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Abstract 
This paper models the giraffe’s jugular veins as a uniform collapsible tube 
from a rigid skull. The equations governing one-dimensional steady flow 
through such a tube for various conditions have been developed. The effects 
of inertial and inclination angles that have not been discussed previously have 
been included. It has been shown that different flows for a uniform tube 
(vein) are possible. However, this flow matches that of a jugular vein which is 
supercritical, and the steady solution has been given by the balance between 
the driving forces of gravity and the viscous resistance to the flow at the right 
atrium of the heart must be sub-critical for a fixed right-atrium pressure 
which means that an elastic jump is required to return the flow to sub-critical 
from the supercritical flow upstream this type of relationship gives rise to 
flow limitation at the same time given any right atrium fixed pressure there 
exists a maximum flow rate which when exceeded the boundary conditions of 
the flow do not hold boundary conditions at the right atrium are not satisfied 
hence making the steady flow impossible this mechanism of flow limitation is 
slightly different from the other one in that causes airways through forced ex-
piration from the observation made it is clearly shown that there is an intra-
vascular pressure difference with a change in height. 
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1. Introduction and Mathematical Formulation 

The study of physiological fluid flow is pursued by many scientists in different 
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fields. The attraction of the subject comes about as a result of the abundance and 
the diversity raised which differs greatly in many respects from those encoun-
tered in engineering fluid flows. Actually, many fluid-conveying vessels (veins 
and arteries) in an animal’s body are highly elastic and undergo deformation 
substantially in due to the traction (pressure and viscous stress) that the fluid 
exerts on them. There is also a great deal of interest in the study of flows in de-
formable elastic tubes in both biomechanical and biological contexts. It also 
poses a fluid-mechanical challenge of interest and great difficulty on its own. 
The flow of blood to the brain and the neck in a standing giraffe is of great in-
terest. Experiments and theoretical explanations have been given, but still, the 
whole issue has not been fully understood. [1], did a study in physiology and 
biophysics of circulation of fluid in the body system and found out that ‘it is no 
harder in the circulation for the blood to flow uphill than downhill’ and that dif-
ferences in the level of different parts of the vascular bed do not in any way affect 
the forces for the flow and hence do not affect the circulation directly. In their 
study, they also found out that the prerequisite for the existence of a vascular si-
phon is a continuous column of blood in both arterial and venous limbs of the 
loop [2] [3] [4] while studying Gravitational hemodynamic and Oedema preven-
tion in the giraffe, where the projected pressure range is between −93 and −27 
mmHg based just on the current hydrostatic gradient, which is proportional to 
the total of the gravitational and viscous pressures. In a more recent research, 
the authors provide more evidence in favor of the idea that the heart only has to 
overcome the blood vessels’ viscous resistance rather than the weight of the 
blood being pumped to the brain [5], and [6]. This working models the mathe-
matical equations such that (Following [7]) a long straight tube which has the 
ability to collapse as the fluid flows hence its cross-sectional area is not uniform 
is considered. For this study, an elastic tube is considered but assumed to be 
made of uniform material. The flow is considered non-conducting. The tube is 
assumed to be inclined at an angle ∅ to the horizontal, and the total height 
moved by the fluid is Lsin∅. The flow is in the x-axis, and at some point, the 
full-time Navier Stokes equation is considered in which it is assumed that the 
length of the tube L is much larger than its radius r ( L r ). 

2. Basic Equations of Blood Flow 
2.1. Continuity Equation 

The equation is also called the mass conservation equation. It is derived from the 
law of conservation of mass, which makes the assumption that mass cannot be 
generated or destroyed and that during the state flow process, the mass that has 
been stored in a regulated container remains unchanged. This means that the 
inflow into the controlled volume is equal to the outflow. The equation is given 
as; 

0i

i

up
t u

ρ∂∂
+ =

∂ ∂
                              (1) 
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For in-compressible flow 

0p
t

∂
=

∂
                                (2) 

and thus equation the continuity equation reduces to; 

0i

i

u
x
ρ∂

=
∂

                               (3) 

which represents the rate of change of volume of a moving fluid element per unit 
volume. 

2.2. Equation of Momentum Conservation 

The principle of conservation of momentum asserts that all external forces act-
ing on the control volume as well as the momentum flux into the control volume 
are equal. This implies that a closed system’s overall momentum is constant. 
Suggesting that the total of dissipative viscous forces, change in pressure, gravity, 
and other forces acting on the fluid constitute the change in momentum in a tiny 
element volume of a fluid. It is possible to present the general equation of mo-
mentum in tensor form; 

,i ji i
i i i

i i

u uU f F
t x x

σ
ρ ρ

∂   ∂ ∂  + = + +    ∂ ∂ ∂     
                (4) 

where i = 1, 2, 3 and j = 1, 2, 3... are summation variables along x, y, z directions 
respectively. The term ifρ  represents the body forces acting on the fluid and 
for this study, the forces considered are pressure forces and gravitational forces.  

2.3. Poiseuille Equation 

This equation can be written as 

2d 1
d 2

P gz u RQ
x

ρ ρ + + = 
 

                      (5) 

where Qu
A

=  is the average fluid velocity. 

2.4. Tube Law 

The law relates the pressure difference between two pints (trans mural pressure) 
to the cross sectional area of an elastic tube in this case the vein. [8] gives the 
equation as; 

e
o

Ap p
A

 
− =∅ 

 
                          (6) 

the vein resembles two flattish membrane under tension and the function 

o

A
A

α
 
 
 

 is defined as; 
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    =  
    − >   

                (7) 

with cK  and EK  are the vein’s stiffens when it is distended and collapsed 
respectively. 

3. Some General Governing Equations 

The equation of conservation of mass for an incompressible fluid is given by 

0A Q
t x

∂ ∂
+ =

∂ ∂
                             (8) 

where ( ),A x t  is the cross-sectional area and Q is the volume flow rate, and x is 
the distance down the vein. If U is the average velocity, then Q UA=  and 
therefore equation 8 becomes, 

( ) 0
UAA

t x
∂∂

+ =
∂ ∂

                           (9) 

Since the flow is in the x-direction, the momentum equations in the y and 
z-directions are ignored. form the fact that r L , the equation of conservation 
of this flow becomes 

1
x

u u u u pu v w F
t x y t xρ

 ∂ ∂ ∂ ∂ ∂
+ + + = − + ∂ ∂ ∂ ∂ ∂ 

              (10) 

for the purpose of the paper, the forces considered are resistive forces R(A) and 
gravitational (gz) forces. in the above equation, u is the velocity with which the 
fluid moves and the viscosity of the fluid is neglected because it’s assumed that 
the radius of the vein is too small compared to the distance through which the 
blood travels down the vein ( r L ). L is the total length of the vein which is 
inclined to the horizontal, the above equation can be written as; 

1u u pu gZ
t x xρ

 ∂ ∂ ∂
+ = − + ∂ ∂ ∂ 

                     (11) 

The schematic representation of the tube law in Figure 2 illustrates the drastic 
change in the wall distensibility (the inverse stiffness) 

11 1A PD
A p A A

− ∂ ∂ = =   ∂ ∂  
                      (12) 

as the tube’s cross-section changes to collapse from inflated. In the axisymmetr-
ically inflated state, (i) in Figure 2, any deformation of the vein is accompanied 
by a stretching of the wall. Therefore to induce any change to the vessel’s 
cross-sectional area, large changes in transmural pressure are required. The axi-
symmetric state of the vessel withstands small compressive loads ( 0 atm bP P> > ). 
However, when the trans-mural pressure falls below bP , the tube buckles 
non-axisymmetrically, typically to a two-Iobed state. Once buckled, only the 
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tube’s small bending stiffness resists any further collapse. Hence, this means that 
the vessel undergoes large changes in the cross-sectional area when the trans- 
mural pressure changes slightly; see (ii)-(iii) in Figure 2. As the compression in-
creases further, the vessel’s opposite walls come into contact ( atm intP P< ) and the 
wall stiffness increases again as the two outer lobes need to be bent strongly in 
order to further reduce the cross-sectional area, (iv) in Figure 2 Various curve 
fits which approximate the ( )atmP P A=  relationship sketched in Figure 2 and 
which incorporate the correct solid-mechanical behavior (see [9]) have been 
suggested in the literature; see e.g. [8]. 

4. Bernoulli-Poiseulle 

For steady flow in the gradually varying system, inertial forces are accounted by 
using the “Bernoulli-Poiseulle” equation given as; 

21
2

P gz u RQ
x

ρ ρ∂  + + = − ∂  
                  (13) 

where Qu
A

=  is the fluid average velocity. To asses the effect of inertia we need 

to find the change of 21
2

uρ  as the blood flows from the uncollapsed section as  

we compare it to the gravitational pressure over a comparable length of the vein. 
Using the experimental results obtained by Peterson 2009 on jugular venous 
pooling during lowering of the head, the cross -sectional area of the jugular vein 
when the head is upright is approximated as (0.14 ± 0.04 cm2) and (3.19 ± 0.04 
cm2) when lowered. Similarly, jugular flow is 14 ml∙s−1 which gives the blood 
velocities of 80 cm∙s−1 and 4.4 cm∙s−1 in the collapsed and uncollapsed segments 
respectively. 

This means that a change in 21
2

uρ  is going from the collapsed segment to  

uncollpsed one. Laboratory experiments have shown that collapse only occurs 
on small distances. This means that it is possible that inertial is important in the 
flow of blood in jugular veins of giraffes. [8], gives some theories which are basic 
to for the steady flow in a tube of uniform properties and non-uniform proper-
ties with all possible cases that that can occur. In this chapter we apply this 
theory to the blood flow in jugular veins of giraffes. The mathematical model 
used is similar to the siphon mechanism but the inertial force are added. 

4.1. Governing Equations and Mathematical Description 

A long straight tube is considered through which fluid flows with internal 
pressure p and height z. the tube is inclined at an angle ∅  to the horizontal. 
the tube is assumed to be of uniform properties as in Figure 1. 

The flow considered will be in the x-direction in which inertial properties/ 
effects will be considered significant in the collapsible section since the collapse 
will not be gradual. It is noted that collapse of any tube can occur even at a very 
small distance, especially for thick tubes [10]. this makes inertia an important  
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Figure 1. Collapsible vein under consideration in which the ends A and B are fixed. 
 

 

Figure 2. Schematic representation of tube law (The form of pressure 
area relationship used in is of the form of Ellad 1989). 

 
property as thy evolve self excited oscillations.The sketch diagram for the flow is 
as shown above. 

4.2. Equations Governing the Motion 

The equation of conservation of mass is [8] 

uA Q=                               (14) 

where Q is the volumetric flow rate ( )A x  is the averaged cross-sectional area 
of the vein and ( )u x  is the averaged velocity. using the above assumptions, 
the x-direction momentum equation can be given as the Bernoulli-Poiseulle 
equation as; 

( )1 R A Qu pu g
x xρ ρ
∂ ∂

+ − =
∂ ∂

                     (15) 

where R(A) is the viscous resistance given by 

( )
1

5 2

28 AR A
A
µ

=                            (16) 

If the tube remains circular as it collapses, the resistance term used is  
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2
8R
A
µ

=
π . Equation (16) is used whenever the vein is circular which is not the  

case in most cases. This means that a quasi steady resistance is developed and 
used whenever the tube cross sectional area changes in shape as given by [7] as 

( ) 2
4 1R A
A
µ δ

δ
 = +


π



                      (17) 

where δ  is the ratio of the minor axis to the major axis of the so formed for the 
flow. The term R(A) must be chosen such that the resistance increases more 
rapidly as the area decreases as it would be in a circular tube. The cross-sectional 
area is related to the internal pressure via a simple tube law 

0
e p

Ap p K F
A

 
− =  

 
                       (18) 

where p is the internal pressure, ep  is the external pressure and pk  is the 
quantity that represents the elastic properties and wall elasticity of the vein [8] 
and is given by; 

2

212 1
p

E hK
rσ

 =  
 −

                      (19) 

E is the Young’s Modulus, σ  is Poisson ratio and h
r

 is the ratio of wall 

thickness to the vein radius when it is circular. To increase the effect of the 

surrounding tissues to the vein in pK  the value of h
r

 is increased. The form  

of the tube law taken can be described as shown in Figure 2. 
Positive trans-mural pressure difference.When 0p >  the vein is inflated and 

essentially circular as (i) in the diagram. The pressure difference across the vein 
is supported by hoop tension and the appropriate stiffness constant is that for 
the tension in the tube wall, in such state the vein has low compliant hence high 
transmural pressure is required to cause a given increase in area. If the trans- 
mural pressure nears zero, the cross-sectional area ceases to be circular and takes 
an elliptic shape as in (ii) in Figure 2. The tube now becomes compliant i.e a 
change in an area requires a curvature of the vein. the compliance of the vein 
falls again when highly collapsed (iii), making the cross section area to be a 
dumbell shape. 

Negative trans-mural pressure difference. This occurs when 0p < , the tube 
is partially collapsed in the successive shaped shown in Figure 2. The pressure 
difference is primarily supported by the bending stiffness of the vein as in 
Equation (18) 

( )
2

3

0

nAF F
A

α α α
− 

= = − 
 

                      (20) 

with 

0

A
A

α =                               (21) 
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where for the veins 10n =  this for is used to explain the different shapes that 
the tube exhibits under different conditions. It is to be noted that whenever the 
transmural pressure is zero, 0α →  and gives 1α = . The tube; law used 
includes modification to include the effect of increased stiffness for 1α > . 
Differentiating Equation (17) and with (20) gives 

e
p

pp FK
x x x

α
α

∂∂ ∂ ∂
− =

∂ ∂ ∂ ∂
                          (22) 

Substituting for p
x
∂
∂

 in Equation (15) to get; 

( )1
p

R A Qu Fu K g
x x

α
ρ α ρ

∂ ∂ ∂ + − = ∂ ∂ ∂ 
                     (23) 

upon substitution of Equation (14) into (23) we find 

( )
2 2

g R A QA A
x c u

ρ
ρ

−∂
= ⋅

∂ −
                          (24) 

where 

2 pK Fc α
ρ α

∂
=

∂
                             (25) 

2c  is proportional to the gradient of the pressure-area relationship and signifies 
tube (vein) stiffness at any given value α . It may actually be said to be the 
speed of propagation of small amplitute pressure wave along the tube. Hence the 
wavespeed is given by 

1
3 2

2 10 2310
2

pK
c α α

ρ

− 
= +  
 

                       (26) 

For the purpose our study we consider an inclined vein/tube such that 
sing g φ= , hence Equation (24) becomes; 

( )
2 2

sing R A QA A
x c u

ρ φ
ρ

−∂
= ⋅

∂ −
                      (27) 

4.3. Non-Dimensiolization 

The following parameters for non -dimensionalization are used 
0

A
A

α = , x
L

ξ = , 

o

cC
c

= , 
0

uU
c

= , ( ) ( )
( )0

R A
R

R A r
α = . Where oc  ( p

o

K
c

ρ
= ) is the characteristic 

wave speed and viscous resistance is 
5

2R̂ α
−

= . This variable is only valid for  
uniform properties otherwise for nonuniform properties will vary with longitu-

dinal distances in which they are defined as ( )
( )o

A
A

ξ
α

ξ
=  and  

( )2
0

0p poK K
c

ξ
ρ ρ
=

= = ; 
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( )

( )

0 0

0

0 0

1

oA A AA
x x L L

AA A A
x x L L

c U cu U
x x L

α ξ α α
ξ ξ ξ

α ξ α
ξ α ξ α ξ

ξ
ξ ξ

 ∂ ∂∂ ∂ ∂
= = + ∂ ∂ ∂ ∂ ∂

 ∂∂ ∂ ∂ ∂ = = − ∂ ∂ ∂ ∂ ∂
 ∂∂ ∂ ∂ = =
∂ ∂ ∂ ∂

                   (28) 

4.4. Supper and Sub-Critical Flow 

Substituting Equation (22) to (21) after letting 2 d
dp

Fc k α
α

=  (where c is the 

wave speed of blood) we get; 

( )
( )2 2 2

0

sinLg R A Q
c C U

ρ φα
ξ ρ

−∂
=

∂ −
                      (29) 

[8] suggests that the speed index US
C

=  be introduced in the equation above, 

such that it is given by; 

( )( )
( )2 2 2

0

sin

1

L g R A Q

c C S

ρ φα
ξ ρ

−∂
=

∂ −
                     (30) 

The behavior of flow characteristics depends on the numerator and sign of the 
denominator. If S > 1 then it is said to be supercritical and it is sub-critical if S < 
1 otherwise it is critical. 

( )( )
( )2 2 2

0

sin

1

L g R A Q

c C S

ρ φα
ξ ρ

−∂
=

∂ −
                     (31) 

The speed index S acts as Froude Number in shallow water waves and Mach 
number in gas dynamics. If the numerator in Equation (31) is zero, then the 
gravitational and resistive force balance (are equal) i.e. 

( )sinLg R A Qρ φ =                          (32) 

Its clear that there exists a point d 0
d
α
ξ
=  where there is no change in area  

and at this point the resistive forces are equal to gravitational forces  
( ( )sing R A Qρ φ = ), this paint is called ( limα ) [7] and is given by 

2
5

2
0

8
sinlim

Q
g A

α
φρ

 
 
 

π
=                          (33) 

Similarly, the denominator approaches zero when the speed index is 1 ( 1S = ), 
i.e. 1α α=  such that 

( )1 1oQ A cα α=                             (34) 

The cross-sectional area (α ) and flow rate (Q) at which both Equations (32) 
and (33) are satisfied plays a critical role in the theory ( *

1α α= ). The function  
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d
d
α
ξ

 in Equation (30) depends only on α  and therefore the stability of the  

stationary points in each region is determined by the sign of the function at 
different values of α . This gives different cases as shown below. 

4.4.1. When There Are No Gravity Forces 
If sin 0gρ φ = , then the head of the giraffe is in the horizontal position (same 
level as the heart) and at this point, the gravitational forces have minimal 
influence on the blood flow, and equation 29 becomes; 

( )
( )2 2 2

0 1
R A Q

c C S
α
ξ ρ

−∂
=

∂ −
                        (35) 

The speed of the waves affects the flow. Given that the wave speed c depends 
on the stiffness of the tube, it follows that C is substantially larger in regions 
where the vessel is inflated than in those where it is compressed without the 
opposing walls coming into contact. Equation (29) predicts an intriguing event 
known as “choking” (in comparison to a corresponding phenomenon in gas 
dynamics). Assume that the average fluid velocity (u) at the upstream end of the 
tube is lower than the wave speed (C). Since Equation (29) assumes that 
d d 0xiα < . Continuity then requires that d d 0ξ τ > , i.e. the flow is accelerated 
in the stream-wise direction. Provided the tube is long enough, a location at 
which the ‘speed index’ 1S U C= →  is approached and thus d dα ξ → −∞ , 
which violates the long-wavelength assumption in the 1D model. This situation 
is physically unrealizable, Meaning that steady flows are impossible (according 
to this simple model) if the flow rate is so large enough that U approaches C 
anywhere along the tube. Alternatively, if 1S >  at any point along the tube, 
then the downstream conditions variations will not propagate upstream 
(because small-amplitude waves travel at speeds U C± ); The wave-speed 
process of flow limiting, which is thought to function in the major airways of the 
lung, is explained by this (Dawson and Elliot 1977; Elliot). Several authors 
argued that the supercritical flow U C>  that occurs at some point along the 
tube as fluid flow might coincide with the onset of self-excited oscillations [11]. 
However, Gavriely et al. (1989) showed that while flow-induced oscillations 
occurred only when the flow was limited in tubes with large wall inertia, the 
initial flow speed may be as low as S 0.3 (although in the definition of wave 
speed, they did not account for wall mass). Later experiments by [10] and 
computations by [12] has also cast doubt over a causal link between flow 
limitation and self-excited oscillations. 

In the framework of the 1D model, the predictions of elastic jumps occur in 
situations where supercritical (S > 1) flow is generated within the collapsible 
tube. The change in the cross-sectional area increases the fluid velocity u while 
the associated reduction in wall stiffness y reduces the wave speed U. The 
ensuing supercritical flow is still governed by (4.17), which now predicts that 
d d Oα ξ > . Hence the cross-sectional area α  increases and, provided the tube  
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is long enough, the reduction in fluid velocity U now brings in a situation in 
which d dα ξ → +∞  at some point. 

As in the case of choking, this violates locally the model’s assumptions. 
However, a transition region (shock-like), in which the flow speed reduces from 
super to subcritical, develops upstream of the point where d dα ξ → +∞  would 
occur. The application of jump conditions (similar to those used in gas dynamics) 
across the thickness of the elastic jump (Oates 1975, Shapiro 1977, Cowley 1982) 
establishes how the flow changes as it passes from the supercritical to the 
subcritical regime. The downstream boundary conditions, which can only affect 
the subcritical area of the flow downstream of the jump, dictate where the elastic 
leap will occur. Standing waves are caused by longitudinal bending or tension 
and are dampened by viscous effects. They can arise either upstream or down- 
stream of elastic jumps (MeClurken et al. 1981; Cowley 1983) [10]. 

4.4.2. Presence of Gravitational Forces 
The terms singρ φ  give the effect of gravitational forces on the flow of blood 
in the vein. In the presence of gravity, choking can be avoided because smooth 
transitions from sub- to supercritical flows are possible if the flow becomes 
critical U C= ) at a location where g Ru= . other physiologically relevant 
scenarios in which smooth transitions through u = c are possible are listed by [8]. 
They are (i) axial variations of the vessel’s elastic properties (corresponding to 
flow in tapered elastic tubes), (ii) spatial variations of the external pressure 
(representing, for example, a localized compression as in sphygmomanometry), 
and (iii) variations of the vessel’s undeformed cross-sectional area. 

In particular, properties (i) and (ii) have been used to describe flow limitation 
in the lung (for instance, by Elad et al. 1987). During forced expiration, a sub—to 
supercritical flow transition arises due to non-uniform airway properties, and a 
super—to subcritical transition can take place further downstream via an elastic 
jump. The elastic jump’s position is impacted by changes to the downstream 
boundary conditions, but the overall flow is unaffected. The jugular vein of the 
giraffe serves as a similarly analogous example. According to tests, the vein is 
substantially contracted while the giraffe is standing upright, and the flow across 
it is supercritical. According to [7], the downstream flow rate Q and the vein’s 
downstream cross-sectional area (located at the confluence with the distended 
superior vena cava) are connected to where an elastic leap occurs in the vein. 
Additionally, they demonstrated how a rise in Q causes the elastic leap to travel 
farther downstream and came to the conclusion that, in a constant flow, the 
value of Qmax cannot be greater than the value of Q for which the elastic jump 
occurs at the downstream end of the jugular vein. If singρ φ  is negative, then 
the flow is upstream and equation 3.16 becomes 

( )( )
( )2 2 2

0

sin

1

L g R A Q

c C S

ρ φα
ξ ρ

+∂
=

∂ −
                (36) 

which changes the meaning of the values associated with S. therefore, the flow 
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becomes supercritical when S < 1 and sub-critical when S > 1. 
If singρ φ  then the flow of blood is downstream then S > 1 the flow is 

supercritical and subcritical when S < 1. 

4.4.3. Without Downstream Boundary Conditions 
Case 1: When *Q Q>  (Supercritical flow) 
The flow is similar as when S>1 since the values of α  are less than those of  

1α  and the flow is supercritical. The signs of the function α
ξ
∂
∂

 are as in Figure 

3. 
From Table 1 we observe that all values that lies within the region area 1α α<  

tends to move to point limα  while the values within the region 1α α>  moves 
away from the same point. This means that the solution trajectories that are 
subjected to the upstream boundary conditions o limα α<  approaches limα  
from below and once the point limα  is reached, there is no further change. If, 
the boundary condition of the upstream is such that 1lim limα α α< < , then the 
solution trajectories approaches limα  in which the the vessel becomes collapsed 
uniformly in the remaining entire length. For this state, the flow remains 
supercritical throughout, and the speed index S approaches limS . 

 

 

Figure 3. Plots of flow rate Q versus cross-sectional area α  for 

limα α=  (when g RQρ = ) and 1α α=  (when S = 1). 

 

Table 1. Summary of signs for the flow region *Q Q>  for the function α
ξ
∂
∂

 of Equa-

tion (35). 

 limα α<  1lim limα α α< <  1α α>  

sinLg RQρ φ −  negative (−ve) positive (+ve) positive (+ve) 

α
ξ
∂
∂

 positive (+ve) negative (−ve) positive (+ve) 

positive 21 S−  negative (−ve) negative (−ve) positive (+ve) 
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For the Boundary condition 1α α> , the solution moves away from 1α  
making the cross-sectional area to continue growing. for this case, the flow has 
moved to sub-critical and the speed index approaches zero. Since the change is 
gradual, the presence of inertial forces has got very little influence. 

Case 2: When *Q Q<  (Critical flow) 

As in case 1 above, the signs of the function α
ξ
∂
∂

 are summarized as in 

Figure 4. 
From Table 2, three possibilities arise. We have seen in case1 that 1α  acts 

like an attractor, then any solution trajectory that has upstream boundary 
condition as 1oα α<  will tend towards 1α . The flow starts with supercritical 
(S > 1) but becomes critical (S = 1) before the friction-gravity balance is achieved.  

This condition means that the gradient function of d
d
α
ξ

 becomes infinite. This 

 

 
(a) 

 
(b) 

Figure 4. Plots of α  and S against the non-dimensional distance ξ  along 
the vein for the case *Q Q>  at different range of values of α  at 0ξ = . 

https://doi.org/10.4236/ojbiphy.2024.142008


O. Amenya et al. 
 

 

DOI: 10.4236/ojbiphy.2024.142008 145 Open Journal of Biophysics 
 

Table 2. Summary of signs for the flow region *Q Q<  for the function α
ξ
∂
∂

 of Equa-

tion (35). 

 limα α<  1lim limα α α< <  1α α>  

sinLg RQρ φ −  negative (−ve) negative (−ve) positive (+ve) 

α
ξ
∂
∂

 positive (+ve) negative (−ve) positive (+ve) 

21 S−  negative (−ve) positive (+ve) positive (+ve) 

 
condition is very difficult to be achieved hence the flow rate with the upstream 
area condition cannot occur. Actually, the fluid speed exceeds wave speed hence 
not possible for the wave to propagate upstream hence the need to change the 
conditions at the inlet. At this point, an elastic jump (similar to a shock in gas 
dynamics and hydraulic jumps in the open channels) is experienced. 

Taking the upstream boundary condition as 1lim limα α α< < , the attraction to 

1α  is experienced and the flow fast becomes critical before friction-gravity 
forces balances. The infinite negative gradient achieved is not possible and at 
this point, the flow is said to be chocked. The flow approaches the critical point 
at S = 1 from the initial sub-critical point. The wave now propagates upstream 
adjusting the inlet conditions and avoiding the choked condition. Actually, the 
conditions will adjust themselves in case the flow becomes critical and resistivity 
forces balance gravity so that the flow goes through the sub-critical to supercrit-
ical transitions smoothly. The choking state provides a mechanism in which 
conditions in collapsible vessels determine the flow rates upstream (an impor-
tant mechanism that provides for the flow in air limitation in the airways 
(lungs)). 

Case 3: When *Q Q=  (Sub-critical flow) 

As in case 1 above, the signs of the function α
ξ
∂
∂

 are summarized as in Table 3 

and Figure 5. 
This is the flow region *

1limα α α= = . The gradient is always positive hence 
no attractors, and the area is always growing. If the upstream boundary 
condition is supercritical ( *

oα α< ). The area increases such the *
0α α=  at a 

finite distance from the inlet. For this condition, the values of the numerator and 
denominator approach zero at the same time providing a smooth transition 
from super to sub-critical flow thereby avoiding an elastic jump. If *α α> , the 
flow is said to be increasingly sub-critical as is also for the case *

oα α>  

4.4.4. With Downstream Boundary Conditions 
Downstream boundary conditions are important in the study of collapsible tubes. 
In laboratory experiments, it is possible to hold a given number of parameters 
constant as others are varied. In our introduction, we discussed the circulatory 
system which applies to both giraffes and human beings. In the discussion, we  
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Table 3. Summary of signs for the flow region *Q Q<  for the function α
ξ
∂
∂

 of Equa-

tion (35). 

 *α α<  *α α>  

sinLg RQρ φ −  negative (−ve) positive (+ve) 

α
ξ
∂
∂

 positive (+ve) positive (+ve) 

21 S−  negative (−ve) positive (+ve) 

 

 
(a) 

 
(b) 

Figure 5. Plots of α  and S against the non-dimensional distance ξ  
along the vein for the case *Q Q>  at different range of values of α  
at 0ξ = . 

 
stated the importance of the right atrium pressure which is kept constant most 
of the time. Hence need to investigate the relationship/effect it has to blood flow 
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and collapsibility of the jugular vein. If we consider the flow rate *Q Q> , the 
solutions obtained as above are either wholly sub-critical or wholly supercritical 
if no downstream boundaries are specified. A wholly supercritical flow does not 
allow information to propagate upstream via pressure waves due to the high 
speed of the fluid which exceeds that of the wave. For wholly sub-critical flows, 
pressure waves can propagate upstream. This means that a fixed downstream 
pressure together with a steady flow rate will ensure that the conditions at the 
upstream boundary are adjusted so that the correct pressure at the outlet is 
reached. In summary, it can be said that it is either the elastic jump which is 
required to satisfy the downstream boundary condition or the flow is sub-critical  
and hence the upstream pressure can be adjusted allowing the downstream 
boundary condition to be satisfied. 

The formation of elastic jumps (An elastic jump is a transition region in 
which the quasi one dimensional assumption has broken down and lies between 
two regions in which the assumption is valid) plays a key role in downstream 
boundary conditions. [13] and [11], the equations of momentum and conserva-
tion of mass can be written relating the jump, upstream, and downstream 
boundary. 

Consider an elastic jump moving steadily with constant shape and in a frame 
fixed in the jump. Writing ,u uUα  and up  for the no dimensional upstream 
area, velocity and pressure respectively and ,d dUα  and dp  for the corres-
ponding values downstream, the equation of mass conservation can be written 
as; 

u u d dU U Qα α= =                          (37) 

and the momentum equation is 

( )2 2 dd

u
u u d d d d u uU U p p p

α

α
α α α α α α− = − = ∫                 (38) 

Using the tube law as in Equation (38) and pressure p non-dimensionalized 
such that 

( )( )1
e p

p

p p K F
K

α= +                       (39) 

substituting Equation (38) and (37) into (37) we get 

( ) ( )u dχ α χ α=                           (40) 

where 

( ) ( ) ( )
2Q Fχ α α α α

α
= + − Γ                    (41) 

( ) ( )dd

u
p

α

α
α α αΓ = ∫                       (42) 

The steady flow rate is known and conditions downstream are known. This 
means if we solve Equation (41) the upstream conditions are obtained. From 
experimental results of [14] elastic jumps generated on collapsible tubes con-
curred with the results obtained. 
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4.5. Solution 

The governing Equation (19) is an ordinary differential equation which is solved 
using the following boundary conditions: 

( ) ( )0 , 1i dα ξ α α ξ α= = = =                    (43) 

The differential equation is solved using a numerical fourth order Range- 
Kutta method. The integration is carried out backward for the sub-critical flows 
(This means we start with the downstream end and calculate the solution to the 
upstream) allowing the specifications of the downstream conditions. The 
upstream condition is part of the solution. For wholly supercritical flows, the 
upstream condition is specified and integration is done forward in ξ . The 
inclusion of elastic jump is done if a sub-critical boundary condition is required 
at the outlet. 

Solution Procedure 
Start with the upstream end with the supercritical flow and integrate forward till 
some arbitrary point ξ  introduces an elastic jump. At this point, the cross- 
sectional area upstream of the jump is known and 40 is used to calculate the 
jump and gives the sub-critical flow. After this, the integration is continued with 
the same flow rate. Figure 7 shows an initially supercritical flow followed by an 
elastic jump and the sub-critical flow in which the vessel expands until the 
outlet. 

From the Figure 6, the position of the jump is determined by the downstream 
boundary condition. When an arbitrary jump is introduced at some point 1ξ  
means that the area at the outlet 1

dα  will either be less than or greater than the 
required boundary condition dξ . At this point a comparison is made between 

1
dα  and dξ  and one can increase or decrease 1ξ  to 2ξ  at the upstream for 

supercritical flow. This process is repeated with now the elastic jump shifted to 

2ξ  to give a downstream area 2
dα . This procedure is now repeated until 

n
d dα α−  is sufficiently small. For the regions where the flow tends to be critical 

flow, the integration is stopped as long as the speed index sufficiently gets close 
to 1. The pressure waves for such flows will propagate upstream thus adjusting 
the inlet conditions and thus the flow smoothly transits to supercritical flow. 
Such flows are actually time-dependent. 

5. Results 

The specific morphological data that is available for the giraffe jugular vein 
together with various parameters are used to show that the flow limitation is 
theoretically possible. To estimate some of the parameters we use the pressure 
equation used in the siphon mechanism experiment given as; 

( )1 2P P gh LRQρ− − =                         (44) 

5.1. Possible Mechanism for Flow Limitation 

As discussed earlier, in normal circumstances the pressure in the right atrium in  
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Figure 6. Plots of cross-sectional area versus distance down the vein 
showing how the location of the jump depends on the downstream 
boundary conditions. 

 
giraffes and hence in the Superior vena cava (SVC) is close to the atmospheric 
pressure. Using the tube law, this gives a fixed downstream value dα  for the 
area. Taking the SVC pressure as 1 mm Hg (130 Pa), greater than the external 
pressure Pe, then the tube law for the uniform tube gives 1.39dα ≈ . The tube is 
distended and stiff and Equation (26) gives the wave speed as ( ) 11.16 m sc α −= ⋅ . 
Now for each flow value of Q, Equation (13) must be solved subject to that 
boundary conditions. 

As in our previous discussion, we take a case when *Q Q> , for any given 
flow rate Q, the flow is either wholly sub-critical or wholly supercritical. The 
pressure (area) of the right atrium is such that the flow is likely to be sub-critical, 
so if supercritical upstream, then along the vein, there must be an elastic jump to 
return the flow to sub-critical velocity. The location of the jump depends on the 
downstream boundary as in Figure 7. 

Therefore it is possible to achieve the required downstream area either with 
the solution or an initially supercritical flow followed by a jump. From equation 
44, it is not possible for the case of the jugular vein which is collapsed since the 
condition requires a steadily increasing area. This leaves us to be concerned with 
the focus on the solution of the supercritical-jump-sub-critical flow for the 
region. 

From Equation (33) we find that limα  increases with increased values of Q. 
Figure 7 plots of cross-sectional area versus distance down the vein showing 

various flow rates Q in which all lead to downstream area. From the figure, any 
value of *

1Q Q> , the area limα  is reached within a short distance from the 
inlet which means that in order to reach the required downstream area, a jump 
is located at some point x1 along the vein. If the jump is located before this point, 
then the area at the outlet would be greater than the required one. Again if this 
point is located at a point beyond x1 it will give an area smaller at the outlet as in  
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Figure 7. Plots of cross-sectional area versus distance down the vein 
showing various flow rates (where *

1 2 3Q Q Q Q< < < ). 

 
Figure 6. As the flow rate is increased, the value of limα  increases thereby 
increasing the values of the jump further downstream. The flow rate continues 
to increase until a point Q2 is reached for which the jump has to be located in 
order to achieve the required outlet area. 

For flow rates *Q Q<  flows are sub-critical of chocked depending on the 
inlet area. Using equation 33, we see that limα  is smaller for small values of Q 
and from equation Figure 3 it is clear that for these flow rates, 1limα α> . Hence 
for any inlet area greater than limα , any downstream area greater than limα  
can be reached sub-critically. The flow rate estimates in the jugular vein used are 
one used by (Brondum E, 2013) which is approximated as 1.67 cms-1. Using the 
data given as in Equation (44), Figure 3 shows * 11.3 cm sQ −≈ ⋅ . From this 
model, we realize that gravity-friction plays a major role but it is absent in the 
expiratory flow. Other numerical values of downstream area dα  are as shown 
in the figures. 

5.2. Physiological and Parameter Variations 
Results for Giraffe 
In the computation of the results above we have used the following morphologi-
cal data as Brondum et al. 2009. 
• 25 cmOA = , 11.67 cm sQ −= ⋅  and 11.3 cm sQ −= ⋅ ; 
• 5 PapK = , found from equation 19 by taking the Poisson ratio as 0.5σ = , 

(for in-compressible materials) the Young’s modulus used is the same as the 
one used by [7]; 

• The length L of the vein is given as 2 m; 
• Blood density used is 3 31.03 10 kg mρ = × ⋅  and 10.004 Pa sµ −= ⋅  while  

29.8 m sg −= ⋅  and the angle of inclination is varied as 
2 2

φ−
π
≤ ≤

π ; 

• The central venous pressure used is as approximated by (Brondum 2008) and 
is equal to 1 mmHg (133 Pa). This is the pressure assumed to be external 
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pressure eP  neglecting any other pressures. 
Figure 8 shows the results of the maximum achievable flow rate against the 

downstream cross-sectional area. Actually, the morphology of the jugular vein 
affects the pressure difference in that changing the perivascular pressure ep  
affects the downstream boundary condition. In the computation, it has been 
assumed that the pressure at the right atrium and hence in the superior vena 
cava is 1Hg greater than the external pressure. If the external pressure is changed, 
the transmural pressure changes hence the downstream area dα  will be smaller 
than 1.0. In this figure, it is clear that the maximum flow rate decreases with the 
decrease in the downstream area. Therefore, the effect on the Maximum flow 
rate of increasing the external pressure decreases the maximum flow rate thus 
making it possible for flow limitation to occur hence the conditions of the 
jugular vein determine the blood flows to the head of the giraffe. 

For Humans 
Actually, the flow limitation calculations above can be performed for the human 
jugular vein. fo this section we use the parameters and geometric properties as 
given by comoet 1997. As in the giraffe jugular vein, the following properties are 
adapted, 
• 29 cmOA = , 16.67 cm sQ −= ⋅  and 16.3 cm sQ −= ⋅  as estimated to be the 

flow rate through the carotid artery;  
• 0.5 PapK = , found from equation 19 by taking the Poisson ratio as 0.5σ = , 

(for in-compressible materials) the Young’s modulus used is the same as the 
one used by [7]. This gives young’s modulus as 54 10 PaE ≈ × ; 

• The length L of the vein is given as 2 m; 
• Blood density used is 3 31.03 10 kg mρ = × ⋅  and 10.004 Pa sµ −= ⋅  while  

29.8 m sg −= ⋅  and the angle of inclination is varied as 
2 2

φ−
π
≤ ≤

π . 

 

 

Figure 8. Plots of computed maximum achievable flow rate against downstream 
cross-sectional area dα . 
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Using Equation (33), if we use 
2

φ = π  the above parameters give the critical  

value 0.071limα =  with corresponding values of 11.64 m sQ −= ⋅  in an upright 
posture. Since the human jugular vein is known to be collapsed while standing 
upright, it is assumed that the steady solutions are most likely to be in a Super- 
critical-jump-supercritical state. 

6. Conclusions 

This paper models the giraffe jugular veins as a uniform collapsible tube existing 
from some rigid skull. The equations governing one-dimensional steady flow 
through such a tube for various conditions have been developed. The effect of 
inertial and angle of inclination which has not been discussed previously has 
been included (as in the previous paper by [15]). It has been shown that different 
flows for a uniform tube (vein) are possible. However, this flow matches that of a 
jugular vein which is supercritical and the steady solution has been given by the 
balance between the driving forces of gravity and the viscous resistance to the 
flow. The flow at the right atrium of the heart must be sub-critical for a fixed 
right atrium pressure which means that an elastic jump is required to return the 
flow to sub-critical from the supercritical flow upstream. This type of relation-
ship gives rise to flow limitation. 

At the same time, given any right atrium fixed pressure, there exists a maxi-
mum flow rate which when exceeded, the boundary conditions of the flow do 
not hold (boundary conditions at the right atrium are not satisfied) hence mak-
ing the steady flow impossible. This mechanism of flow limitation is slightly dif-
ferent from the other one in that causes airways through forced expiration. From 
the observation made, it is clearly shown that there is an intravascular pressure 
difference with a change in height. 
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