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Abstract 
Aiming at the problems of lack of fault diagnosis samples and low model ge-
neralization ability of cross-working gear based on deep transfer learning, a 
fault diagnosis method based on improved deep residual network and trans-
fer learning was proposed. Firstly, one-dimensional signal is transformed into 
two-dimensional time-frequency image by continuous wavelet transform. 
Then, a deep learning model based on ResNet50 is constructed. Attention 
mechanism is introduced into the model to make the model pay more atten-
tion to the useful features for the current task. The network parameters 
trained by ResNet50 network on ImageNet dataset were used to initialize the 
model and applied to the fault diagnosis field. Finally, to solve the problem of 
gear fault diagnosis under different working conditions, a small sample 
training set is proposed for fault diagnosis. The method is applied to gearbox 
fault diagnosis, and the results show that: The proposed deep model achieves 
99.7% accuracy of gear fault diagnosis, which is better than the four models 
such as VGG19 and MobileNetV2. In the cross-working condition fault di-
agnosis, only 20% target dataset is used as the training set, and the proposed 
method achieves 93.5% accuracy. 
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1. Preface 

Gearbox as a mechanical transmission system is widely used in the key compo-
nents, its working condition directly determines the normal operation of the 
equipment, and in the gearbox failure form of gear failure accounted for 60% 
[1]. Therefore, gear fault diagnosis is important for improving the reliability of 
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industrial equipment and reducing production costs. And with the rapid devel-
opment of industrial big data and Internet of Things, deep learning-based fault 
diagnosis methods have been widely studied [2]. Deep learning methods utilize a 
deep network consisting of a series of nonlinear layers to adaptively learn com-
plex representations of data in the deep feature space, and extract fault features 
related to the health state of the equipment through the deep representation of 
the data, which can be used to achieve end-to-end fault diagnosis if fault diagno-
sis classification algorithms are then incorporated into the model [3]. SAUFI [4] 
et al. applied stacked sparse selfencoders to gearbox fault diagnosis and achieved 
high diagnostic accuracy with limited samples. JIA [5] et al. constructed a model 
for fault diagnosis based on a one-dimensional convolutional neural network 
and validated it in motor bearing fault data. JIANG [6] et al. proposed a mul-
ti-scale CNN that can automatically learn effective fault features directly from 
the vibration signals of a device. 

Deep learning is widely used in the field of mechanical fault diagnosis, but still 
suffers from the following two problems: 

1) Deep learning relies on data-driven, without more high-quality data to 
train the model, it will affect the diagnostic efficiency and accuracy of the model, 
and the lack of fault data is a common problem in the field of mechanical fault 
diagnosis research [7].  

2) Deep learning models extract the deep features of the data by stacking hid-
den layers, but as the model deepens, more and more data need to be labeled for 
its training, and the difficulty of training increases, which is prone to overfitting 
phenomenon and reduces the generalization ability of the model, so most of the 
existing hidden layers of the fault diagnosis model are less than five layers [8]. 
However, shallow models are limited by their structure and are unable to cha-
racterize the deep and complex mapping relationships between signals and 
equipment health states, resulting in models that cannot meet the needs of ma-
chinery big data diagnosis [9].  

Migration learning is dedicated to migrating the knowledge acquired in the 
source domain to the target domain to achieve efficient training of models in the 
target domain, which can solve the above problems of deep learning [10]. ZHAO 
[11] et al. proposed a multi-scale CNN-based transfer learning framework for 
fault diagnosis under variable operating conditions and across devices. HE [12] 
et al. used multi-channel signals to construct an integrated migration CNN fault 
diagnosis model, in which the proposed decision fusion strategy based on the 
ideas of weight assignment and majority voting flexibly fuses the results of each 
channel, and the constructed model is validated in gearbox fault diagnosis. WEN 
[13] et al. applied sparse self-encoders to migration learning to construct an in-
telligent fault diagnosis model to realize fault diagnosis under multiple operating 
conditions. LU [14] et al. proposed a migration learning-based fault diagnosis 
method that achieved fast and accurate diagnostic results on two datasets with 
different operating conditions. However, the above existing migration learning 
methods for fault diagnosis still need to train a deep learning model from scratch 
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in a source domain fault data set, and thus need to spend a lot of resources on 
training and tuning of the deep learning model. Moreover, in the actual applica-
tion of fault diagnosis engineering, different working conditions may cause per-
turbation of mechanical signals, resulting in changes in signal fault characteris-
tics, which may lead to a drastic performance degradation of the originally 
trained classification prediction model during deployment and application, re-
sulting in model failure. 

Aiming at the above problems, this paper proposes a gearbox fault diagnosis 
method based on improved deep residual network with migration learning. 
Firstly, the vibration signals are converted into 2D time-frequency maps by 
CWT; then a deep learning model based on ResNet50 network is constructed, 
and the structure and training parameters of the shallow layer of ResNet50 net-
work trained on ImageNet image dataset are migrated to the proposed model for 
initializing the model parameters through the migration learning method so that 
the shallow layer of the model will have a mature feature extraction performance 
at the beginning of training. Aiming at the problem of fault diagnosis in real pro-
duction environments where gears are under different operating conditions and 
lack of fault data, we propose a migration learning method based on a small- 
sample training set, which enables features useful for the task to receive better 
attention by embedding an attention mechanism in the model. In cross-case 
fault diagnosis using a small scale target domain dataset as a training set, the 
proposed model has better fault diagnosis performance in gear fault diagnosis 
compared to other deep models. 

2. Theoretical Foundations 
2.1. Image Generation Methods 

One-dimensional vibration signals are often analyzed when deep learning me-
thods are used in the field of fault diagnosis, but compared to one-dimensional 
signals, image data are two-dimensional matrices that can carry more informa-
tion, and therefore can be used to characterize the distribution of more complex 
data structures. And in the field of machine vision, mostly RGB three-channel 
color images are used as inputs, and the conversion of one-dimensional signals 
into two-dimensional images is necessary if migration learning is done using 
well-trained models in the field of machine vision. There are two main types of 
methods in existing research to convert one-dimensional vibration signals into 
two-dimensional images: One is to segment the acquired signals at equal inter-
vals, and then splice them into a data matrix to obtain a two-dimensional grays-
cale image, which has the advantage of simplicity and speed, but lacks frequency 
domain information; Secondly, two-dimensional time-frequency images are ac-
quired by time-frequency imaging methods, such as STFT, WVD, HHT and 
CWT. Among them, STFT has low time-frequency resolution and is not effec-
tive in matching multicomponent time-varying signals; WVD is not robust to 
noise and has cross-interference terms for multicomponent time-varying signals; 
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and HHT suffers from end-point effects and modal aliasing; CWT is an effective 
multi-resolution signal analysis technique, which can effectively explore the sig-
nal frequency domain fault information, so this paper uses the CWT method to 
obtain the time-frequency map. 

2.2. Convolutional Neural Networks 

CNN can adaptively extract data features to achieve efficient recognition of tar-
gets without human intervention, and are generally composed of a convolutional 
layer, a pooling layer, and a fully connected layer. In this case, successive convo-
lutional and pooling layers are used for data feature extraction, while the fully 
connected layer is responsible for integrating the extracted features and output-
ting the predicted values of the classification results.  

Convolutional layer is the core of CNN, mainly consists of a number of con-
volutional kernel, convolutional kernel with a certain step size traverses the data 
process that is feature extraction, Equation (1) is the convolutional layer output 
operation formula: 

( )1i i i iX f X W b−= ∗ +                        (1) 

where: iX  is the feature matrix of layer i; ( )f ⋅  is the activation function; 

1iX −  is the input of layer i; iW  is the weight; ib  is the bias. 
ReLU is commonly used as an activation function in CNNs, but GELU is 

smoother compared to ReLU. Equation (2) is the expression for GELU: 

 ( ) ( )GELU x x x= ∅                          (2) 

where: ( )x∅  is the cumulative probability distribution of a Gaussian normal 
distribution of x. 

2.3. Transfer learning 

Transfer learning is widely used in various fields, it is defined as: Given a source 
domain sD  and a source task sT , Goal domains tD  and target tasks tT , 
transfer learning aims to use the knowledge acquired in the source domain to 
help optimize the objective mapping function ( )f ⋅ , among them, s tD D≠  or 

s tT T≠ . 
According to Yosinski [15] et al. it has been shown that in deep learning mod-

els the features extracted from the shallow layers of the network are generaliza-
ble and similar, whereas the features extracted from the deeper layers are more 
abstract compared to the deeper layers, so that the shallow layers of the model 
are better suited for migration whereas the deeper layers are better suited for 
dealing with specific tasks. 

The transfer learning approach for the fault diagnosis domain is shown in 
Figure 1. A new deep learning model is first trained using the source domain 
data, while the trained feature extraction layer is later migrated to the target do-
main, where the classification layer is newly trained in the target domain. 
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Figure 1. Transfer learning in fault diagnosis. 

2.4. Deep Residual Network, Migration Model Construction 
2.4.1. Deep Residual Networks 
In deep learning, the expressiveness of the network is positively correlated with 
the depth of the network. Therefore, to design deep learning networks with ex-
cellent performance it is necessary to ensure that they have a certain depth. Tra-
ditional methods focus on increasing depth by linearly stacking network layers, 
which does produce some results e.g. VGG networks. However, this method 
brings exponential growth of training parameters, unstable gradient of the net-
work and network degradation problem, which leads to the need to consume a 
lot of resources to train the network, and the performance may instead be de-
graded. In 2016 HE [16] et al. proposed ResNet, whose unique residual link 
structure reduces the impact of the above problems to some extent. As shown in 
Figure 2 for the two residual structures in the ResNet50 network, when x is used 
as the input to the network, assuming that the output fitting function is H(x), the 
residual mapping F(x) can be denoted as H(x) − x, and H(x) can be denoted as 
F(x) + x, where F(x) + x can be interpreted as the summation operation of F(x) 
with x using shortcut prior to the output of the fitting function in the model 
building process. 

In the residual structure, shortcut branches can bypass some layer links to 
converge with the main branch without introducing parametric conditions. 
Therefore, during the training process, the bottom error can be propagated di-
rectly upward through the shortcut branch, which can attenuate the phenome-
non of gradient vanishing caused by too many layers. 

2.4.2. Migration Modeling 
Based on transfer learning theory, In this paper, we use pre-training parameters 
to initialize the ResNet50 shallow network structure and parameters, replacing 
the last fully connected layer output with 5, and the residual structure was mod-
ified in Conv5, as shown in Figure 3. 

A separate downsampling layer was first constructed before Conv5, Replaces 
the downsampling operation in the original residual block by setting the step  

https://doi.org/10.4236/ojapps.2023.1312192


H. Zhang et al. 
 

 

DOI: 10.4236/ojapps.2023.1312192 2466 Open Journal of Applied Sciences 
 

 

Figure 2. Residual structure in ResNet50. 
 

 

Figure 3. Residual structure and downsampling layer proposed in this paper. 
 
size of the second convolution kernel on the main branch of the first residual 
structure to 2. 

Second, it has been shown that replacing the residual structure in the ResNet 
model with an inverted residual structure can effectively improve the perfor-
mance of the model [17], therefore, in this paper, we adjusted the number of 
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convolution kernels of each convolutional layer on the main branch of the resi-
dual structure, so as to present an inverted residual structure with thin top and 
bottom ends and thick center. 

Third, the continuous use of small convolutional kernels has been widely used 
in deep learning models since the VGG network was proposed, as has the Res-
Net network. However, small convolutional kernels are more likely to lead to 
loss of global features compared to larger convolutional kernels, and successive 
use of small convolutional kernels leads to loss of more detailed features. To this 
end, we modify the kernel size of the second convolutional layer on the main 
branch of the residual structure to 77, and for the resulting parameter prolifera-
tion, we introduce the depthwise convolution, Assuming that the number of in-
put feature maps is N, the number of parameters required to use DW will be 
about 1 N  of the normal convolution. 

Fourth, the BN layer can overcome the gradient dispersion problem caused by 
network deepening in ResNet, but BN is to do standardization in the sample 
batch dimension, so it is more dependent on the size of the batch size, and the 
research is often limited by the equipment can not be trained to train a larger 
batch size samples, so as to fail to play the advantages of BN. LN is another 
normalization method, which does layer normalization within each sample, and 
thus can effectively get rid of the batch size limitation. In this paper, the BN layer 
is replaced with an LN layer and the use of the normalization layer is reduced in 
order to retain more detailed features extracted by the network.  

Fifth, the shallow level of the model extracts generic features, and in order to 
enhance the importance of features useful for fault diagnosis in the model, this 
paper uses the squeeze and excitation channel attention mechanism as in Figure 
4 to allow the network to perform feature recalibration. Through the SE me-
chanism, the model can selectively assign the weight values to each feature 
channel in the global information in an auto-learning manner, so as to achieve 
the purpose of emphasizing useful features and suppressing useless features. 

Finally, GELU, an activation function proposed in research a few years after 
the proposal of ResNet, is considered a smoother variant of ReLU and is mostly  
 

 

Figure 4. SE layers used in this paper. 
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used to replace the latter, which is also used as an activation function in the new 
residual structure. The detailed architecture and parameters of the final migra-
tion model are shown in Table 1. 

3. Algorithm Framework Details 

In this paper, we propose a fault diagnosis method based on improved ResNet50 
with migration learning for gearbox fault diagnosis, and use a small sample train-
ing set to accomplish cross-case diagnosis of gear faults. The specific process is 
shown in Figure 5. 

1) The acquired gear failure vibration signals were segmented at equal dis-
tances, while a three-channel 2D time-frequency map was generated for each 
segmented sample using CWT as a sample data set. 

2) Constructing a ResNet50-based deep learning model that retains all model 
structures prior to Conv5 in the ResNet50 network as feature extractors, create a 
new separate downsampling layer and Conv5 residual layer and change the out-
put of the final fully connected layer to 5. 

3) Layers prior to model Conv5 were initialized using ResNet50 network pa-
rameters trained on the ImageNet image dataset, train the entire model in a sin-
gle-case gear dataset to obtain fault diagnosis results, and retain the trained 
model that can be directly applied to cross-case fault diagnosis. 

 
Table 1. Detailed model architecture. 

network layer 
Number of  

output channels 
Structural parameters 

quantity of 
participants 

Conv1 112 × 112 7 × 7.64, stride2 9536 

Maxplool 56 × 56 3 × 3 maxpool, stride2 0 

Conv2 56 × 56 
1 1.64
3 3.64 3
1 1.256

× 
 × × 
 × 

 215,808 

Conv3 28 × 28 
1 1.128
3 3.128 4
1 1.512

× 
 × × 
 × 

 1,219,584 

Conv4 14 × 14 
1 1.256
3 3.256 6
1 1.1024

× 
 × × 
 × 

 7,098,368 

Downsample 7 × 7 2 × 2.512, stride2 2,097,664 

Conv5 7 × 7 
1 1.2048
7 7.2048 3
1 1.512

× 
 × × 
 × 

 8,185,728 

Avapool 7 × 7 7 × 7 average pool, 512 0 

FC 5 1 × 1.512 2565 

Total model parameters   18,829,253 
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Figure 5. Schematic diagram of the methodological framework proposed in this paper. 
 

4) The gear failure dataset under different operating conditions is partitioned 
in a small percentage to form the training set and the rest is used as the valida-
tion set. The model trained in step 3 is fine-tuned using the training set, while 
the performance of the fine-tuned model is later tested using the validation set. 

4. Experimental Verification and Analysis 

The experiments were done on a computer configured with i5-8300H, 8G RAM, 
and GTX1050Ti, based on the Pytorch deep learning framework of Pytorch 3.6. 
The training parameters for the experiment are as follows: training batch size of 
16, initial learning rate of 0.0005, learning rate decay final multiplicity of 0.001, 
L2 regularization factor of 0.05, Adan optimizer and cross-entropy loss function. 

4.1. Description of the Experimental Data Set 

The data used in the experiment were collected from the DPS fault diagnosis ex-
perimental platform of SQI, and its structure is shown in Figure 6. The subject 
of the experiment is the involute spur pinion gear on the intermediate shaft la-
beled in the perspective view of the parallel gearbox in Figure 7, artificially ar-
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ranged for a single point of failure, and the types of failures are shown in Figure 
8 as wear, broken teeth, root cracks, and missing teeth, respectively. 
 

 

Figure 6. Lab bench. 
 

 

Figure 7. Perspective view of parallel gearbox. 
 

 

Figure 8. Gear health. 
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The vibration signals of five different gears under four load conditions were 
collected with a sampling frequency of 20,480 Hz using a triaxial acceleration 
sensor (PCB 604B31) under the condition that the driving motor rotational fre-
quency was 30 Hz, and the single acquisition time was 32 seconds. The samples 
are intercepted with a sliding window of 2048 length without overlapping, and 
CWT is done for each sample to obtain a time-frequency map of 224,224 pixels 
in size, to obtain the gear failure dataset under different loading conditions, and 
the detailed information of the dataset is shown in Table 2. Figure 9 presents 
some of the data. 

4.2. Analysis of Model Optimization Results 

To verify the impact of each improvement on the model performance, the model 
was gradually optimized starting from the base ResNet50, and pre-training pa-
rameters were used to initialize the model after each model optimization. Using 
20% of the samples from dataset A as the training set and the rest as the valida-
tion set, the model is trained 10 times for 40 rounds for each optimization, and 
the results are shown in Table 3 and Figure 10 (where ID is independent down- 
sampling and IR is inverted residual). 

From the experimental results, the use of independent downsampling, inverted 
residual structure, LN and SE optimization models all play a positive role in the 
improvement of fault diagnosis accuracy, the addition of GELU had essentially  
 
Table 2. Details of the dataset. 

Data set Load (0.45 N/m) Fault type Sample size 

A 0 Normalcy 
wear and tear 
broken tooth 

tooth root crack 
missing tooth 

1600 (320 × 5) 

B 1 1600 (320 × 5) 

C 3 1600 (320 × 5) 

D 0~4 1600 (320 × 5) 

 

 

Figure 9. Partial data presentation. 

https://doi.org/10.4236/ojapps.2023.1312192


H. Zhang et al. 
 

 

DOI: 10.4236/ojapps.2023.1312192 2472 Open Journal of Applied Sciences 
 

Table 3. Impact of each improvement on the model. 

model optimization average accuracy/% training time/min 

ResNet 97.0625 24.1 

Independent downsampling 97.5938 24.6 

inverted residual 98.5938 54.8 

DW large convolutional kernel 98.5625 25.1 

LN 98.8438 25.3 

SE 99.6875 26 

GELU 99.7188 25.9 

 

 

Figure 10. Box plots of the effect of each improvement on the model. 
 
no effect, while the use of the 77-size convolutional kernel and DW had a nega-
tive effect, due to the fact that while the larger convolutional kernel captures 
more global information, the DW convolution ignores the information interac-
tions between the channels, which ultimately leads to a slight decrease in accu-
racy. As can be seen from the training time in Table 3, the training time re-
quired by the model is significantly increased after the inclusion of the inverted 
residual structure, viewing the number of Conv5 parameters optimized by the 
inverted residual structure is 119,565,312, which is more than 91.8% of the total 
parameters of the model. While the model is optimized by DW with expanded 
convolutional kernel although there is a small decrease in classification accuracy, 
the number of Conv5 parameters is 6,626,304, which is a decrease of about 
94.5%, so the overall performance improvement of the model by DW and ex-
panded convolutional kernel can be considered as a positive effect. The second 
convolutional layer in the last residual block of Conv5 and the subsequent SE 
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layer output features are visualized by the t-distributed stochastic domain em-
bedding algorithm, and the results are shown in Figure 11. In comparing the 
scatter plots of the two fault features, it can be found that the inter- and in-
tra-class spacing of the fault features are significantly reduced by the SE layer, 
which will undoubtedly provide a positive help to the feature classification, and 
intuitively explains the effectiveness of the SE layer on the model enhancement.  
 

 

Figure 11. Scatter plot of fault characteristics of convolutional and SE layers. 
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From the above experiments, it can be concluded that the model optimization 
scheme proposed in this paper can effectively improve the performance of Res-
Net50 in migration learning. 

4.3. Comparative Analysis of Different Models 

In order to verify the effectiveness of the method proposed in this paper, four 
models (AlexNet, VGG19, inception-V3 and MobileNetV2) commonly used in 
the field of machine learning are selected for comparison experiments. All mod-
els used were models that completed pretraining on the ImageNet dataset and 
performed fault diagnosis under the same training conditions.  

The training and validation sets are randomly assigned in a 1:4 ratio under 
working condition A. Each model is trained 10 times and each iteration is tra-
versed for 40 rounds, and the experimental results are shown in Figure 12. 

As can be seen in the figure, the method in this paper has the highest fault di-
agnosis accuracy of 99.72% compared to the other four models under the same 
training conditions. AlexNet achieved the lowest average accuracy of 92.94% due 
to its relatively simple structure and limited mining of deeper features of the da-
ta. The average accuracy of VGG19 and inception-V3 fault diagnosis is 97% and 
96.13%, respectively, which is attributed to the complexity of the model, but also 
the consequent drastic increase in parameters. MobileNetV2 benefits from 
depth-separable convolution, allowing it to obtain far more depth than the 
VGG19 and inception-V3 models while having fewer total parameters relative to 
the former two, and achieving an average accuracy of 97.63%. 

 

 

Figure 12. Comparison of fault diagnosis accuracy of different models. 
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In order to verify the effectiveness of the migration strategy proposed in this 
paper, each model is trained from scratch, and the experimental conditions are 
the same as those of the appeal training using pre-trained models, and the results 
are shown in Table 4. 

Comparing Figure 11 and Table 4, it can be seen that the fault diagnosis ac-
curacy of each model is significantly improved by using the proposed transfer 
learning method compared to training the model from scratch, in which VGG19 
cannot even converge under the condition of training the model from scratch, 
while the proposed model still achieves the highest diagnostic accuracy among 
all models. Therefore, it can be determined that the use of migration learning 
methods can effectively improve the fault diagnosis accuracy, and the deep mod-
el constructed in this paper has the advantages of better robustness and higher 
fault diagnosis accuracy compared to the other four commonly used deep mod-
els. 

4.4. Small Sample Migration between Different Operating  
Conditions 

In order to verify the fault diagnosis performance of this paper’s method in small 
samples and cross-case conditions, the model trained under Case A dataset is 
used as a pre-training model, which is migrated and applied to the datasets of 
Case B, C, and D, respectively, to accomplish the fault diagnosis task without 
changing the structure of the model and the training parameters. 

In the migration process, each dataset is randomly assigned training and vali-
dation sets using a 1:4 ratio, and the model is trained on each dataset 10 times, 
with each iteration traversing 10 rounds. Comparison tests were conducted us-
ing the pre-trained model directly traversing the data sets with different operat-
ing conditions, and the results are shown in Figure 13. 

As can be seen from Figure 12, the diagnostic results obtained by the fault 
diagnosis method taking small sample migration are superior to those of the di-
rect application method in each migration task. The overall average accuracy of 
fault diagnosis methods using small sample migration was 93.5%, In the A to D 
migration task, the fault diagnosis accuracy is relatively low at 84.26% because 
the D condition is a complex condition with time-varying loads, while the data-
set conditions applied in the A to B and A to C migration tasks are both time- 
invariant loads, and the diagnosis accuracies are 98.34% and 97.9%, respectively. 

 
Table 4. Comparative experimental results of training from scratch. 

model average accuracy/% standard deviation/% 

AlexNet 76.5625 1.0925 

VGG19 19.3065 2.1938 

inception-V3 90.7813 0.7254 

MobileNetV2 94.5 0.7540 

methodology of this paper 97.0938 0.5902 
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Figure 13. Small sample migration results between different operating conditions. 
 

From the experimental results, it can be concluded that the method proposed 
in this paper can obtain high fault diagnosis accuracy in cross-case fault diagno-
sis with small training rounds by using only a small sample training set. 

4.5. Effect of Small Sample Size on Migration Results 

In deep learning, the size of the number of samples in the training set directly 
affects the performance of the model after it has been trained, in order to explore 
the effect of the proportion of small sample training set to the total data set on 
the training results, respectively, using 5%, 10%, 15%, 20%, 25% and 30% pro-
portion of the division of the small sample training set, to complete the migra-
tion task with the A condition as the source domain, the other three conditions 
as the target domain, each task migration for 10 repetitions of the test, each time 
10 rounds of the diagnostic accuracy of the average value of the results are 
shown in Figure 14, which is a direct application of the method for the propor-
tion of the 0% training set. 

From the experimental results, it can be seen that as the proportion of the 
training set to the dataset increases, the fault diagnosis accuracy for each task 
increases. Among them, the D dataset is more complex, and the model is better 
fine-tuned for the D task when the small samples are increased, which is partic-
ularly significant in improving the accuracy of the migration task. For the mi-
gration tasks A to B and A to C, the diagnostic accuracy is only about 60% when 
the method is applied directly, while the accuracy improves to nearly 90% when 
the small sample is 5%, stabilizes above 95% when the small sample is 10%, and  
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Figure 14. Effect of small sample size on migration results. 
 
then the accuracy improvement slows down as the small sample size increases, 
and the improvement is not significant when the small sample size is 20% or 
more relative to 20%. 

In summary, in the small-sample migration approach, the fault diagnosis ac-
curacy continues to improve as the size of the target domain dataset accounted 
for by the small samples increases, and the improvement is particularly signifi-
cant at ratios of 10% and above. Comparing the relationship between the rate of 
increase in diagnostic accuracy with small sample size for each task, it was con-
cluded that a training set of 20% proportional size was most suitable for small 
sample migration. 

5. Conclusions 

In this paper, a fault diagnosis method based on improved ResNet50 with migra-
tion learning is proposed, and the feasibility of the method is verified by utilizing 
the vibration signals of gears in five different states under different load condi-
tions, and the experimental results show that: 

1) Applying deep learning models to the field of fault diagnosis through the 
migration learning method of pre-trained model parameter reuse can effectively 
improve the overfitting problem of the model on small sample datasets and im-
prove the fault diagnosis performance. 

2) The proposed improved deep learning model based on ResNet50 achieved 
99.7% fault diagnosis accuracy in experimental validation on the gear dataset, 
outperforming four other commonly used deep learning models and ResNet50. 

3) The proposed method carries out migration learning fault diagnosis across 
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operating conditions with 20% of the target domain dataset as the training set 
and only 10 rounds of traversal, and the overall diagnosis average accuracy is 
93.5%, which fully reflects the advantages of this algorithm’s strong generaliza-
tion ability and high accuracy of fault diagnosis, and it can basically satisfy the 
needs of gear fault diagnosis. 
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