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Abstract 
Background: Allometric scaling is a well-known research tool used for the 
metabolic rates of organisms. It measures the living systems with fractal phy-
siology. The metabolic rate versus the mass of the living species has a definite 
scaling and behaves like a four-dimensional phenomenon. The extended in-
vestigations focus on the mass-dependence of the various physiological pa-
rameters. Objective: Proving the length of vascularization is the scaling pa-
rameter instead of mass in allometric relation. Method: The description of 
the energy balance of the ontogenic growth of the tumor is an extended cell- 
death parameter for studying the mass balance at the cellular level. Results: It 
is shown that when a malignant cellular cluster tries to maximize its metabol-
ic rate, it changes its allometric scaling exponent. A growth description could 
follow the heterogenic development of the tumor. The mass in the allometric 
scaling could be replaced by the average length of the circulatory system in 
each case. Conclusion: According to this concept, the dependence of the 
mass in allometric scaling is replaced with a more fundamental parameter, 
the length character of the circulatory system. The introduced scaling para-
meter has primary importance in cancer development, where the elongation 
of the circulatory length by angiogenesis is in significant demand. 
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1. Introduction 

The spatiotemporal organization of biosystems is complex. The complexity is 
driven by self-organization ([1] [2] [3]), and validated by new science: fractal 
physiology ([4] [5]), including the bioscaling processes ([6] [7]). Understanding 
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the challenges of the complexity of human medicine requires the development of 
a new paradigm [8].  

The Basal Metabolic Rate (BMR) shows allometric scaling of the mass of the 
organism [9], describes as the power function of the mass ( ) [10]:  

BMR α∝                            (1) 

The allometric relation connects the surface-controlled metabolic processes 
with the geometry of the given material, which uses the available energy. In the 
simple formulation, metabolic processes are surface-dependent, while the mass 
is proportional to the volume. Therefore, the exponent of their ratio mirrors the 
dimensionality, and consequently, the exponent is 2 3α = . On the other hand, 
the complex living allometry shows the exponent as 3 4α =  instead of 2 3α =  
[11], explaining the relationship between the three-dimensional surface and the 
four-dimensional volume. Metabolic scaling in solid tumors is significant, but its 
heterogeneity and its rapid development by intensive proliferation and the sup-
porting vascularity [12] change the scaling behavior [13], and this is described as 
dynamic evolution [14].  

Life in this context is “four-dimensional” based on its metabolic exchange pro- 
cesses [15]. The self-organized multicellular structure creates fractal arrangements, 
and their metabolic energy-exchange proceeds on fractal surfaces, maximizing 
the available energy-consumption, scaling the fluctuation of the metabolic power 
by the universal scaling law [16]. This optimization of energy consumption was 
rigorously tested in the context of the scaling idea and can be extended to broader 
mechanisms [17], such as the energy-consumption's subcellular level, including 
the mitochondria and respiratory complexes [17].  

The scaling model has been shown to be valid in a broad category of living 
structures and processes. The primary physiological parameters exponentially 
depend on the mass of the body [18]. The allometry shows a structural, geome-
trical constraint for living organisms. Nevertheless, life is more complex than 
what can be determined by its geometrical structure. A self-similar spatial-tempo- 
ral-fractal structure defines the self-organizing procedure both in space and time 
[19]. A particular noise (temporal fractal noise)—like a fingerprint of the self- 
organizing [20]—is a typical and general behavior of the living biomaterial [21]. 
The stochastic fluctuations have a characteristic effect on malignant development 
[22], acting in the apoptotic threshold of cancer [23], and is well observable in 
the growth process [24].  

The measured structural patterns could be applied to evaluate the cancer de-
velopment [25] [26], an example of this is the use of image analysis is done by a 
pathologist. The metabolic power not only depends on the size of the surface 
involved in active transport, but also on the flow-rate of the same active surface 
size. This dependence could modify the transport. In the case of Benthic inver-
tebrates (n = 215), they have the lowest average scaling exponent because they 
metabolize in an anaerobic way. This can be written as: ( 0.63meanα = , [near to 
2/3], 0.18meanCI = ), where α is the scaling exponent, and CI is the Confidence 
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Interval [27]. However, the other studied animals (n = 496) have ( 0.74meanα = , 
[near to 3 4meanα = ], 0.18meanCI = ) [28]. The scaling of the metabolic activity 
is also different in mitochondrial and non-mitochondrial processes [29]. Mito-
chondrial metabolism is always aerobic, and its scaling exponent is nearly 3 4α =  
[30] [31]. When the oxygen supply is limited, the cell extends its ATP produc-
tion to fermentation by non-mitochondrial respiration, where the allometric 
scaling exponent lowers to nearly 2 3α = .  

Based on the scaling theory, a general model for ontogenic growth has been 
proposed [32] [33] [34]. Allometry is a consequence of the evolution process 
[35]. The variation of the personal sizes of the organs and the whole body of the 
individuals can be addressed in the frame of the power-law. The high fractal di-
mension could be used as a significant prognostic factor in diseased tissues [36]. 
There is research on tumor growth evaluated from an ontogenic basis [14] [37] 
[38] in which the tumor is successfully described, despite the substantial hetero-
geneity of the blood-supply [39] and the cellular structures differing from their 
regular counterparts. If the whole tumor mass differs from the mass of the viable 
part of the tumor, and the viable part has a scaling by the complete tumor mass 
with a high confidence scaling exponent 0.78α =  then the inadequate meta-
bolic supply causes an extension of the nectrotic tissue inside advanced tumors 
[40]. 

2. Method 

The general model for ontogenic growth described tumor-cell growth needs to 
calculate the cell-production considering also the vanished cells in the energy 
balance [40]. We learned, however, how vital programmed cell-death (apoptosis) 
is in the development of the fetus of mammals [41], and we considered it as a 
basic biological phenomenon [42]. The concept of cell-death is crucial in cancer 
development, considering one of the hallmarks of the malignancy is its escape 
from apoptosis [43], and is instead more susceptible to a more drastic kind of 
death: necrosis [44]. Following the line and extensive discussion of numerous 
other authors [28] [30] [32] [33] [34], who adapted the death-free energy bal-
ance from the original [45] publication, we extended this view with the changes 
caused by the perished cells. This approach became even more relevant with the 
study of malignancies, where a large mass of the tumor could well involve non- 
living necrotic tissue, so the ontogenic calculations [37] [40] need modification 
based on their energy-balance.  

The number of cancerous cells (Nc) is the difference between the newly pro-
duced cells (P), and the perished (due to apoptosis or necrosis) drop off cells (D) 
at the unit time, basically follow the method of [40]: 

d
d

cN
P D

t
= −                          (2) 

The value of the changing cells is zero, while production just equal to the pe-
rished cells ( P D= ). It is a realistic assumption that the perished cells are pro-
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portional to the complete cell number in unit time: 

cD Nλ=                             (3) 

where λ  is the cell death-rate in a tumor. Note, at the beginning of the tu-
mor-growth the P is also proportional with cN , ( cP Nξ= ) and in this case, the 
tumor growth exponentially: ( ) ( ) ( )0 expcN t tξ λ= − . When P is constant dur-
ing the development, the balance of the cell number by the time: 

d
d

c
c

N
P N

t
λ= −                          (4) 

The P const=  deviates from the assumption of [40]. Our consideration 
concentrates on the fact that the cellular production after the initial period of 
growth became constant due to the stabilized balance of the resources and the 
autonomic growth of cells in a supporting healthy host environment by resources. 
The situation in this phase is well similar to the in-vitro experiments of the mo-
noculture system when the allometric exponent is zero [31]. The energy balance 
is determined by the transported energy-flux delivered by the bloodstream. The 
energy-transport current intensity, the metabolic rate (B), is divided into two parts: 
one produces new cells, while the other keeps the living set alive. Hence:  

d
d

d
d

c
c c c c c c c

c c
c c c

c

N
B N B E P N B E N

t

N N
N B E

t T

λ = + = + + 
 

 
= + + 

 

             (5) 

where cB  is the metabolic rate of a cell, and cE  is the necessary metabolic 
energy to create a new cell and 1

cTλ− =  is the average lifespan of a cell in the 
tumor. Consequently:  

( )d
d

c
c c c c

N
E B N B E

t
λ= − +                    (6) 

Metabolic energy can be scaled by exponent α, 

0 cB B Nα=                           (7) 

where 0B  is a normalizing factor that shows the metabolic rate in the unity of 

cN . Therefore, we obtain: 

( )0
d
d

c
c c c c c

N
E B N N B E

t
α λ= − +                  (8) 

Hence: 

d
d

c
c c c c

N
a N b N

t
α= −  

0 ; c
c c

c c

B B
a b

E E
λ= = +                       (9) 

By multiplying cN  by the average mass of a single cell ( cm ) we now obtain 
the energy-balance for the full tumor-mass (m): 

d
d
m am bm
t

α= −                         (10) 
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where: 
1

0 c

c

B m
a

E

α−

=  and 1c c

c c c

B B
b

E E T
λ= + = +               (11) 

This balance was previously similarly formulated [46]. The mass has a maxi-
mum limit M, asymptotic value, a saturation when no more real changes of the 
mass can be observed, so: 

d0
d
M aM bM
t

α= = −                    (12) 

Consequently: 
11

1 11 0 c

c c

B maM
b B E

α αα

λ

− −−   = =    +   
                 (13) 

3. Results 

A death parameter of the single-cell characteristically appears in the energy-balance 
of the ontogenic growth of the tumor. The nutrients supply profoundly deter-
mines the death of cancer-cells. At least at larger tumor sizes, the cell growth never 
happens with optimal nutrition supply; the cells intensively compete for the 
available energy sources.  

The exponent α  is located in the interval 2 3 1α≤ ≤ , and it is 3 4α =  at 
ideal basal conditions [15] [45]. The ideal nutrition supply supports ontogenic  

growth. The “ideal” asymptotic mass ( idM ) from (13) is: 
4

id
aM
b

 =  
 

, hence the 

BMR* in non-ideal conditions: 

( ) ( ) ( ) ( )

1
11 *4 1 4 1id id

aM M BMR M M
b

αα αα α
−

− −
 = = ⇒ = = 
 

      (14) 

Substituting (14) into (10): 
1d 1

d
m mam
t M

α
α

−  = −     
                    (15) 

So: 

( )
1

1

1

d 1
1

d

m
a mM

t MM

α

α

α

α

−

−

−

 
   −    = −     

                (16) 

which has a sigmoidal solution:  
( )

( )

1
111

0

1
0

1

1 1 e

1
1 exp ln 1

1 e

a t

Mmm
M M

at m
MM

α
αα

α

α

τ

α

−

−−∝− −

−

−

−

    = − −         
  −   = − − + −       

= −

           (17) 

where 
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( ) 1
0

1

1
ln 1

at m
MM

α

α

α
τ

−

−

 −  = − −     
                  (18) 

and 0m  is the mass at the start of a tumor (probably a few times cm ), the ini-
tial (just born) mass. The ratio (r) of the energy spent on keeping cells alive ( 0λ = ) 
from (13) is: 

( )
1

1

0

1 ec c c

c

N B B m b mr m
B a Mm B m

α
α τ

ατ
−

− − = = = = = − 
 

         (19) 

Using 3 4α =  for the ideal four-dimensional case, the solution is:  
1 41 4

0
1 41 e , ln 1

4
mm at

M MM
τ τ−

    = − = − −         
            (20) 

This is formally the universal growth law [45], but has a difference in the val-
ues of b (see (11)) and M (see (13)), including the average life-time of the ma-
lignant cells (death rate λ) in ontology description. The M value became smaller 
by shortening the average life-time of the cells and elongating τ time approach-
ing the saturatin of the mass. 

4. Discussion 

The four-dimensionality and the allometry with evolutional optimization re-
quire different approaches: as the evolutionary conditions have a higher than a 
four-dimensional allometric scaling. The tumor mass is a somewhat indefinite 
parameter because the whole environment of the tumor suffers from sub-optimal 
alimentation. Consequently, the mass does not describe the allometry well. A 
more fundamental parameter of the networking conditions is requested. 

From the original “four-dimensional life” fractal concept, we get scaling of the 
characteristic volume (v) with a characteristic length (l) [15] [45]: 

4v kl=                            (21) 

where k is a constant.  
When the mass density of the tumor is relatively homogeneous, we assume 

proportional relation between the mass and volume:  

m v∝                            (22) 

When 0l  is the average asymptotic length of the circulatory network of the 
organ, and M is the asymptotic mass, from (21) and (22) with other K constant:  

4
0M Kl=                           (23) 

Consequently, from (23) and (21), we obtain: 
1 41 4 4

4
00

m Kl lr
M lKl

  = = =  
   

                   (24) 

The fourths-root of the relative mass growth to the asymptotic value (the rela-
tive basal metabolic rate) corresponds to the relative ratio of the length of the 
circulatory network. The geometrical parameter of the vascularity offers a more 
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evident intrinsic factor than the mass. The length looks essential in the allome-
tric relations. 

From (20) and (24) the geometric growth rate is obtained, where a universal 
law can describe the average relative length of the circulatory network: 

( ) ( )01 41 e ln
4

, 1atr r
M

ττ τ−= − = − −               (25) 

where 
1 4

0
0

m
r

M
 =  
 

. The ratio of the energy maintaining new cells is 

( ) ( )( )1 eR r ττ τ= − = . Assuming the average density of the cancerous cell colo-
ny in the experiments of Bru et al. [47], the scaling law could be determined by 
the characteristic lengths, which are (at 3 4α =  [45]), 4m L∝  in ideal cases, 
consequently: 

( )
1 41 4

4
00

1 em L Lr
M LL

α
ττ

−
−  = = = = −  

   
              (26) 

where 0L  is the asymptotic size of the cancer-cell cluster. It is naturally as-
sumed that 0L L , then from equation (17) the Taylor expansion of τ  could 
be truncated at its second term, so (26) will be the linear dependence as measured: 

( ) ( )
0

0

0
ln 1

4
LaL t t L

K L
τ = 

≅ − − 
 

                (27) 

However, if the energy supply is not ideal (which is the case in almost all the 
developed tumors in-vivo), the results do not support the ideal scaling by 3 4α =  
[38]. It is shown in a generalized model that the fractal surface and the covered 
volume are scaled rigorously [48].  

In cases of sub-optimal alimentation (there is an energy-deficiency for optimal 
growth), the scaling-exponent changes, and it depends on the fractal dimension 
of the vascular network ( vD ) [48]. The shortage of energy for adequate alimen-
tation is a usual condition for the rapidly proliferating structures. Two strategies 
can be followed to distribute the available (sub-optimal) energy resources: 
maximizing the metabolism on the surface of the cells. The elongation of the 
vascular network (angiogenesis) is the optimal strategy in this growing phase of  

the tumor ( 1
1

3
3 vD

α =
+

) [49]. The optimizing strategy could change in the  

advanced stages when the blood volume is limited despite the elongated vascular 
possibilities. In the advanced cases, the energy-distribution request a 2

2
4

4
vD

α
−

=  
exponent ( 2 1, 1vDα α< > ) [49]. The growth of the mass would be in these cases 
(as described by (16)):  

( )

( )

1

1

1

1

1
3max 1

3
1

d
1

d
3

v

v

v

v

D
Dv

D
D

v

m aD m
t M

D M

+

+

 
  = −     

 +

             (28) 

and 
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( ) 2

2

4
2

4max 2
4

4

d
1

d
4

v

v

D

v
D

m aD m
t M

M

−

−

 
  = −     

 

                (29) 

The generalized form of relation (25) could be used in 2 1α α< , ( 1 2, 1v vD D > ) 
exponents, when the allometry exponent is α . The phase 1 and phase 2 stages 
of tumors had been studied by various publications [49] [50] [51]. We choose 
two characteristic values to demonstrate the differences, 1 1.28vD =  and 

2 1.52vD = . 
The time development well shows the different saturation time of the processes 

with various exponents (Figure 1). 
The mass and the characteristic length are strictly connected:  

( ) ( )
3 4

1 2 4
max maxand

v v
v

D D
Dm Kl m Kl
+ −

= =                 (30) 

In general: 
1

1
0M Kl α−=                           (31) 

and therefore: 
1

max

0

m lr
M l

α−
 = = 
 

                       (32) 

For optimal distribution, we get the exact same result: 
1

0

optm lr
M l

α−
 

= = 
 

                       (33) 

The limited nutrition, the energetic control of the tumor could be considered 
as a part of the controlled therapy [52]. If the cell culture were to be placed on 
the tumour region, and the cell culture had the same or higher demands as the  
 

  
Figure 1. Development of the relative length in time of vascular structure in a tumor at 
various allometric exponents: the normal, tumor-free tissue 3 4α =  (solid line) and in 
the Euclidean geometrical construction 2 3α =  (dotted line). The saturation time to reach 
the final length increases by the decreasing of the vascular fractal-dimension, ( 1 0.701α = , 
dashed line; and 2 0.62α = , dash-dotted line). The chosen sample parameters: 0 1 a.u.m =  
and 1000 a.u.M = . 
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tumour tissue, then it could successfully compete against the cancer cells sup-
plied from the same sources of energy. These in-silico results have not yet been 
verified experimentally, they are expected in the future. 

5. Conclusions 

The mass change to the more fundamental length of the vascular network in al-
lometric scaling is generally proven in optimal metabolic conditions. We had 
shown the application in two basic kinds of non-optimal alimentation processes, 
too.  

We proved that allometric scaling could eliminate the mass and an entirely 
intrinsic parameter, the average relative length of the circulatory network. The 
allometric model by the length directly connects the metabolic energy intake of 
the tumor with the length of the vascular system, as a supplier of energy. The de-
rivation of the equations is rather general because the obtained fractal dimen-
sions are model-independent. We regard the vascular length as more funda-
mental than the mass because the tumor volume is usually indefinitely smeared 
out, having a gradient formed by the mix of the precancerous and host cells. 
Hence, the fractal determination of the vascular network gives a more precise 
solution for allometric relations. 
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