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Abstract 
Bundle recommendation aims to provide users with convenient one-stop so-
lutions by recommending bundles of related items that cater to their diverse 
needs. However, previous research has neglected the interaction between 
bundle and item views and relied on simplistic methods for predicting us-
er-bundle relationships. To address this limitation, we propose Hybrid Con-
trastive Learning for Bundle Recommendation (HCLBR). Our approach in-
tegrates unsupervised and supervised contrastive learning to enrich user and 
bundle representations, promoting diversity. By leveraging interconnected 
views of user-item and user-bundle nodes, HCLBR enhances representation 
learning for robust recommendations. Evaluation on four public datasets 
demonstrates the superior performance of HCLBR over state-of-the-art base-
lines. Our findings highlight the significance of leveraging contrastive learn-
ing and interconnected views in bundle recommendation, providing valuable 
insights for marketing strategies and recommendation system design. 
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1. Introduction 

In e-commerce, product bundle sales are an important marketing strategy to 
support promotional activities, attract customers, and increase sales revenue [1] 
[2] [3] [4]. It involves grouping together a collection of related products that us-
ers tend to consume as a whole in certain situations, such as at a discounted total 
price [5] [6] [7], or for a specific purpose [8] [9]. For illustrative purposes, Fig-
ure 1 depicts three example bundles in the fields of clothing, electronics, and  
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Figure 1. Electronics, books, and clothing bundle from amazon. 

 
books from Amazon1. The bundle on the far right of the image shows a set of 
clothing items suitable for the spring season, including glasses, a hoodie, shorts, 
and sneakers. Such a bundle may be appealing to customers who are uncertain 
about what to wear in the spring and are looking for a well-coordinated set of 
fashionable products, rather than unrelated items. 

Most general recommender systems generate recommended items for users 
based on their preferences and extracted item features from user-item interac-
tion history [10]. Intuitively, we can consider bundles as virtual items and apply 
a traditional recommendation algorithm for items. However, the lack of us-
er-bundle interactions can lead to poor performance in bundle recommenda-
tions [11]. Bundle recommendation is also a challenging task as it is difficult to 
capture the intricate relationships between items, bundles, and users. Many pre-
vious recommendation algorithms typically focus on user preferences for bun-
dles and bundle features, disregarding the correlations between items and bun-
dles, as well as the fact that user preferences for bundles and items can be further 
leveraged to improve recommendation performance [12]. 

Recently, many bundle recommendation methods were proposed such as 
BGCN [13], DAM [11], and BundleNet [14]. DAM and BundleNet advance 
bundle recommendation through a multi-task learning framework, using the 
Bayesian personalized ranking (BPR) loss function [12], and enhancing bundle 
recommendation performance by jointly predicting items and bundles. Howev-
er, these methods do not effectively distinguish between user preferences for 
items versus user preferences for bundles, and overlook the mutual influence 
between user preferences for items and bundles. While BGCN has made signifi-
cant contributions by separately modeling user preferences for items and bun-
dles, it still neglects the mutual influence between user preferences for items and 
bundles, which should be derived from the association between items and bun-
dles. While CrossCBR [15] provides a partial solution to address the above 
problems, it overlooks the potential complementary relationships among mul-
tiple views and the unsupervised nature of contrastive learning. Taking the ex-
ample in Figure 2 into consideration, where user 1u  is the target user who has 
interacted with bundle 1b  and items 1i , 2i , and 4i , it is likely to recommend  
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Figure 2. The bundle and item views are 
depicted in the U-B, U-I, and B-I graphs. 

 
bundle 4b  to user 1u  if we can effectively capture the similarity in behavior 
between user 1u  and user 2u . On the other hand, from the item view, the 
recommendation model tends to recommend bundles b2 and b3 as interesting 
bundles for user 1u . This is because bundle b2 contains items that are common 
with historical bundle b1 (i.e., 2i ), and bundle b3 contains items that are inde-
pendently preferred by user 1u  (i.e., 4i ). Clearly, the bundle view emphasizes 
the similarity in behavior among users, while the item view emphasizes the con-
tent relevance among bundles and user-level preferences for items. Therefore, 
they are complementary but different, and the collaborative connection between 
these two views is crucial for accurate bundle recommendations. 

In the article, we propose a multi-view Hybrid Contrastive Learning for Bun-
dle Recommendation (HCLBR), which captures collaborative associations through 
multi-view contrastive learning and enhances perspective-aware representations 
through mutual reinforcement. The basic idea is to treat bundle and item views 
as two independent but interrelated perspectives of user-bundle preference and 
transform their consistency into representations of users and bundles through 
contrastive learning on these views. The contributions of our work are summa-
rized as follows:  
• We introduced an important concept, which is to establish a collaborative 

relationship between the bundle view and the item view, playing a crucial 
role in addressing the bundle recommendation problem. 

• We proposed the Hybrid Contrastive Learning-based Bundle Recommenda-
tion (HCLBR) model, which to the best of our knowledge, is the first work to 
jointly leverage unsupervised and supervised contrastive learning for bundle 
recommendation. 

• Our model demonstrates superior performance compared to state-of-the-art 
baselines on four publicly available datasets, while also substantially reducing 
training time.  
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2. Realted Work 
2.1. Graph-Based Recommendation  

In recent years, graph-based models have gained prominence as the primary ap-
proach for collaborative filtering in recommender systems. This is attributed to 
their ability to effectively capture the intricate interaction patterns between users 
and items [16] [17] [18] [19]. Among these models, those based on graph neural 
networks, such as NGCF [18] and LightGCN [17], have emerged as popular re-
search directions. The NGCF model constructs a bipartite graph using the us-
er-item interaction matrix and leverages graph convolutional networks for effec-
tive graph learning. On the other hand, LightGCN simplifies the NGCF model 
by removing non-linear feature transformations and activation function layers, 
resulting in improved performance. Notably, LightGCN has demonstrated out-
standing performance across various recommendation tasks [20].  

2.2. Bundle Recommender Systems  

In recent years, there has been a rising interest in the study of bundle recom-
mendation. Among these approaches, the EFM [21] model utilizes embed-
ding-based techniques to uncover associations between items and item lists. The 
DAM [11] model introduces a decomposed attention network to aggregate 
project information and jointly models user bundle interactions and user-item 
interactions. Graph-based learning for recommendation systems has also gained 
attention as a promising field. For example, BGCN [13] constructs a heteroge-
neous graph consisting of user, item, and bundle nodes, enabling the learning of 
latent factors while propagating interaction and association information. BRUCE 
[22] pioneers the use of Transformers to model user bundle preferences and re-
lationships among items within bundles. CrossCBR employs cross-view contras-
tive learning to simulate cross-view collaborative associations in bundle recom-
mendation. The BundleNet [14] model constructs a user-item-bundle tripartite 
graph from historical interactions and extends it to a relational graph using the 
GCN model. However, BundleNet confuses the relationships between users, 
bundles, and items, whereas BGCN decomposes user preferences into item view 
and bundle view, effectively capturing preferences for both types and achieving 
superior performance. 

2.3. Contrastive Learning in Recommendation 

A wave of attention towards adaptive learning has been directed towards rec-
ommendation tasks to address the issue of sparse labels. SGL [23] generates 
multiple views for nodes and maximizes the consistency between different views 
of the same node. CCGL [24] and HeCo [25] are two variants used on cascade 
graphs or heterogeneous graphs, respectively. SSL4Rec [26] applies data aug-
mentation on item features and introduces a contrastive pretraining objective to 
enhance learning representations in the Siamese model. In the domain of know-
ledge-aware recommendation, Yang et al. [27] developed a knowledge graph 
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contrastive learning framework called KGCL to facilitate denoising and integra-
tion between CF learning and knowledge graph encoding. For social-aware 
recommendation, Fan et al. [28] introduced a novel graph neural network frame-
work called GraphRec. In the field of sequential recommendation, Xie et al. [29] 
introduced sequence data augmentation into contrastive learning tasks to obtain 
more robust sequential representations. Qiu et al. [30] proposed a contrastive 
learning method based on sequence-level positive pairs to address the issue of 
representation degradation in sequential recommendation systems. COTREC 
[31] constructs two views, namely the item view and session view, to learn ses-
sion representations from two data sources: the session-to-item transition graph 
and the session-session similarity graph. Then contrastive learning is applied 
based on these perspectives. ICLRec [32] performs user intent clustering and 
contrastive learning to enhance sequential recommendation by improving the 
representation of user interests. 

3. Methodology 

3.1. Problem Formulation  

Given a set of users { }1 2, , , Mu u u=  , a set of bundles { }1 2, , , Lb b b=  , and 
a set of items { }1 2, , , Ni i i=  , where M, L, and N represent the number of us-
ers, bundles, and items, respectively. The user-bundle interaction, user-item in-
teraction, and bundle-item affiliation are represented as  

{ }X | ,M L ubx u b× = ∈ ∈  , { }Y | ,M N uiy u i× = ∈ ∈  , and  
{ }Z | ,L N biz b i× = ∈ ∈  , respectively, { }, , 0,1ub ui bix y z ∈ . In this context, 1 de-

notes a connection between the user and a bundle or item, or signifies the inclu-
sion of the item within a specific bundle. Please note that due to duplicate data 
elimination in the user’s historical bundle and item interactions, each element of 
X and Y is represented as a binary value instead of an integer. Additionally, X 
and Y are generated separately, allowing users to directly interact with bundles 
and individual items. As a result, X and Y contain different information, which 
heuristically facilitates collaboration between two distinct views. The objective of 
the bundle recommendation task is to learn from the historical {X, Y, Z} data 
and predict user-bundle interactions that are unseen in X. 

3.2. Learning Representations from Multiple Views  

For the first component of HCLBR, our goal is to learn representations from 
multiple views, namely the original and modified views of items and bundles. 
While the dual-view representation learning module of BGCN is effective, its 
design for graph construction and graph learning is deemed useless or even de-
trimental, especially when contrastive learning is employed [17]. Here, we pro-
pose a simpler yet more effective approach for representation learning. 

3.2.1. Bundle-View Representation Learning 
To learn user and bundle representations from the bundle view, we first con-
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struct a user-bundle bipartite graph, known as the U-B graph, using the us-
er-bundle interaction matrix X. Next, we employ the widely used GNN-based 
recommendation framework called LightGCN to learn representations for users 
and bundles. In this framework, we conduct information propagation on the 
U-B graph, where the k-th layer’s information propagation is represented as fol-
lows: 

( ) ( )

( ) ( )
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1 ,
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where ( )B k
ue , ( )B k d

be ∈  represent the information propagation for user u and 
bundle b at the k-th layer. Here, d represents the embedding dimension, indi-
cating the size of the representation vectors. The superscript B indicates that the 
propagation is performed on the bundle view. Initially, ( )0B

ue  and ( )0B
be  are 

randomly initialized at the start of the training process. u  and b  denote 
the neighbors of user u and bundle b, respectively, in the U-B graph.  

We adopt the methodology of LightGCN by removing self-connections from 
the U-B graph and excluding non-linear transformations from the information 
propagation function. Through empirical validation, we have confirmed that this 
simplification, which was not considered in BGCN, indeed contributes to per-
formance improvements. Importantly, we do not include bundle-bundle connec-
tions introduced by BGCN, which are calculated based on the degree of overlap 
between two bundles in terms of shared items. This is because the information 
regarding bundle-bundle overlap can be effectively extracted through the utiliza-
tion of multi-view contrastive learning from the item view. Moreover, removing 
the additional bundle-bundle connections can further reduce the computational 
costs associated with graph learning.  

We connect the embeddings from all K layers to aggregate the information 
received from neighbors at different depths. The final representations of the 
bundle view, which are denoted as B

ue ∗  and B
be ∗ , can be expressed as: 

( ) ( )

0 0
,

K K
B k B kB B

u u b b
k k

e e e e∗ ∗

= =

= =∑ ∑                      (2) 

3.2.2. Item-View Representation Learning 
To learn user and bundle representations from the item view, we start by con-
structing two bipartite graphs: the U-I (user-item) graph and the B-I (bun-
dle-item) graph. Just like in the U-B graph learning process, we employ the 
LightGCN framework to learn representations for users and items. The resulting 
user representations are known as item-view user representations. On the other 
hand, the item-view bundle representations are obtained by performing average 
pooling on the item representations, guided by the B-I graph. Specifically, the 
information propagation on the U-I graph is defined as follows: 
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where ( )I k
ue , ( )I k d

ie ∈  represent the information propagated to user u and 
item i at the k-th layer, respectively. The superscript I indicates the item view. 
The initial representation ( )0I

ie  is randomly initialized. u  and i  denote 
the neighbors of users and items in the U-I graph, respectively. We follow the 
approach of BGCN and share the parameters of ( )0I

ue  with ( )0B
ue . Empirically, it 

has been observed that this parameter sharing does not affect performance and 
greatly reduces the parameter count. Similar to the U-B graph, we remove 
self-connections from the U-I graph and exclude non-linear feature transforma-
tions from the information propagation function. Additionally, we incorporate a 
layer aggregation operation after K layers of information propagation. The spe-
cific formula for this operation is as follows: 

( ) ( )

0 0
, ,

K K
I k I kI I

u u i i
k k

e e e e∗ ∗

= =

= =∑ ∑                     (4) 

where I
ue ∗  and I

ie ∗  represent the user and item representations in the 
item-view, respectively. Based on the item view item representations and the B-I 
graph, we can obtain the item-view bundle representation I

be ∗  through average 
pooling, expressed as:  

1 ,
b

I I
b i

ib

e e∗ ∗

∈

= ∑


                        (5) 

where b  represents the set of items contained in a certain bundle b. 
In conclusion, we can learn representations for all users and bundles from two 

views, denoted as B
UE ∗ , I M d

UE ∗ ×∈  and B
BE ∗ , I L d

BE ∗ ×∈ , where the super-
scripts B and I indicate the bundle and item views, respectively. And the sub-
scripts U and B represent the user set and bundle set, respectively. Additionally, 

I N d
IE ∗ ×∈  represents the item representations in the item view. Then, given a 

user and a bundle, we can obtain their bundle-view representations i.e., B
ue ∗  

and B
be ∗ , and their item-view representations i.e., I

ue ∗  and I
be ∗ . 

3.3. Joint Optimization  

We have devised crucial components to model cooperative relationships across 
multiple views using hybrid contrastive learning. Firstly, we introduce the com-
monly employed Bayesian Personalized Ranking (BPR) in the supervised learning 
paradigm. Subsequently, we present the data augmentation method and provide 
an overview of contrastive loss. Lastly, we discuss the process of joint optimiza-
tion. 

3.3.1. Bayesian Personalized Ranking Loss 
The probability of user u adopting bundled package b is estimated by calculating 
the inner product of the user vector ue  and the item vector be . In the super-
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vised learning paradigm, a common practice is to employ the Bayesian Persona-
lized Ranking (BPR) loss, which assigns higher probabilities to observed interac-
tions than unobserved interactions. To obtain the final recommendation predic-
tion, we first compute predictions for the item view and bundled view using in-
ner products, and then combine them additively for the ultimate prediction. 

B B I I
u,b u b u by e e e e .∗ ∗Τ ∗ ∗Τ ∗= +                       (6) 

The conventional Bayesian Personalized Ranking loss is utilized as the primary 
loss function. 

( )
( )*

*

* *
, ,

, ,

ln .BPR u b u b
u b b Q

s y y
∈

= − −∑                   (7) 

where ( ){ }*
* *, , | , , , 1, 0ub ub

Q u b b u U b b x x= ∈ ∈ = = , and ( )σ ⋅  denotes the 
sigmoid function. 

3.3.2. Data Augmentation 
The fundamental idea behind self-supervised contrastive learning is to foster af-
finity among different perspectives of the same object while simultaneously ex-
panding the diversity of representations across distinct objects [33]. In practical 
terms, each object typically possesses multiple natural views, such as images 
captured from different angles or bundled and itemized views in recommenda-
tion systems, where contrastive loss can be directly applied. However, there are 
situations where multiple views are unavailable, necessitating the use of data 
augmentation techniques to generate additional perspectives from the original 
data [23] [34] [35]. By employing appropriate data augmentation, we not only 
unlock the potential of applying contrastive learning to multi-view data but also 
bolster the robustness against potential adversarial noise. Therefore, while keep-
ing the original data (without augmentation) as the default configuration, we al-
so introduce two straightforward data augmentation methods: graph-based aug-
mentation and embedding-based augmentation. 

Graph-Based Augmentation. The primary objective of graph augmentation 
is to generate augmented data by modifying the graph structure [23]. We em-
ploy a straightforward approach called Ddge Dropout for random augmentation, 
where a certain proportion (dropout rate ρ) of edges is randomly removed from 
the original graph. The underlying principle behind edge dropout is to preserve 
the essential local structure of the graph, thereby enhancing the robustness of 
learning representations against certain types of noise. 

Embedding-Based Augmentation. In contrast to graph-based augmentation, 
which is limited to graph data, embedding-based augmentation is more versatile 
and can be applied to any deep representation learning methods [35]. The core 
concept is to alter the learned representation embeddings, irrespective of their 
acquisition process. To achieve this, we employ Message Dropout, which ran-
domly masks certain elements of the propagated embeddings with a dropout 
rate ρ during the graph learning process. 

Raw Preservation. We refer to the method without any data augmentation as 
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raw preservation, where no randomness is introduced, and the original repre-
sentations are solely retained. As the two views in bundled recommendation are 
derived from distinct data sources, their representations possess ample diversity, 
leading to favorable outcomes. 

To avoid notational confusion, we denote the augmented representations of 
all users and bundles as B

UE ∗
′ , I M d

UE ′∗ ×
′ ∈  and B

BE ∗
′ , I L d

BE ′∗ ×
′ ∈ . Here, the 

superscripts B and I represent the bundle and item views, respectively, while the 
subscripts U' and B' indicate the entire set of users and the bundle set, respec-
tively ( I N d

IE ′∗ ×
′ ∈  represents the representation of all items in the item view). 

Specifically, { }1 2, , , Mu u u ′′ =  , { }1 2, , , Lb b b ′′ =   and { }1 2, , , Ni i i ′′ =  . 
Subsequently, when considering a specific user and bundle, we can obtain their 
augmented representations in the bundle view, denoted as i.e., B

ue ∗
′  and B

be ∗
′ , as 

well as their representations in the item view, such as i.e., I
ue ∗
′  and I

be ∗
′ . 

3.3.3. Hybrid Contrastive Learning 
Unsupervised Contrastive Learning. Recent research has explored the applica-
tion of contrastive learning on graphs to address the challenge of sparse labels 
and enhance model robustness [23],Given a pair of generated graph views [36], 
such as SGL, it proposes to bring together different views of the same node while 
separating views of different nodes. As depicted in Figure 3, each view captures 
a distinct aspect of user preferences, and these two views must synergistically 
work together to maximize the overall modeling capability. The InfoNCE loss 
[37] is employed to compute the unsupervised contrastive learning (UCL) loss, 
which involves node discrimination and is expressed by the following equation:  

( ) ( )( )
( )( )

exp ,
, log

exp ,

B I
u uB I

UCL B I
u u vv

f e e t
U U

f e e t

∗ ∗
′ ′∗ ∗

∗ ∗
′ ′∈ ′ ′′ ′∈

= −∑
∑



           (8) 

where, ( ).,.f  denotes the cosine similarity function, and τ  represents a tem-
perature hyper-parameter. The different perspectives of the same user are con-
sidered as positive pairs ( ,B I

u ue e∗ ∗
′ ′ ), encouraging consistent behavior across these 

pairs. Conversely, viewpoints from different users are treated as negative pairs 
( ,B I

u ve e∗ ∗
′ ′ ), aiming to minimize their mutual agreement. Similarly, we derive the 

UCL loss ( ),B I
UCL B B∗ ∗  for the bundle side using a similar approach. 

Supervised Contrastive Learning. While unsupervised contrastive learning 
has shown significant improvements, it overlooks the usefulness of available us-
er-bundle interactions when dealing with different graph views. In this context, 
we propose a hybrid contrastive learning module that effectively utilizes the 
available user-bundle interactions. As illustrated in Figure 3, besides unsuper-
vised contrastive learning for ( ,B I

u ue e∗ ∗
′ ′ ) and ( ,B I

u be e∗ ∗
′ ′ ), we suggest promoting 

consistency in the presence of observed user-bundle interactions ( ,I B
u be e∗ ∗
′ ′ ) by 

computing a supervised contrastive learning (SCL) loss for the embeddings of 
users and interacting bundles. Following the same underlying principle of con-
trastive learning, on one hand, given the observed user-bundle interaction uby , 
we aim to maximize the consistency between the user representation I

ue ∗
′  and  
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Figure 3. The overall framework of HCLBR consists of two main components: (1) Representation learning for both the user and 
bundle views, and (2) Joint optimization of the BPR loss BPR  and the hybrid contrastive loss HCL . 

 
the bundle representation B

be ∗
′  generated from different views (see the numera-

tor in Equation (9)). On the other hand, we aim to minimize the consistency 
between unobserved user-bundle pairs by uniformly sampling unobserved bun-
dles for user u, thereby minimizing the consistency between user-bundle pairs 
(see the denominator in Equation (9)). 

( )
( )

( )( )
( )( ),

exp ,
, log

exp ,

I B
u bI B

SCL I B
u b u qq Q

f e e t
U B

f e e t

∗ ∗
′ ′∗ ∗

∗ ∗
′ ′ ∈ ′ ′′∈

= −∑
∑

            (9) 
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where, Q represents a set that includes an observed bundle for user u and a sam-
pled set of unobserved bundles. 

By doing so, the model is explicitly trained to learn the closeness of us-
er-bundle interactions in diverse and imperfect views of users and bundles. This 
improves the model’s robustness and generalizability. Please note that, in the 
context of supervised contrastive learning, we intuitively select to compute 

( ),B I
SCL U B∗ ∗  on user and bundled package nodes from different views, instead 

of calculating ( ),B I
SCL U B∗ ∗  on user and bundle nodes from the same view. 

This is because calculating SCL loss on user and bundle nodes from the same 
view is redundant since they have already been utilized in computing the BPR . 

3.3.4. Multi-View Permutation 
Recent work has demonstrated that computing the sum of contrastive tilt losses 
for all pairs of arbitrary two views across multiple incomplete views can improve 
overall performance [38]. Note that, in the denominator of the loss function 

( ),B I
UCL U U∗ ∗ , we fix a user node BU ∗  from the modified-item-view after da-

ta augmentation as an anchor and enumerate all user nodes IU ∗  in the mod-
ified-bundle-view after data augmentation. Hence, we also need to compute the 
symmetric ( ),I B

UCL U U∗ ∗  by anchoring on IU ∗ . Similarly, we calculate 

( ),B I
SCL U B∗ ∗  and ( ),I B

SCL U B∗ ∗  for supervised contrastive learning. The 
overall multi-view HCL loss is the sum of unsupervised contrastive learning loss 
and supervised contrastive learning loss on user and bundle nodes. 

( ) ( )
( ) ( )
( ) ( )

- , ,

 , ,

 , , .

multi view B I I B
HCL UCL UCL

B I I B
UCL UCL

I B B I
SCL SCL

U U U U

B B B B

U B U B

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= +

+ +

+ +

  

 

 

            (10) 

We train the model using a multitask learning approach, where the final loss L 
is a weighted combination of the supervised BPR ranking loss BPR , the mul-
ti-view mixed contrastive learning loss -multi view

HCL , and the L2 regularization term 
2
2Θ . 

2-
1 2 2

multi view
BPR HCLλ λ= + + Θ                     (11) 

where 1λ  and 2λ  are hyperparameters that balance the three components, and 
( ) ( ) ( ){ }0 0 0, ,B B I

U B IE E EΘ =  represents all the model parameters. 

4. Experiments 
4.1. Datasets  

We evaluated the proposed architecture on four benchmark datasets: Youshu, 
NetEase, iFashion, and Steam. These datasets exhibit significant variations in 
size, bundled attributes (such as average bundle size), and domains, as shown in 
Table 1. Our findings demonstrate that HCLBR outperforms the state-of-the-art 
(SOTA) methods on diverse datasets, highlighting its significant advantage over 
existing solutions. 
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Table 1. Dataset statistics. 

Dataset #U #I #B #U-I #U-B #Avg.I/B 

Youshu 8039 32,770 4771 138,515 51,377 37.03 

NetEase 18,528 123,628 22,864 1,128,065 302,303 77.80 

iFashion 53,897 42,563 27,694 2,290,645 1,679,708 3.86 

Steam 29,634 2819 615 902,967 87,568 5.77 

 
YouShu is a Chinese book review website that allows users to create custo-

mized book lists [11]. In this dataset, bundles refer to sets of books generated by 
users. 

NetEase is a cloud music service that enables consumers to choose songs and 
create playlists [21]. Intuitively, the bundles in this dataset correspond to playl-
ists. 

iFashion is an online fashion clothing recommendation dataset [39], where 
clothing items consisting of individual fashion pieces are considered as bundles. 
We followed the clothing recommendation setup [40] and preprocessed the iFa-
shion dataset using user 20-core rules and clothing 10-core rules. 

Steam is a video game website created by Valve, serving as a marketplace 
and distribution service. In this dataset, bundled games refer to different game 
bundles sold together on the website [41]. Interactions represent purchase 
events. 

The statistical data of the datasets is outlined in Table 1. It is observed that the 
item order within bundles is either irrelevant or not provided across all datasets. 
Additionally, auxiliary information is exclusively available in the Steam dataset. 
However, we intentionally disregarded it to maintain a consistent collaborative 
filtering (CF) approach across all datasets. We acknowledge that traditional 
content-based filtering methods [42] can be readily employed to incorporate the 
support of auxiliary information if desired. 

4.2. Experimental Setup  
4.2.1. Evaluation Metrics 
In practical applications, TP (True Positive), TN (True Negative), FP (False Pos-
itive), and FN (False Negative) are used to define the sets in a confusion matrix. 
The positive class is typically assigned to important and rare indicators, while 
the negative class is assigned to less important and common indicators. This is 
because the detection of defective items and the identification of fraudulent in-
stances are of particular interest. The metrics of interest include the proportion 
of detected defective items and the proportion of falsely classified non-defective 
items. These metrics are crucial for assessing the model’s performance and are 
often referred to as “Recall”. Recall represents the ratio of detected defective/ 
fraudulent instances, providing valuable insights into the model’s effectiveness. 
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TPRecall
TP FN

=
+

                        (12) 

Regarding Recall@K, it refers to the ratio of the number of relevant results re-
trieved in the top K results to the total number of relevant results in the data-
base. It measures the retrieval system’s ability to retrieve all relevant results. 
Formally, it can be defined as follows: 

TP@KRecall@K
TP@K FN@K

=
+

                   (13) 

Normalized Discounted Cumulative Gain (NDCG) is an evaluation metric 
that takes into account the ranking order of the returned results. It is a norma-
lized measure with values ranging from 0 to 1, where higher values indicate bet-
ter performance. 

DCG@KNDCG@K
IDCG@K

=                      (14) 

where DCG (Discounted Cumulative Gain) is a measure of cumulative gain that 
incorporates a discounting factor. 

( )1 2

DCG@K
1log

K
i

i

rel
i=

=
+∑                     (15) 

where irel  refers to the true relevance score of the i-th result. 

( )1 2

IDCG@K
log 1

REL
i

i

rel
i=

=
+∑                    (16) 

where IDCG (Ideal DCG) represents the ideal DCG value. REL  denotes the 
number of results in the set formed by taking the top K results when sorting 
based on true relevance scores in descending order. 

For each user, we classify projects that the user interacts with as positive 
projects, and projects that the user does not interact with as negative projects. 
Recall@K and NDCG@K are utilized as evaluation metrics, with K values rang-
ing from 5, 10, 20, to 40. NDCG@20 is employed for selecting the optimal model 
based on the validation set and ranking all projects during testing [18]. 

4.2.2. Baselines 
We compared HCLBR with four benchmark models, including the state-of-the-art 
(SOTA) approach. For each of these models, we used publicly available reposito-
ries as described below: 

BPR [12]: It is a Bayesian Personalized Ranking method that employs matrix 
factorization in a pairwise learning framework. This algorithm ranks items based 
on implicit feedback from user interactions with bundles. 

DAM [11]: This is a powerful baseline that utilizes attention mechanisms to 
learn bundle representations and incorporates multitask learning to optimize 
user-item and user-bundle interactions. The authors have demonstrated its su-
periority over BPR, Neural Collaborative Filtering [18], and Embedding Facto-
rization Machines [21] on platforms such as NetEase and YouShu. 
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BGCN [13]: BGCN decomposes the user-bundle-item relationships into two 
separate views by constructing bundle-view and item-view graphs. It leverages 
Graph Convolutional Networks (GCN) to learn representations and predict the 
relationships between users and bundles. 

BRUCE [22]: It employs Transformers technology to simulate users' bundle 
preferences and the relationships between items that form a bundle, resulting in 
an improved performance compared to the benchmarks. 

CrossCBR [15]: The current SOTA model leverages cross-view contrastive 
learning to simulate cross-view collaborative associations in bundle recommen-
dation. It introduces cross-view contrastive learning to effectively regulate cross- 
view representations, resulting in substantial improvements over the benchmark 
models. 

We also attempted to include BundleNet [14] as a baseline. However, since the 
code for BundleNet is not available online, we were unable to reproduce their 
results. 

4.2.3. Parameter Settings 
For all methods, the embedding size is set to 64, and Xavier normal initialization 
[43] is applied. The implementation is done using PyTorch [44] and the Adam 
optimizer [45]. BRUCE is trained with a learning rate of 0.001 (without 
warm-up) and a batch size of 2048. Regarding our method, we tune the hyper-
parameters 1 2, , ,K λ λ τ , and ρ  within the following ranges: { }1,2,3 ,  
{ }0.01,0.04,0.1,0.5,1 , { }6 5 5 5 410 ,10 ,2 10 ,4 10 ,10− − − − −× × ,  
{ }0.05,0.1,0.15,0.2,0.25,0.3,0.4,0.5 , and { }0,0.1,0.2,0.5 . For the baseline me-
thods, we refer to the reported results in [22] for BPR, DAM, BGCN, and BRUCE 
on the YouShu, NetEase, and Steam datasets, as their settings align with ours. We 
independently implemented all other baseline models and experimented with 
learning rates ranging from 0.0001 to 0.1, as well as embedding sizes ranging 
from 16 to 64. 

All models were trained using PyTorch 1.11.0, with 64GB of memory, on an 
NVIDIA RTX3080 GPU. 

4.3. Comparison with the Baseline Methods  

We first compare the overall recommendation performance of HCLBR with us-
er-item recommendation baselines and bundle-specific recommendation base-
lines on four datasets, as presented in Table 2. The best-performing method is 
highlighted in bold, while the strongest baseline is indicated with an underline. 
The column “%improv.” represents the relative improvement of HCLBR com-
pared to the strongest baseline. From the results, we make the following obser-
vations.  
• HCLBR consistently outperforms all baselines across datasets and metrics, 

demonstrating its superiority in bundle recommendation. By incorporating 
contrastive learning, HCLBR captures rich item representations and rela-
tionships, enabling a better understanding of bundle characteristics and more  
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Table 2. Model performance comparison on public datasets.  

Method 

NetEase  Youshu 

Recall 
@5 

NDCG 
@5 

Recall 
@10 

NDCG 
@10 

Recall 
@20 

NDCG 
@20 

 
Recall 

@5 
NDCG 

@5 
Recall 
@10 

NDCG 
@10 

Recall 
@20 

NDCG 
@20 

BPR 0.0131 0.0107 0.0212 0.0139 0.0363 0.0188 0.0764 0.0638 0.1034 0.0729 0.1532 0.0890 

DAM 0.0099 0.0077 0.0163 0.0102 0.0293 0.0142 0.1098 0.0873 0.1460 0.0996 0.2000 0.1162 

BGCN 0.0138 0.0115 0.0244 0.0154 0.0427 0.0210 0.0942 0.0880 0.1401 0.1002 0.1992 0.1170 

BRUCE 0.0183 0.0145 0.0296 0.0189 0.0489 0.0251 0.1344 0.1068 0.1893 0.1249 0.2624 0.1471 

CrossCBR 0.0322 0.0285 0.0521 0.0357 0.0824 0.0451 0.1231 0.1336 0.1889 0.1384 0.2753 0.1637 

HCLBR 0.0343 0.0296 0.0555 0.0369 0.0852 0.0462 0.1361 0.1265 0.1982 0.1441 0.2845 0.1680 

Improv. (%) 6.12 3.72 6.13 3.25 3.29 2.38 1.25 10.20 4.49 3.96 3.23 2.56 

Method 

Steam  iFashion 

Recall 
@5 

NDCG 
@5 

Recall 
@10 

NDCG 
@10 

Recall 
@20 

NDCG 
@20 

 
Recall 

@5 
NDCG 

@5 
Recall 
@10 

NDCG 
@10 

Recall 
@20 

NDCG 
@20 

BPR 0.4254 0.3693 0.4523 0.3788 0.4861 0.3882 0.0181 0.0186 0.0265 0.0229 0.0434 0.0300 

DAM 0.6561 0.4740 0.9216 0.5691 0.9660 0.5817 0.0248 0.0210 0.0397 0.0271 0.0629 0.0450 

BGCN 0.6078 0.4886 0.8062 0.5576 0.9374 0.5935 0.0254 0.0219 0.0427 0.0286 0.0693 0.0474 

BRUCE 0.8799 0.7343 0.9568 0.7622 0.9806 0.7701 0.0423 0.0596 0.0732 0.0696 0.1094 0.0776 

CrossCBR 0.0903 0.7963 0.9657 0.8175 0.9851 0.8139 0.0451 0.0576 0.0712 0.0672 0.1078 0.0829 

HCLBR 0.9560 0.8481 0.9807 0.8578 0.9906 0.8600 0.0492 0.0625 0.0756 0.0715 0.1135 0.0864 

Improv. (%) 4.88 6.11 1.53 4.70 0.56 5.36 8.33 7.84 5.82 6.01 3.61 4.05 

 

accurate recommendations. It’s important to note that CrossCBR, on the 
other hand, has limitations as it only generates views with edge losses, which 
restricts downstream contrastive learning. This emphasizes the significance 
of incorporating contrastive learning techniques and utilizing multiple views 
for improved recommendation accuracy. Overall, HCLBR’s comprehensive 
approach leverages contrastive learning in both unsupervised and supervised 
learning environments, allowing it to capture nuanced relationships and sig-
nificantly enhance bundle recommendations. 

• BGCN, in the realm of general user project recommendation models, consis-
tently outperforms BPR, indicating that GNN-based methods are effective in 
capturing user bundle CF signals and enhancing recommendations. 

• BRUCE consistently outperforms BGCN in all datasets and metrics, hig-
hlighting the effectiveness of Transformer-based models in improving the 
accuracy of recommendation systems. 
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• CrossCBR consistently outperforms BRUCE across a wide range of datasets 
and metrics, clearly demonstrating the effectiveness of graph contrastive learn-
ing in recommendation tasks. This strongly emphasizes the valuable supple-
mentary information offered by item views and their potential to enhance the 
model’s ability to discriminate and make accurate recommendations.  

4.4. Ablation Study  
4.4.1. Effectiveness of Data Augmentations 
During the representation learning process for two views, we conducted experi-
ments with various data augmentation settings. HCLBR_RW represents the 
original preservation (i.e., no augmentation), HCLBR_ED stands for Edge Dro-
pout, an augmentation method based on graphs, and HCLBR_MD represents 
Message Dropout, an augmentation method based on embeddings. The results 
in Figure 4 indicate that the differences between the three data augmentation 
settings of HCLBR can be considered negligible compared to the performance 
gain of the baseline. This finding suggests that the inherent differences within 
the original data of multiple views provide sufficient variance for mixed mul-
ti-view contrastive learning, while the variance introduced by random data 
augmentation is inconsequential. In the future, further exploration can be done 
to discover more advanced and effective data augmentation methods. 

4.4.2. Effect of the Number of Embedding Sizes 
When evaluating the performance of a recommendation system at different em-
bedding sizes, we observed interesting results. In the Youshu dataset, we did not 
observe a significant change in NDCG@20 and Recall@20 values as the embed-
ding size increased. The values fluctuated slightly with increasing embedding 
dimension, but the overall trend was not clear. This suggests that increasing the 
number of embedding dimensions did not significantly improve the perfor-
mance of the recommendation system for this dataset. This observation is also 
reflected in Figure 5. 

However, in the NetEase dataset, we found that NDCG@20 and Recall@20 
values increased as the embedding size increased. This indicates that increasing 
the number of embedding dimensions can significantly improve the perfor-
mance of the recommendation system for this dataset. 

 

 
Figure 4. A comparison of the results obtained from various data augmentation methods on NetEase and Youshu platforms. 
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Figure 5. HCLBR’s NDCG@20 and Recall@20 performance varies with temperature and embedding sizes on both the NetEase 
and Youshu datasets. 

 

Overall, our ablation study suggests that increasing the number of embedding 
dimensions may have an impact on the performance of a recommendation sys-
tem, but this effect depends on the specific dataset. Therefore, when designing 
and optimizing recommendation systems, we need to consider the properties of 
the dataset and conduct appropriate experiments to determine the optimal 
number of embedding dimensions. 

4.5. Hyper-Parameter Tuning and Computational Efficiency  
Analysis  

4.5.1. Hyper-Parameter Study 
Our experiments demonstrate that the temperature hyperparameter has a sig-
nificant impact on the performance of HCLBR, as indicated by NDCG@20 and 
Recall@20. To investigate this effect, we set the value of τ to range from 0.05 to 
0.5 and studied the performance of our HCLBR model across this range of val-
ues. Specifically, our results on the NetEase dataset show that HCLBR is sensitive 
to deviations from the optimal temperature setting, and such deviations can lead 
to a decrease in performance. Conversely, the effect of temperature on HCLBR's 
performance on the Youshu dataset is less pronounced. Therefore, when tuning 
the temperature hyperparameter for HCLBR, it is crucial to consider the charac-
teristics of the specific dataset and conduct appropriate experiments to deter-
mine the optimal setting. 

4.5.2. Computational Efficiency 
In order to evaluate the computational efficiency of our model, we compared it 
and two of its variants with BGCN and BRUCE in terms of training time over a 
period of 10 consecutive epochs. We recorded the training time for each epoch 
and calculated the average training time per epoch, as shown in Table 3. Our 
analysis revealed two important findings. Firstly, the efficiency of our model, 
HCLBR, was significantly higher than that of BGCN, demonstrating its superior 
computational efficiency. However, BRUCE had a faster training speed due to its 
use of a pre-trained model, which can take up a considerable amount of time 
during pre-training. And our model exhibits a modest enhancement in compu-
tational efficiency when compared to CrossCBR. Secondly, we compared two 
variants of our model, HCLBR_ED and HCLBR_RW, and found that data  
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Table 3. The statistics of one-epoch training time (seconds) for HCLBR and baselines on 
RTX3080, where the “HCL” is short of “HCLBR”. 

RTX3080 BGCN CrossCBR BRUCE HCL_ED HCL_RW HCL_16 

Youshu 23.76 3.15 1.22 2.90 3.20 3.10 

NetEase 80.59 15.23 10.23 14.78 19.27 13.42 

 
augmentation during training was consistent with our hypothesis. We also found 
that node dropout could optimize training time to some extent, particularly on 
larger networks. When comparing HCLBR_16 with the other models, we found 
that the difference in training time was not significant, indicating that the em-
bedding size had little impact on training time. 

5. Conclusion and Future Work 

In this study, we have proposed HCLBR, a novel bundle recommendation me-
thod that leverages multi-view hybrid contrastive learning. Our approach effec-
tively captures collaborative associations and enhances perspective-aware repre-
sentations, leading to improved recommendation performance. HCLBR consid-
ers bundle and item views as separate yet intertwined perspectives of us-
er-bundle preference. By applying contrastive learning to these views, HCLBR 
transforms their coherence into representations of users and bundles. Through 
comprehensive evaluations on four benchmark datasets, we have demonstrated 
that HCLBR significantly outperforms state-of-the-art methods. This highlights 
the effectiveness of our proposed method in enhancing bundle recommendation 
accuracy. Furthermore, our ablation and model analyses have provided valuable 
insights into the underlying mechanisms driving the substantial performance 
improvement achieved by HCLBR. These insights can guide future research in 
the field of bundle recommendation and emphasize the importance of consider-
ing multiple perspectives and leveraging contrastive learning techniques. Look-
ing ahead, our future work will explore the use of transformers for bundle gen-
eration tasks and emphasize the need for explainability and interpretability in 
recommendation systems. By delving deeper into these aspects, we aim to fur-
ther enhance the performance and practicality of bundle recommendation sys-
tems. 
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