value in a controlled band. The random fluctuation sets various states (micro-
states) of the body, which exist only briefly and appear as fluctuation. The tem-
poral fluctuation is regarded as a noise of the signal. The noise of living processes 
usually does not fluctuate randomly. The homeostatic control of the body regu-
lates them. The minimal number of diagnostic signals is defined by the qua-
si-independent, weakly overlapping regulation intervals. The number of these 
quasi-independent diagnostic signals does not change during the system meets 
the conditions of the healthy dynamical equilibrium, the homeostasis. The aver-
age values, the fluctuation band, and the distribution of the frequencies may 
vary, depending on age and adaptation to changing environmental conditions. 
These quantities are called macroscopic diagnostic determinants and the status 
vector with iD  diagnostic states: 

( ) ( ), 1, 2, ,i iD D i n= =X Y                    (1) 

where X  and Y  are the signals of the system and outside environment, re-
spectively. Due to the short time realized microstates, the number of diagnostic 
states is significantly less than the numberof its determinant signals iD , conse-
quently, the microstates appear as statistical statements. The same homeostatic 
macrostate has a wide variety of microstates that change rapidly over time, fluc-
tuating around the averages. The probability that the microstate falls in the in-
terval ( ), d+X X X  at time t, i.e., the probability density ( ),w tX  with: 

( ) ( )d , dP w t X< ≤ + =X X X X Xξ                 (2) 

Consequently iD  is given by ( ),w tX  it is a stochastic determinant which 
primarily we characterize with its average (mean value) 

( ) ( ) ( ) ( ), , d 1,2, ,i iX
D D w X t X i n= =∫ X Y             (3) 

and its variance 

( ) ( )2
1, 2, ,

iD i iD D i nσ = − = 
                (4) 

where  denotes the average of the values. The failure of the dynamic equili-
brium when i iD D−  is larger than a predetermined threshold with a limit-
ing value (

iDl ). According to the Chebyshev theorem [34] the probability that 
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ii i DD D l− >  (so the system is out from the healthy homeostasis) is: 

( ) ( )22

2 2
i

i
i i

D i i
fail i i D

D D

D D
P D D l

l l
σ −

− > ≤ =              (5) 

In a healthy state the failP  is small. The iD  average characterizes this state. 
The conventional diagnostics controls iD  values only, regarding the patient 
healthy when the fluctuations 

iD i if D D= −  remain within a tolerance band 

iDl . However, the fluctuation carries essential information about the micro-
states. Changes in the regulative processes could drastically modify the fluctua-
tion of the signal without changing its average value. Study the noise spectrum 
may predict modifications of the regulative feedbacks, so it has diagnostic val-
ue. 

The living, dynamic equilibrium is well-regulated but in a probabilistic way. The 
time-dependent processes realize the observed signal with a probability, as the ac-
tual exposition from the possibilities of the fluctuations of the measured signal. 

The vital principle is the feedback mechanism, which controls the balance 
within a predetermined range around the reference value. It is usually well mod-
eled with fuzzy logic, an approach to counting “degrees of truth” rather than the 
usual “true or false” decisions [35]. This logic governs homeostatic equilibria in 
all ranges of space and time in living systems. This uncertain value is undoub-
tedly in a controlled reference interval, were strongly interconnected negative 
feedback loops regulate the balance in the micro and macro ranges, forming the 
system’s dynamic stability. 

These phenomena request a stochastic approach (probability of events depen-
dent on time) instead of conventional thinking based on deterministic changes 
[36]. Deterministic reductionism can mislead the research. The homeostasis is of-
ten ignored and used as a static framework for effects [37]. The stochastic ap-
proach is fundamental in biological dynamism [38]. The dynamic homeostatic 
equilibrium keeps the system in a stable but constantly changing state. 

2.2. Stochastic and Deterministic Approach 

A model calculation of tumor growth shows the strength of the stochastic ap-
proach. In a simple example, the growth of a tumor can be described determi-
nistically. The deterministic change of tumor mass ( tM∆ ) by observation time 
( t∆ ) is proportional with its actual mass ( tM ): 

( ) ( )t tM t kM t t∆ = ∆                       (6) 

where k is a constant. A well-known exponential solution uses the mass of the 
tumor at the start of its observation ( 0M ): 

( ) ( ) ( ) 0

d
e

d
t kt

t t

M t
kM t M t M

t
= ⇒ =                (7) 

In a deterministic way, the prognostic task of oncology would be simple re-
garding exponential growth. However, the process is stochastic, requesting the 
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step-by-step analysis of the development of the tumor. We follow the additional 
or disappearing individual cells producing the mass growth. The probability 

tMP  to add a cell to the tumor at t time during Δt interval is proportional with 
( )tkM t t∆ , as we assumed initially been in (6). Then the probability equation 

with the added and eliminated cells in time interval Δt is: 

( ) ( ) ( ) ( ) ( )11
t t t tM M t M t MP t t P t k M tP t kM tP t−+ ∆ = + − ∆ − ∆        (8) 

It depends on the added cells to the tumor from the previous time interval 
( ( )

tMP t t+ ∆ ) and the eliminated cells in the actual time ( ( )
tt MkM tP t− ∆ ) consi-

dering the process in one step before ( ( ) ( )11
tt Mk M tP t−− ∆ ). In a differential 

equation form: 

( )
( ) ( )1

d
1

d
t

t t

M
t M t M

P t
k M P t kM P

t −= − −                (9) 

When we start from a single cell ( ( )0 1
tMP =  if 0 1M = , and ( )0 0

tMP =  in 
every other case), the solution of (9) at 0tM M≥  cases: 

( ) ( ) 00

0

1
e 1 e t

t

M Mt kM t kt
M

t

M
P t

M M
−− −− 

= − − 
             (10) 

Compare (7) and (10) how they are different! The deterministic approach (7) 
is continuous in time, running in real values, while the stochastic, probabili-
ty-based approach (10) jumps on integers, building up the tumor-mass step by 
step. The deterministic equation gives a fixed result, while the stochastic shows 
“only” probability. It is interesting to see that the deterministic result is the par-
ticular case of the stochastic one, the deterministic ( ) ( )

tM tP t M t=  condition 
does not depend of the actual number of steps. Consequently, the averaging of 
the stochastic probability results provide the deterministic solution: 

( ) ( ) ( )
0

0e
t t

t

kt
M t t M

M M
P t M t M P t M

∞

=

= = =∑             (11) 

2.3. The Fluctuation Phenomena 

The signals follow the living, dynamic interactions, the molecular changes, and 
the chemical and physical excitations give a structured noise. The power spectral 
density of a signal ( ( )S f ), is the power of the noise (fluctuation) per unit of 
bandwidth. Define the work of the ( )x t  stochastic process: 

( )2: dW x t t
∞

−∞
= ∫                        (12) 

The (12) with the Parseval’s formula may be evaluated 

( ) ( )2 d dW x t t S f f
∞

∞

∞

−∞ −
= =∫ ∫                   (13) 

where ( )S f  is the spectral power density in any random stationary case. The 
Fourier transform of ( )x t  stochastic process is the primary step to study the 
phenomena [39], 

( ) ( ) ( ){ }21 e d :
2

j ftX f x t t F x t− π

−∞

∞
= =

π ∫              (14) 
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where the spectral density function ( )S f  is: 

( )
( ) 2

2
X f

S f =
π

                       (15) 

The even function of the frequency, i.e., ( ) ( )S f S f= − . 
The ( )S f  gives the intensity of noise as a function of spatial frequency, meas-

ured in W J
Hz

= , characterizing the stochastic signal with the f frequency.  

The most straightforward complex noise follows normal (Gaussian) distribution 
(the amplitudes have normal distribution), and its power function ( )S f  is 
self-similar through many orders of magnitudes. In this simple case, the ( )S f : 

( ) AS f
f α=                          (16) 

The α  exponent in (16) formally refers to optics, noted as the “color” of the 
noise. The white-noise is flat ( 0α = ), the pink-noise has 1α = , and other col-
ors are described by various other numbers up to 2α = , the brown-noise. So, 
the ( )S f  of pink-noise inversely depends on f frequency, noted as 1/f noise. 
The 1/f noise carries the self-similar structure of living processes having a 
time-fractal covering the life’s dynamism [40] [41]. The dynamical fractal struc-
ture of living systems marks the self-organizing both in geometric and time 
structures and dynamically regulates the living matter [42], defines time-fractal 
structure in stochastic way of the living systems [43], a 1/f fluctuation. The phy-
siological control shows 1/f spectrum [44]. One of the most studied such spectra 
is the heart rate variability (HRV). 

This 1/f noise has a particular behavior. Each octave interval (halving or dou-
bling in frequency) carries an equal amount of noise energy. The living system 
makes special signal processing due to its self-organized symmetry, so it trans-
forms the white noise to pink [45], forming the most common signal in biologi-
cal systems [46]. 

Stochastic signals additionally to ( )S f  are usually characterized by their au-
tocorrelation function ( )1 2,XXR t t . The autocorrelation measures how the signal 
correlates with a delayed copy of itself in the function of time-lag ( )2 1t tτ = − , 
measuring the signal in 1t  and subsequent 2t  in X position. The autocorrela-
tion evaluation is a mathematical tool for finding repeating patterns, looking for 
periodicity in the signal. It allows identifying the existence of the biological chain 
processes. The ( )S f  and ( )1 2,XXR t t  functions are not independent, they could 
be converted to each other by Fourier transformation. Measuring the power 
density ( )S f  of a signal is easier than its autocorrelation, so usually the studies 
concentrate on the power density function. 

3. Results 
3.1. White Noise 

All frequencies in the entire interval have the same A amplitude in the white 
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noise spectrum: 

( ) 1S f A
f α= ∝                        (17) 

i.e., from (16), 0α = . Consequently, the autocorrelation function is complete-
ly uncorrelated: 

( ) ( ) ( ) ( ) ( )

( ) ( )

0

0

1 cos 2 d cos 2 d
2

2cos 2 d
2 2

XXR S f f f S f f f

A Af f

τ τ τ

τ δ τ

∞ ∞

∞

−∞
= π π = π

π

= π =

∫ ∫

∫
    (18) 

The band constraint in a limited interval, up to maxf  upper-frequency limit 
affects a longer-term correlation: 

( ) ( ) ( ) ( ) ( )

( ) ( )

0 max

0

max

0

max

0
max

1 cos 2 d cos 2 d
2

sin 2
2cos 2 d

2 2

f
XX

f

R S f f f S f f f

fA f f A
f

ω

ω
τ τ τ

τ
τ

τ

−
= π π = π

π
π

= π =
π

∫ ∫

∫
   (19) 

For example, the completely flat ( )S f  limited to the frequency-band [−10 - 
10] has well-defined autocorrelation Figure 1: 

The correlation function oscillates, so the correlation length does not mono-
tonically decrease in band-limited white noise. 

3.2. The 1/f Noise 

A stationary random process has an indefinite duration. To introduce a mod-
ified density spectrum, consider a finite segment of the random process ( )x t  of 
duration 2T, defined by: 

 

 

Figure 1. The correlation function ( )XXR τ  of band-limited white noise than the 
 

( ) 0 cosS f f t= = . 
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( ) ( ) ( )
,

and lim
0, otherwiseT TT

x t T t T
x x t x t

→∞

 − ≤ ≤= =


          (20) 

According to (14), the Fourier transform of ( )Tx t  has the form of 

( ) ( ) 21, e d
2

T j ft
TT

X f T x t t− π

−
=

π ∫                 (21) 

The Fourier transform of the function ( )x a t⋅ , where a is an arbitrary com-
plex number, and f is the frequency: 

( ){ } 1 fF x a t X
a a

 ⋅ =  
 

                    (22) 

Use (21) and (22) we get: 

( ){ } 1 ,T
fF x at X T

a a
 =  
 

                   (23) 

Using Parseval’s formula and (15): 

( ) ( ) ( )
( ) 2

2 ,1 1lim d
2

d lim
2 2

T

T T
T

X f T
x t t S f f S f

T T

∞

→∞ →∞
− −∞

  = = 
  

π∫ ∫      (24) 

The living processes are basically self-similar, so it is convenient to define the 
self-similarity of a stochastic process. A stochastic process is said to be self-similar if 
the effective power of the stochastic process representation ( )x t  equals the ef-
fective power of the representation ( )x at  defined over time scale [at], for every 
a positive scalar, i.e.: 

( ) ( ) ( )2 21 1lim d lim d
2 2

T T

T T
T T

x t t x at at
T T→∞ →∞

− −

=∫ ∫             (25) 

And so from (22) and (20), we get 

( )2

1 d dfa S f S f f
aa

∞

−∞ −∞

∞  = 
 ∫ ∫                  (26) 

Also, for the power spectral density function, the functional equation may be 
expressed: 

( )fS aS f
a

  = 
 

                       (27) 

for every positive scalar a and every scalar f. To solve this equation, we assume 
that 0f >  and set for a the value a f= : 

( ) ( )1S
S f

f
=                         (28) 

On the other hand, if 0f <  then f f= − , and 

( )1 1 ffS S S f
a a a a

   = − =  
   

                 (29) 

Let us set for a the value a f=  and take into account that the power density 
function is even, so we obtain the 1/f spectrum, or “pink-noise”: 

https://doi.org/10.4236/ojbiphy.2022.121001


A. Szasz 
 

 

DOI: 10.4236/ojbiphy.2022.121001 9 Open Journal of Biophysics 
 

( ) ( )1S
S f

f
=                         (30) 

The autocorrelation function of ( ) 1

1S f
f

∝  pink noise with Fourier trans-

formation has a singular result: 

( ) ( ) ( )

( )

( ) ( )

0

0

1 cos 2 d
2

1 cos 2 d

cos 2
d 2

2

XXR S f f f

f f
f

f
f

f

τ τ

τ

τ
τ

τ

−

∞

∞

∞

∞
= π π

π

= π

π
= π

π

∫

∫

∫

              (31) 

follows the ( )Ci x  function: 

( ) ( )cos 2 cos d
2x

f xCi x x
f x

τ
τ

∞ π ′
′= −

′π∫                 (32) 

Due to ( ) 0Ci ∞ = , the autocorrelation of 1/f noise in long time-lag is zero 
Figure 2. 

By the ergodic hypothesis [47], the autocorrelation function of a stationary 
random process ( )x t  can be defined as 

( ) ( ) ( ) ( ) ( ){ }1lim d
2xx xx xxT

T

T
R x t x t t R R

T
τ τ τ τ

−→∞
= + = −∫        (33) 

where τ  is the time-lag. The relation between autocorrelation function and the 
power density spectrum can be expressed by the Fourier transform of the auto-
correlation function (Wiener-Khinchine theorem), namely: 

( ) ( )

( ) ( )

2

2

1 e d
2

1 e d
2

j f
xx xx

j f
xx xx

R f R

R R f f

τ

τ

τ τ

τ

∞ − π

−∞

π

−∞

∞

=
π

=
π

∫

∫
                (34) 

 

 

Figure 2. Autocorrelation function of 1/f noise (negative integral cosine function, ( )Ci x− ). 
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From these (considering [36] and [48]), we may conclude 

( ) ( ) ( ) ( )2 21 2 1
e d e dj f j f

xx

S S
R S f f f

f
τ ττ

τ
∞ ∞π π

−∞ −∞

π
= = =∫ ∫        (35) 

Assuming the lower cutoff frequency minf , the function of such an approx-
imate 1/f noise correlation from (31) 

( ) ( ) ( ) ( ) ( )
min min

min

cos 21 cos 2 d d 2 2
2f f

f
f f f Ci f

f f
τ

φ τ τ τ τ
τ

∞ ∞ π
= π = π = − π

π∫ ∫  (36) 

The procedure is also shown in Figure 2. 
It can be seen from the figure that here too, there is a problem with the intro-

duction of the correlation length since the correlation function oscillates. 
In the case where the lower cutoff frequency is minimal, the argument of the 

Ci-function is small even at significant offset times. Then the correlation func-
tion is as shown in Figure 3. 

It appears that this case can be approximated by the sum of white noise and a 
virtually constant correlation function. More precisely, the can be asymptotically 
approximated by 

( ) ( )( )0ln 2 fϕ τ γ τ= − + π                    (37) 

with a function where 5772γ ≅  is the Euler-Mascheroni constant. 
The autocorrelation function of 1 f α  ( 0α ≠  and 1α ≠ ): 

( ) ( )
( )

10

1 1cos 2 d
2 sin 1

2

XXR f f
f α ατ τ

ατ α
−

∞ π
= π =

π Γ − 
 

∫       (38) 

Note that colored noises do not fit the white and pink noises, so the basic 
noises have no common expression. 

The pink noise cannot be described with the classical apparatus of non- 
equilibrium thermodynamics. Macroscopic fluctuation characterizes the  

 

 
Figure 3. Autocorrelation function 1/f noise for very low cutoff frequency (negative, integral 
cosine function, ( )Ci x− ). 
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thermodynamic processes. The range of space in which the fluctuation occurs is 
not uniform concerning the fluctuating quantity (s) but is thermodynamically in 
equilibrium at all points. The latter means that the exchange of extensive amounts 
characteristic of fluctuation between spatial domains during the relaxation pe-
riod of equilibrium is negligible. A further feature of thermodynamic fluctua-
tions is that the fluctuation persists for a finite time and that the rate of change 
of each ( )1,2, ,ia i n=   extensive can be expressed in terms of the extensive 
amounts involved in the fluctuation, i.e. 

( ) ( )1 2
d

, , , 1, 2, ,
d

i
n

a
f a a a i n

t
= = 

               (39) 

Let be an extensive one whose relaxation time is much longer than the others. 
Then the fluctuation can be described by this single extensive one. When (39) is 
linear and returns to the equilibrium position of the system, then the equation is 
a one-sided fluctuation process, completely deterministic, with no noise in it: 

d
d
a a
t

λ= −                          (40) 

Solving (41): 

( ) ( )0 e ta t a λ−=                        (41) 

Then the correlation function is: 

( ) ( ) ( ) ( ) 2
0 0 eaaR a a a λ ττ τ −= =                   (42) 

and its power spectrum: 

( ) ( ) ( ) 2

2 2e d 0i
aaS i R aωτ λω τ τ

λ ω
−

−∞

∞
= =    +∫            (43) 

For stochasticity, the necessary noise appears in the fluctuation and spectrum 
for the whole, but the considerations lead to (43) are deterministic. Therefore, it 
is assumed that this deterministic signal is repeated randomly, forming a noise 
of a series of randomly repeated deterministic signals. Introducing a white noise 
function into the deterministic equation (like is in the Langevin equation) ap-
plies the amplitudes of the white noise spectrum that corresponds to the noise 
spectrum given by the deterministic random fluctuation and accordingly with  

the correlation function too. This is white noise ( 1
ω

) for small ω  values, while 

Brown noise (
2

1
ω

) for large values. 

In the case of pink-noise, these considerations do not work. The Fourier trans-
form connects the ( )S f  power function and the xxR  autocirreklation func-
tion: 

( ) ( ) ( )1
aa aa

iS i R S R b
b b

ωω τ τ ⇔ ⇒ ⇔ 
 

           (44) 

Because 
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( ) 1S iω
ω

=                          (45) 

because of this 

1 1iS
b b

ω
ω

  = 
 

                       (46) 

so it follows that 

( ) ( )aa aaR R bτ τ=                       (47) 

The correlation function is constant in this case, so the pink noise correlated 
in the same way for each shift, so there can be no thermodynamic fluctuation! 

Starting with such randomized deterministic fluctuations, we get equivalents 
to form of (40), like: 

d 1
d
a a a
t

λ
τ

= − = −                       (48) 

In this case, instead of (41), we get the following spectrum: 

( ) ( ) ( )
( )

2

2e d 0
1

i
aaS i f aωτ τω τ τ

τω
−

−∞

∞
= =    +
∫            (49) 

Assuming that the temporal correlation length probability density function is 
lognormal, the resulting noise spectrum is: 1 f α . It is the same as the originally 
white-noise pumped stochastic case. It is confusing, of course, that this process 
started from deterministic distribution, but it was overcome by assuming that 
there is a random series of such deterministic fluctuations. 

Two stochastic processes can be considered equivalent if their noise spectrum 
is the same. Based on this, we introduce a stochastic excitation term ( )q t  to 
(48): 

( )d 1
d
a a q t
t τ
= − +                        (50) 

The ( )q t  spectrum is chosen of the signal resulting from the solution of the 
equation is equal to the power spectrum of the fluctuation (49). This can always 
be done. To prove this, Fourier transforms Equation (50), then we get that 

( ) ( ) ( ) ( )1
1

i a q a q
i
τω ω ω ω

τ ωτ
 + = → =  + 

            (51) 

Hence the power spectrum 

( )
( )

( )
2

2

21
S qτω ω

ωτ
=

+
                    (52) 

The following choice leads to the desired result: 

( ) ( )0a
q ω

τ
=                         (53) 

Consequently, if ( )q t  is a white noise with 
( )0a
τ

 amplitude, then the noise 
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spectrum of the signal is the same as the noise spectrum of the fluctuation. 

3.3. Orstein-Uhlenbeck Process 

The power spectrum of a random series of such deterministic fluctuations differs 
from the white-noise pumped Langevin solution only in a proportionality factor. 
We approach the fluctuation by decomposing it into the sum of quasi-periodic 
stochastic processes of different statistically independent time scales. The qua-
si-periodic stochastic processes with different time scales also have different fre-
quency scales. All such component processes are assumed to be statistically simi-
lar. Note the increase of a stochastic ( )X t  process ( ) ( )dX t t X t+ −  without 
memory with Θ-function: 

( ) ( ) ( )d , ,dX t t X t X t t t+ − = Θ   .                (54) 

Assume that ( ) , ,dX t t tΘ    is a smooth function of the , ,dX t t  variables 
and that ( )X t  is continuous: 

( ) ( )
d 0
lim d
t

X t t X t
→

+ = .                    (55) 

The approach that the observed noise by the emission of subsequent process- 
chains in statistical mechanics, the Markov process [49] describes the chain reac-
tion, which is used in biology too [50]. The Markovian recursive successive 
building the ( )dX t t+ , while the function ( )X t  from where it was derived 
depends only from t in memory-less construction, using: 

( ) ( )

( ) ( )

1

1

d d, ,d 1

d d d1 , 1 ,

n

i

n

i

t tX t t t X t i X t i
n n

t t tX t i t i
n n n

=

=

   Θ = + − + −          
  = Θ + − + −    

∑

∑
       (56) 

Since dt can be chosen to be arbitrarily small, the ( )1
d1i
tt t i

n− = + −  can be 

placed in any proximity of the t times by choosing n large enough. Exploiting the 
continuity, in this case: 

( ) ( )

( ) ( )

1 1

1

,

d, ,d , ,

i i

n
ii

t t X t X t

tX t t t X t t
n

− −

=

→ =

 Θ = Θ     
∑

              (57) 

Here, the ( ) d, ,i
tX t t

n
 Θ   

 terms can be considered as representations of the 

( ) d, , tX t t
n

 Θ   
 variable that is statistically independent due to being the mem-

ory free of the process. Since n is arbitrarily large, it follows from the central 

limit theorem that ( ) , ,dX t t tΘ    is the sum of n statistically independent 
 

( ) d, ,i
tX t t

n
 Θ   

 probability variables. Hence, this probability variable distri-

butes normally. The following properties follow from the property of normally 
distributed random variables: 
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( ) ( )

( ) ( )

d, ,d , ,

d, ,d , ,

tX t t t n X t t
n

tX t t t n X t t
n

 Θ = ⋅ Θ     

 Θ = ⋅ Θ     

            (58) 

where  notes the mean, and  is the standard deviation. Solving func-
tion equations 

( ) ( )

( ) ( )

, ,d , d

, ,d , d

X t t t A X t t t

X t t t D X t t t

Θ =      

Θ =      
               (59) 

where A and D are smooth functions of X and t, and 0D > . Considering the 
normality of (55) and (60): 

( ) ( ) ( )
( ) ( )

( ) ( )
1 1
2 2

d , ,d

, d , , d

, d 0,1 d

X t t X t X t t t

A X t t D X t t

A X t t D t

+ − = Θ  
=   

= +

N

N

           (60) 

where ( )0,1N  is the unit standard deviation squared normal distribution sto-
chastic process with zero means. Turning to a differential equation, we get the 
following nonlinear generalized Langevin equation 

( ) ( ) ( )
1
2d , ,

d
X A X t D X t t
t
= + Γ                  (61) 

driven by normally distributed white noise: 

( ) ( )1

d 0
lim 0,d
t

t t−
→

Γ = N                      (62) 

In the Gillespie sense [51], the stochastic process is self-similar, resolved to a 
sum of statistically independent terms normally distributed within the studied 
interval. Consider the simplest of the self-similar stochastic processes in (61): 

( )
1
2d 1

d
X X D t
t τ
= − + Γ                      (63) 

where τ  is the time constant of the process. 
The describes an Ornstein-Uhlenbeck process (OUP), which is stochastic and 

follows a normal (Gaussian) distribution. The OUP is homogeneous in time. Its 
homogeneity in time allows the OUP to describe it simply with the stochastic 
interaction of an energy source and the connected energy-consuming system 
Figure 4, allowing linear transformations of space and time variables [52]. 

The central value is exponentially decreasing, and a white noise drives it. The 
exponential decay should be uniformly distributed rather than lognormal, the 
maximum entropy belongs to 1/f, and then the equation and distribution of the 
distribution should lead to 1/f. 

If we use a lognormal distribution in the interval [53], modifying (63) by 

0D
D

τ
=  [54]: 
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Figure 4. The simplest relation of the energy source (reservoir, mechanical, electronic, 
etc.) and the linear consumer (energy-sink mechanical electronic, etc.) 

 

( )
1
2
0d 1

d
DX X t

t τ τ
= − + Γ                     (64) 

Thus, the power spectrum of this is distributed by the lognormal of the time 
domain, asymptotically 1 τ . The equation describes the noise of a system ex-
cited by white noise consisting of an energy store (e.g., mass, rotating mass, ca-
pacitor, inductance) and a linear attenuation (e.g., fluid resistance, ohmic resis-
tance).The power spectrum of the process: 

( )
( )

2
0

2,
1

s

s

D
S

τ
ω τ

ωτ
=

+
                     (65) 

Here sτ  is the time constant of the system, which can also be considered the 
natural time scale of the stochastic process. Let’s define 

1

s

λ
τ

=                            (66) 

a frequency scale at which we want to characterize stochastic processes. Let  
( )dG λ λ  a be the number of stochastic processes in the frequency interval  

( ), dλ λ λ+ , then the energy spectrum of the stochastic processes in the interval 
between the frequency scales ( )2 1,λ λ : 

( ) ( )2

1
1 2 2 2, , d

D G
S

λ

λ

λ
ω λ λ λ

λ ω
⋅

=
+∫                   (67) 

If the distribution is uniform, that is, if, 

( )
2 1

ddG λλ λ
λ λ

=
−

                      (68) 

then we get that 

( ) ( )
( )2

1

1 2

1 2
1 2 2 12 2

1 22

if 0

if
, , d 2

if

D
DD G

S f

D

λ

λ

ω λ λ

λ λ ω λ
λ λ λ ω λ λ

λ ω
λ λ ω

ω

<
 π⋅ = = −

+ 



∫

 

 

 

   (69) 
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a well-known result gives white noise in the first interval, pink in the second, 
and brown (Wiener noise) in the third. 

When the relaxation rate is uniform in an interval [ ]1 2,f f  and the applied 

amplitude doesn’t change. Hence the spectrum of OUP, ( ) 1S f
f α=  has three 

well distinguishable frequency parts Figure 5. 

3.4. Importance of the Self-Similarity 

The sτ  the time constant of the system in (65) generates the stochastic signal. 
The sτ  can be considered as the natural time scale of the stochastic process that 
characterizes the two-point correlation function of the stochastic process. In-
deed, the two-point correlation function from (65) shows the degree of correla-
tion decreases exponentially with τ  time constant: 

( ) ( )
( )

1 1 0
02, e

1
ss

XX s
s

D
F S F D

ϑ
ττ

φ ϑ ω τ
ωτ

−
− −

 
  = = =   + 

        (70) 

This feature of sτ  is the temporal correlation length. 
The complexity of the system involves a ( )ds sG τ τ  number of statistically 

independent stochastic processes in the temporal correlation length interval 
( ), ds s sτ τ τ+ , then the resulting energy spectrum of the stochastic processes in 
the ( )0,∞  interval is: 

( ) ( )
( )

0
20

d
1

s s
s

s

D G
S

τ τ
ω τ

τ ω

∞
=

+
∫                    (71) 

when the distribution is scale variant, i.e.: 

( ) d
d s

s s
s

G
τ

τ τ
τ

=                        (72) 

form, then using Equation (70) a 
 

 
Figure 5. The power density function is divided into three distinguishable parts in Orn-
stein-Uhlenbeck process. The { }1 2,f f  interval, when the probability of realization of the 

f frequencies are equal. 
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( )20

1 1d
21

s
s

τ
ωτ ω

∞ π
=

+
∫                     (73) 

improper integrated, we get the desired result: 

( ) ( )
( ) ( )

0 0
02 20 0

1
1 1d d

21 1

s
s s s

s
s s

D G D
S D

f

τ
τ τ τ

ω τ τ
ωτ ω τ ω

∞ ∞ π
= = = ∝

+ +
∫ ∫      (74) 

The scale invariance means that the probability scale is independent, 

( ) ( ) d d
d d s s

s s s s
s s

G G
ατ τ

τ τ ατ ατ
ατ τ

= ⇒ =              (75) 

In the case where only self-similarity is required, e.g., as a function of density. 
That is 

( ) ( )s sG Gβατ α τ=                       (76) 

then we get that 

( )s sG βτ τ=                          (77) 

In this case 1β = − , it provides 1/f noise. If we require only self-similarity, we 
get from (71) and (77) that the noise spectrum of signals in the interval ( )0,∞  
is: 

( ) ( )
( ) ( )

1
0 0

2 20 0
d d

1 1
s s s

s s
s s

D G D
S

βτ τ τ
ω τ τ

τ ω τ ω

∞ ∞
+

= =
+ +

∫ ∫            (78) 

Due to the physical image, the integrated a 

( )
( )

( )
( )

( )
11

0 0
2 2 20 0

d d
1 1

ss
s s

s s

D D
S

ββ

β

ωττ
ω τ ωτ

ωτ ω τ ω

∞ ∞
++

+= =
+ +

∫ ∫         (79) 

to shape. 
The integral is generally unpredictable. Fortunately, in the case of interest to 

us, if 0 2β< <  the impropriety integral can be given in the closed-form: 

( )
( )

( )
( )

1

20
d

21 2sin
2

s
s

s

A
βωτ

ωτ
βτ ω

∞
+

π
= =

+ π +
 
 

∫             (80) 

This gives (79) that 

( ) ( )
( )

( )
1

0 0
2 2 20

d
1

s
s

s

D D A
S

β

β β

ωτ
ω ωτ

ω ωτ ω

∞
+

+ += =
+

∫              (81) 

The self-similar distribution function is thus the condition a shaped power 
spectrum: 

( ) 1S αω
ω

∝                          (82) 

The above considerations can be generalized to a large extent. 
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Namely, if instead of 0D
D

τ
=  in (64) use 

0D
D γτ
=                           (83) 

We start from the stochastic process described by the equation, using normal-
ly distributed white noise as before in (62). Then the power spectrum will be: 

( )
( )

2
0

2,
1

D
S

γτ
ω τ

ωτ

−

=
+

                      (84) 

If we require only self-similarity, we get from (84) and (59) the noise spectrum 
of signals in the interval ( )0,∞ : 

( ) ( )
( ) ( )

2 2
0 0

2 20 0
d d

1 1

D G D
S

γ β γτ τ τ
ω τ τ

τω τω

∞
+

∞
− −

= =
+ +

∫ ∫             (85) 

Due to the physical image, the integral is arranged into a form: 

( )
( )

( )
( )

( )
22

0 0
2 3 20 0

d d
1 1
D D

S
β γβ γ

β γ

ωττ
ω τ ωτ

ωτω τω

− +− +

− +

∞ ∞
= =

+ +
∫ ∫         (86) 

In the case of interest to us, if the 0 3 2β γ< − + <  the impropriety integral 
can be given again in closed form: 

( )
( )

( )
( )

2

20
d

31 2sin
2

A
β γωτ

ωτ
β γτω

∞
− +

π
= =

− + π +
 
 

∫            (87) 

which gives from (78): 

( ) ( )
( )

( )
2

0 0
3 2 30

d
1

D D A
S

β γ

β γ β γ

ωτ
ω ωτ

ω ωτω

− +

− + − +

∞
= =

+
∫             (88) 

The self-similarity is again desired the power spectrum: 

( ) 1S αω
ω

∝                          (89) 

This result concludes to an important note: the self-similarity is a more fun-
damental feature of the noise than its 1/f shape. Support this we derive instead of 
the 1 f α  the noise spectrum from thermodynamic fluctuations, [55]. 

3.5. Energy Dissipation 

Considering that the quantum theory of the dissipative systems is not adequately 
worked out, we stay within the range of the classical theory. We suppose that the 
pieces of information necessary for the communication are carried by the analog 
signals describing the physicochemical state of the individual cells. Furthermore, 
we are going to suppose that the self-similar Markov processes can represent the 
state of coaching biological subsystems. Gillespie could show that from this as-
sumption, the equation describing the dynamics of processes can be concluded. 
This is the generalized Langevin equation [56]: 
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( ) ( ) ( ) ( )
1
2d

, , , 0,1, 2, , 1
d

i
i j i j

X
A X t D X t t i N

t
= + Γ = −        (90) 

where 

( ) ( )1

d 0
lim 0,d
t

t t−
→

Γ = N                      (91) 

is the white-noise with zero mean value, infinite dispersion, and normal distri-
bution. Let us decompose the ( ),i jA X t  function into three parts: 

( ) ( ) ( )
1

0
,

N

i j i i i ik k
k

A X t f t A X c X
−

=

= + + ∑                (92) 

where the ikc  elements form a cyclic matrix. 

0 1 1

1 0 2

1 2 0

N

N N

c c c
c c c

C

c c c

−

− −

 
 
 =
 
 
 





   



                   (93) 

( )i iA X  can be nonlinear and the ( )if t  is the time function generated by 
the internal active processes of the cell. It is reasonable to assume that ( )i iA X  
is identical for each cell, and at the same way, we may suppose that iD  is con-
stant for each cell. This latter can be justified because each cellis to be found in 
the same heat conditions. We did not assumed any confinement for the ( )if t  
function. The proposed equation isthe generalization of the model of the coupled 
damped oscillators, which showed [57] that the stochastic resonance is included 
in the forms of motion. We are going to examine a case where the social signal 
has low amplitude; therefore, the nonlinear members can be neglected. Then 
(91): 

( ) ( ) ( )
11
2

0

d
, 0, 2, , 1

d

N
i

i ik k
k

X
f t c X D t i N

t

−

=

= + + Ψ = −∑          (94) 

3.6. Cellular Communication in a Noisy Environment 

The effective field strength of thermal noise was first calculated by Weaver and 
Astumian [58]. The Weaver & Astumian model (W-A model) assumed changes 
in the field strength result from fluctuations of space charges on both sides of the 
cellular membrane and further showed a thermal noise limit at low frequencies. 
Kaune [59] revisited the W-A model and showed that the field strengths typical 
of thermal noise converge to zero at low frequencies. Therefore, the W-A model 
does not describe this region appropriately. However, thermal noise in Kaune’s 
model [19] is assumed to be synchronized (coherent) over the entire cell mem-
brane. This assumption is called the coherence condition. Unfortunately, ther-
mal noise is unlikely to be coherent over a large structure such as a cell. There-
fore, the calculation that followed is limited to a highly unlikely special case. 
Kaune set all noise-generators to be equipotential based on the coherence condi-
tion by assuming parallel connectivity and the equivalent electrical circuit. As 
the coherence condition does not hold in the general case, the equipotential as-
sumption also does not hold in the general case. We generalized the problem 
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and developed a solution [60]. Our results proved when there are only zero-mode 
currents present. The limit does not exist. However, at non-zero currents, the 
thermal noise does limit the efficacy of electromagnetic effects in low frequencies. 
The zero mode is the action by central symmetry for all individual cells instead of 
the translation symmetry of the usually applied outside field effects. 

The topological construction is an essential factor of the cellular organization, 
[61], irrespective it is alive or not. The cellular structure, because of some topo-
logical reasons, develops preferring special coordination arrangements [62] and 
could arrange a self-organized collectivity [63] [64]. It was discovered that the 
division tendency is very low in the cell population, small in number [65]. For 
the start of a significant cell division, a critical cell density is necessary. This was 
later observed on a self-synchronization of chemical oscillators [66]. The topo-
logical importance was assumed in living cellular cultures also, [67], declaring 
that not the cell density but the position (coordination number) of cells related 
to each other determines what is favorable or not favorable from the point of 
view of division. This hypothesis was later justified experimentally [68]. 

The cells in developed multicellular living objects are grouped into organs to 
perform certain tasks in a network together. This network extends inside the 
cells and has suitable connection points outside the cell wall, ensuring with this 
to involve the cellular mechanisms in the tasks of the network. The cytoskeleton 
of the cells provides the basic cellular information-transfers intracellularly. The 
internal cytoskeleton network has transmembrane bridges (e.g., adherent con-
nections, junctions) connecting the matrix structure on the outer side of the cell 
through the polar protein molecules [69]. The network develops by polymeriza-
tion [70], where the water structures of aqueous electrolyte arrange the extracel-
lular matrix partially. For example, the formed “intercellular filaments” in epi-
thelial tissues implements the mechanical coupling of individual cells [71] [72]. 
Ordered water creates efficient proton conduction mechanisms [73] that disor-
dered water does not have. The hydrogen bridges transport the protons, which is 
crucial in living systems [74]. This high-speed and low dissipation of the trans-
port propagation is based on Grotthuss-mechanism [75]. 

The healthy cells are under the control of others in the network (“social” sig-
naling [76], a collective action). Social information should spread within the 
body without loss of information. However, the environment is noisy, and the 
living information exchange faces this challenge. Now, we are going to prove 
that among the modes belonging to the eigenvectors of the matrix (93) of equa-
tion (91), there are modes of zero noise spectrum. It is well known that any cyc-
lic matrix can be diagonalized by the transformation matrix [77], that is 

( )

( ) ( )2

1

1

1 11

1 1 1 1
1

1

1

1

i N

j Nj ji

N i NN

a a a

a a aT
N

a a a

−

−

− −−

 
 
 
 =  
 
 
  

 

 

 

     

 

,           (95) 
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where 2ei Na π= . Applying this transformation to the Equation (94), we obtain: 

( ) ( ) ( )d
0, , 1

d
si

i si si si
x

x f t t i N
t

λ= + + Γ = −
.            (96) 

Here the new coordinates and the eigenvalues of the cyclic matrix are 

( ) ( )

( ) ( ) ( )

11 1
2

0 0

1 1

0 0

1 1, ,

1, , 0, , 1

N N
ik ik

si k si
k k

N N
jk ik

j k si i
k k

x a x t D a t
N N

a c f t a f t j N
N

λ

− −
− −

= =

− −
−

= =

′= Γ = Γ

= = = −

∑ ∑

∑ ∑ 

      (97) 

Let us consider any one of the new 

( ) ( )
1 1
2

0

1 N
ik

si
k

t D a t
N

−
−

=

Γ = Γ∑                   (98) 

noise components for which 0k ≠  (non-zero order component). Let us take 
the Fourier to transform thereof and consider that the amplitudes are unitary in 
the white-noise spectrum. Then we get that 

( )
1 1
2

0

1 , 0
N

ik
si

k
t D a k

N

−
−

=

Γ = ≠∑                 (99) 

On the other hand, we know that 
1

0
0

N
ik

k
a

−
−

=

=∑                         (100) 

In consequence, every non-zero order mode is noiseless because: 

( ) 0, 0si t kΓ = ≠                       (101) 

So the zero-order noises are not only limitless by thermal noises, but the sig-
nal exchange in such a way is noiseless. 

4. Conclusion 

The stochastic processes drive the homeostatic harmony, synchronizes the processes 
by environmental noises, while the system performs the important internal sig-
nal communications noiselessly. The dynamic stochastic living systems involve 
characteristic resonances. Particular resonant frequencies differentiate and de-
scribe the various enzymatic processes. 
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