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Abstract 
The differential evolution algorithm is an evolutionary algorithm for global 
optimization and the un-capacitated facility location problem (UFL) is one of 
the classic NP-Hard problems. In this paper, combined with the specific cha-
racteristics of the UFL problem, we introduce the activation function to the 
algorithm for solving UFL problem and name it improved adaptive differen-
tial evolution algorithm (IADEA). Next, to improve the efficiency of the algo-
rithm and to alleviate the problem of being stuck in a local optimum, an 
adaptive operator was added. To test the improvement of our algorithm, we 
compare the IADEA with the basic differential evolution algorithm by solving 
typical instances of UFL problem respectively. Moreover, to compare with 
other heuristic algorithm, we use the hybrid ant colony algorithm to solve the 
same instances. The computational results show that IADEA improves the 
performance of the basic DE and it outperforms the hybrid ant colony algo-
rithm. 
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1. Introduction 

Facility location problem is a classic problem in operational research. Its objec-
tive is to select the optimal location for a facility from candidate sites to minim-
ize the total cost while meeting the demand of customers. One of the most stu-
died variants of facility location problems is the Un-capacitated Facility Location 
(UFL) Problem. In this variant, each facility can serve an unlimited number of 
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customers, but each facility has a fixed cost associated with it. The UFL problem 
can also be applied for practical issues, for instance, the optimal solution of the 
problem can determine the network of oilfield pipeline [1]. Building the path of 
railway resource reserve location based on the UFL problem, the operation time 
can be shortened to find optimal solution [2]. Additionally, the UFL problem 
can also be applied in scheduling and routing [3]. 

UFL problem is known to be a NP-Hard problem, which means that finding 
an exact solution to the problem requires an exponentially increasing amount of 
computation as the problem size grows. Current algorithms for solving the prob-
lem can be categorized into three types: exact algorithms, approximate algo-
rithms and heuristic algorithms. Exact algorithms are able to find the optimal 
solution to the problem [4], but they are not practical for large-scale problems 
due to their low efficiency. Approximate algorithms, on the other hand, can pro-
vide a feasible solution to the problem in less time, but they may not be able to 
give an optimal solution to the problem [5]. 

In recent years, heuristic algorithms have been developed to solve UFL prob-
lems. These algorithms combine various search to improve the convergence speed 
and to obtain better feasible solutions for large scale problems, for instance, the 
Lagrangian wolf pack algorithm [6], pseudo-Boolean model and heuristic algo-
rithm [7], hybrid bat algorithm [8]. These algorithms demonstrate the feasibility 
of heuristic algorithms and better optimization performance than other types of 
algorithms. 

One of the most promising heuristic algorithms is the differential evolution 
(DE) algorithm. DE was first proposed by Storn and Price [9] for solving conti-
nuous optimization problems, but it has been found to be computationally inef-
ficient and slow to converge when solving discrete optimization problems [10] 
such as UFL problem.  

Therefore, in this paper, we propose an improved differential evolution algo-
rithm for solving the UFL problem. This approach combines the characteristics 
of the UFL problem with the DE algorithm, using the activation function to 
transform variable into binary one, for solving UFL problems. Meanwhile, to 
improve the convergence speed and optimization performance of the basic DE 
algorithm, we introduce the adaptive operator into the algorithm. We demon-
strate the feasibility and effectiveness of our algorithm through experiments on 
classic UFL problem instances. The computational results show that our algo-
rithm outperforms the basic DE algorithm and other heuristic algorithms in 
terms of convergence speed and optimization performance, making it a practical 
approach for solving large-scale UFL problems. 

The remainder of the paper is organized as follows. Section 2 is the brief in-
troduction and mathematical model of UFL problem. Section 3 presents the im-
proved adaptive differential algorithm for the UFL problem. Section 4 provides 
the computational results of our algorithm compared to the basic DE algorithm 
and hybrid ant colony algorithm. Section 5 presents our concluding remark. 
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2. Un-Capacitated Facility Location Problem 

Assuming that there is no capacity limit on facilities, given a set of facility loca-
tions { }1,2, ,F m=  , and a set of customers { }1, ,C n=  , for any i F∈ , j C∈ , 

ijC  represent the transportation cost between facility i and customer j, if  
represent the construction cost of the facility i, and the requirement that for all 
customers there must be and only be one facility that satisfies their demand while 
the total cost is minimized eventually. The UFL problem can be represented by 
the following mathematical model: 

1 1 1min m n
ij ij i ii

m
j iC fZ x y
= = =

⋅ ⋅= +∑ ∑ ∑                (1) 

s.t. 1 1m
iji x

=
=∑ , j C∀ ∈                     (2) 

ij ix y≤ , i F∀ ∈ , j C∀ ∈                    (3) 

{ }0,1ijx ∈ , i F∀ ∈ , j C∀ ∈                   (4) 

{ }0,1iy ∈ , i F∀ ∈                       (5) 

The ijx  indicates whether customer j chooses facility i to serve him or her, if 
so then 1ijx = , otherwise 0ijx = , and iy  indicates whether facility i is open, if 
so then 1iy = , otherwise 0iy = . The objective function is given by Equation 
(1), minimizing the total cost; constraint (2) ensures that each customer has and 
only has one facility to meet his demand; constraint (3) guarantees that only the 
construction of the facility will make it possible to serve the customer. 

Combined with the analysis of the specific features of the UFL problem in the 
literature [11], the theorem can be concluded as follows: 

Theorem 1 Suppose the optimal set of solutions to the UFL problem is *X , a 
solution to the problem is ( )* * *,x y X∈ , the constructed set of facilities is 

{ }*| 1,i iO i y F= ∈= , for i O∀ ∈ , the set of clients is { }*| 1,i ijB j x j C== ∈ , then 
the following is satisfied: 

1) { }min
i iij i i F i j ij B j BC f C f′ ′ ′∈∈ ∈

+ = +∑ ∑  

2) ij B∀ ∈ , { }minij i O i jc C′ ′∈=  
Theorem 1 shows that for any set of facilities F F′∈ , the facility with the 

lowest sum of transportation cost and construction cost in the set of facilities 
should be chosen to minimize the total cost; furthermore, for any customer j, the 
facility with the lowest corresponding service cost should be chosen to serve 
him. 

3. Improved Adaptive Differential Evolution Algorithm 
3.1. Differential Evolution Algorithm 

Differential Evolution (DE) algorithm is a heuristic algorithm which is similar to 
genetic algorithms, simulating the laws of biological evolution in nature and in-
cluding the operations of mutation, hybridization and selection. The main idea 
is to select two solutions from the initial solution vectors, by subtracting one so-
lution from the other, multiply the difference by the variation operator and add 
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it back to the initial vector; compare the fitness of the initial vector and the vari-
ation vector, then choose the better one to keep completing this evolutionary 
process. 

The DE algorithm is efficient in the optimization of continuous spaces, but 
the variable in the UFL problem is binary. Thus, to use the DE algorithm in the 
UFL problem, we need to modify the algorithm to transform the continuous va-
riable into binary one. 

3.2. Activation Function 

Since the variables in Equation (5), indicating whether the facility the facility is 
opened, are binary variables, but the variables in basic differential evolution al-
gorithm are continuous variables. Therefore, it is necessary to find a function to 
map the corresponding continuous values to binary values {0, 1}. Inspired by the 
activation function in neural networks, the hyperbolic tangent function (tanh) as 
a activation function is applied to convert continuous variables into (−1, 1). The 
formula for the tanh function: 

e e
e e

x x

x x

−

−

−
+

 

Next, to demonstrate the conversion of activation function, the following is 
the overall flow of the differential algorithm combined with the activation func-
tion.  

1) Initialization Given the initial population size M = m, the dimension of 
the vector N = n, let P(i, j) of two-dimensional array P denote every yi in the 
population; i indicates the number of individual in the population, j indicates the 
corresponding yi in the individual, and the demonstration of transformation is 
shown in Figure 1. The For every P(i, j) in the array, let P(i, j) = rand(Pmin, Pmax), 
where Pmin denotes the lower bound of the P(i, j), Pmax denotes the upper bound 
of P(i, j), which means every elements in the array is a random number between 
lower bound and upper bound in the initialization. The upper limit of iteration 
is EP. 
 

 

Figure 1. Initialization of population. 
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To avoid the situation that Equation (2) is not satisfied in the following steps, 
for every vector P(i,:) in the P, if every P(i, j) < tanh−1(T), let the maximum vari-
able in the vector be tanh−1(T), where T is the threshold of the activation func-
tion. 

2) Differential For every vector P(i,:) in P, randomly select two vectors P(a,:) 
and P(b,:) from it, and let vector P'(i,:) in a two-dimensional array P'(i, j) record 
the difference of P(a,:) and P(b,:), where { }, , 1,2, ,i a b m∈   and a b i≠ ≠ . 

3) Mutation For each value P'(i, j) in every vector P'(i,:), if the random value 
R < CR, P'(i, j) = P(i, j), otherwise P'(i, j) remains. 

4) Selection To calculate the fitness of every individual in the population, the 
array Y and Y' should firstly transformed into binary variable, thus, let the 
two-dimensional array B(i, j) = tanh(P(i, j)), and the two-dimensional array B'(i, 
j) = tanh(P'(i, j)). Similarly, to avoid the situation that all the P'(i, j) in one vector 
P'(i,:) is 0, for every vector P'(i,:) in the P', if sum(B'(i,:)) = 0, let the maximum 
P'(i, j) in vector P'(i,:) = tanh−1(T), and change the corresponding B'(i, j) = 1 so 
that Equation (1) can be satisfied, which is shown in Figure 2. 

According to the theorem 1, when the set of facilities has been determined, the 
customer can be served by finding the lowest cost among the facilities that are 
open. This choice must be optimal under the condition that the set of facility is 
determined. Therefore, we can find the correspondingly optimal xij for every 
vector in P or P' as the open facility set, by searching the lowest service cost 
among the open facilities according to the P or P', by which the fitness can also 
be calculated. 

5) Determination If iteration times e = EP, end the algorithm and output the 
best solution. Otherwise, e = e + 1, and go to (2). 

3.3. Adaptive Optimization 

To consider the current population optimum in the algorithm, the formula in 
(2) differential is improved to  

( ) ( ) ( ) ( )( ) ( ),: ,: ,: ,: rand 1P i P i P a P b′ = + − + ∗ ( )( )best ,:P P i− ,  

 

 

Figure 2. Satisfy Equation (2). 
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where { }, , 1,2, ,i b c m∈   and b c i≠ ≠ , rand(1) is a random number from [0, 
1], and Pbest represent the vector with the best fitness in the population. 

In addition, the differential evolution algorithm has the problem of slow des-
cent and the tendency to fall into local optimum as the introduction of popula-
tion optimum solution, this article improves the calculation of the vector iv  in 
the original algorithm by adding the adaptive operator maxW W w c= − ∗ ,  

minW W≥ , where Wmax is the upper bound of the operator, w is the coefficient, c 
is the number of repetitions of the current result, and Wmin is the lower bound of 
the operator. The final formula of differential as follow: 

( ) ( ) ( ) ( )( ) ( ) ( )( )best,: ,: ,: ,: rand 1 ,:P i P i W P a P b P P i′ = + ∗ − + ∗ −  

Note that the upper bound of the W is lower than 1 but the lower bound of W 
usually higher than 0.4, otherwise the algorithm will excessively focus on the 
population optimum which will make the population more likely to stuck at the 
local optimum. Conversely, if the upper bound of W is too high, the effect of the 
population optimum will be slight, which means the speed of convergence will 
not be improved. Therefore, it is significant to choose the upper bound and low-
er bound of the adaptive operator W.  

3.4. Algorithm Flow 

Let m = the number of facilities, n = the number of clients, N = the size of popu-
lation and the set of facilities { }1 2, , ,i mY y y y=  , { }1,2, ,i N∈  . Set the upper 
bound Pmax, the lower bound Pmin, the adaptive cross factor CR. P denote the 
two-dimensional array, P' denote the two-dimensional array after the difference 
step of P. B refers to the binary array corresponding to P, ( ) { }, 0,1B i j ∈ , 1 
means the current facility is open, otherwise it is 0, and the B' refers to the cor-
responding binary array of P'. 

The activation function is tanh(), and the threshold is T. The Cost matrix 
records the transportation cost between the facilities and the customers, of 
which the size is m * n. According to the theorem 1, S(x, y) indicate the action of 
selecting the cost of open facilities from cost matrix by vector in P or P', where x 
is the cost of one customer and y is the vector in P or P'. Vector fit(i) record the 
fitness of every individual in P, similarly, vector fit'(i) record the fitness of every 
individual in P', EP = total iteration limit and e = the current number of itera-
tion. After the introduction of activation function and the adaptive optimization 
to the differential algorithm, the pseudocode of the IADEA as follow (Algorithm 
1): 

3.5. Complexity Analysis 

The time complexity of step 1 is O(N * m). Since the complexity of the action 
S(x) is O(m), the time complexity of step 2 is O(n * m2) and the time complexity 
of step 5 is O(n * m2 + N). The time complexity of step 3 is O(N) and the time 
complexity of step 4 is O (N * m). Thus, the overall time complexity of the algo-
rithm is O(N * m) + O(n * m2) + O(N) + (N * m) + O(n * m2 + N). 
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Algorithm 1. IADEA. 
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4. Numerical Analysis 

To verify the feasibility of the IADEA and to evaluate its performance, 18 test 
problems from the UFL benchmark problem library are selected for solution. 
Then, the computational results of the basic differential evolution algorithm, 
IADEA and the hybrid ant colony algorithm are compared and analyzed. 

4.1. Experimental Environment and Parameter Settings 

The basic differential evolution algorithm and IADEA were coded on the Matlab 
R2017b, and all experiments are conducted on: Intel(R) Core(TM) i7-10875H 
CPU @2.30 GHz, 16.0 GB RAM, 64-bit Windows10. 

To determine the population size N in this paper, we test the IADEA to solve 
the instance ga250a1 with various population size, ranging from 5 to 60. The to-
tal iterations of every population is 100 and the optimal value of this instance is 
257,969. 

As displayed in Table 1, the increasement in the population size bring better 
target value, but when the size is bigger than 20, the difference in the target value 
is slight compared to the difference in the elapsed time, which also increases in 
multiple-rate due to the larger size of population. Therefore, we decide to let the 
population = 20 for more efficiency. 

The threshold T of the activation function determine the opening of the facil-
ity in the algorithm, if T < 0, it means more facility will be closed in the iteration, 
otherwise more facility will open. To applied to all instances, we let the T = 0. 

The upper bound Pmax and the lower bound Pmin are related to the coefficient 
w in the adaptive operator and the random number in the differential step, but 
the upper limit of random number is 1 in the paper, so the magnitude of the Pmax 
and Pmin will not make a difference in the algorithm, and we set the max min 30P P= = . 
Note that if max minP P≠ , the possibility of the opening and closing of the facility 
will not be the same in the algorithm, which is similar to the threshold T. 

According to the discussion above and previous research, the parameters in 
the IADEA is set as follow: threshold T = 0, the upper bound Pmax = 30, the lower 
bound Pmin = −30, Wmax = 0.6, w = 0.05, Wmin = 0.3. 
 
Table 1. The target values obtained by using different population size N. 

Population size N Elapsed time (s) Target value 

5 6.86 s 263,740 

10 13.95 s 262,057 

20 28.81 260,921 

30 41.76 260,325 

40 56.03 259,965 

50 70.45 259,870 

60 82.81 259,484 
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The hybrid ant colony algorithm in the literature [12] was conducted on: In-
tel(R) Core(TM) i7-3770 CPU @3.4 GHz, 3.41 GB RAM, Windows 7, and data 
processing was done by Matlab2010. 

4.2. Computational Results 

Table 2 shows the computational results of the basic differential evolution algo-
rithm and IADEA for 18 instances from the UFL benchmark problem library in 
the same experimental setting, where the number of facilities m and the number 
of customers n are equal in all problems. The target value refers to the optimal 
value in the population after 100 iterations and the optimal value indicate the 
known optimal value. The Gap value is the difference between the target value 
and the known optimal value, which is given by: 

target value known optimal value 100%
known optimal va

p
lue

Ga −
∗=  

 
Table 2. The comparison of computational results between basic DE and IADEA. 

Instance Size 
Optimal 

value 

Basic differential 
evolution algorithm 

IADEA 

Target 
value 

Elapsed 
time (s) 

Gap 
(%) 

Target 
value 

Elapsed 
time (s) 

Gap 
(%) 

ga250a1 250 257,957 263,230 29.31 2.04 259,397 28.41 0.55 

ga250a2 250 257,502 262,463 26.23 1.93 259,540 27.29 0.79 

ga250b1 250 276,339 350,531 30.26 26.84 296,989 31.48 7.47 

ga250b2 250 275,141 342,790 26.01 24.59 290,505 27.74 5.58 

ga500a1 500 511,422 528,265 523.45 3.29 517,836 464.49 1.25 

ga500a2 500 511,333 525,639 432.90 2.80 519,643 466.04 1.63 

ga500b1 500 538,060 732,604 469.71 36.16 644,440 468.39 19.77 

ga500b2 500 537,850 736,714 448.80 36.97 663,517 460.01 23.36 

ga750a1 750 763,576 792,588 1589.15 3.80 776,280 1569.61 1.66 

ga750a2 750 763,674 791,666 1235.87 3.67 783,083 1715.88 2.15 

ga750b1 750 796,480 1,138,657 1897.19 42.96 1,029,122 1673.81 29.21 

ga750b2 750 796,056 1,140,646 1863.46 49.36 1,026,189 1899.64 28.91 

gs250a1 250 257,964 262,755 26.51 1.86 259,579 29.03 0.70 

gs250b1 250 276,761 341,097 26.27 23.25 297,720 28.25 7.57 

gs500a1 500 511,229 526,647 459.36 3.02 518,227 465.88 1.37 

gs500b1 500 537,931 737,951 454.47 37.18 681,050 470.53 26.61 

gs750a1 750 763,671 792,767 2293.45 3.81 781,756 2361.83 2.37 

gs750b1 750 797,026 1,140,706 2202.09 43.12 1,016,147 2472.10 27.49 
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Table 3. The computational result of hybrid ant colony algorithm. 

Instance Optimal value 
Hybrid ant colony algorithm 

Target value Elapsed time (s) Gap (%) 

ga250a1 257,957 257,989 142.80 0.01 

ga250b1 276,339 350,951 144.48 27.00 

ga500a1 511,422 520,780 571.65 1.83 

ga500b1 538,060 731,632 578.93 35.98 

ga750a1 763,576 780,901 1278.58 2.27 

ga750b1 796,480 1,076,357 1281.73 35.14 

gs250a1 257,964 258,875 142.80 0.35 

gs250b1 276,761 351,571 144.48 27.03 

gs500a1 511,229 518,357 551.53 1.39 

gs500b1 537,931 709,514 542.51 31.90 

gs750a1 763,671 782,013 1295.36 2.40 

gs750b1 797,026 1,077,446 1334.50 35.18 

 
As can be seen from Table 2, the introduction of the adaptive factor does not 

make a significant difference in the elapsed time between basic differential algo-
rithm and IADEA for the same number of iterations, but the solution results of 
the IADEA are substantially better than those of the basic differential evolution 
algorithm. Mainly because the adaptive factor alleviates the defect that the basic 
differential evolution algorithm tend to fall into local optimal in the optimiza-
tion process. Moreover, 12 Gap values of all 18 instances are below 8%, which 
proves that the adaptive differential algorithm is able to effectively find a satis-
factory solution to the problem. 

A comparison between Table 2 and Table 3 shows that IADEA outperforms 
the hybrid ant colony algorithm in all 18 instances except the ga250a1 and 
gs250a1 with similar or lower elapsed time. 

5. Conclusions 

This paper improves the basic differential evolution algorithm and proposes a 
differential evolution algorithm for the UFL problem based on the characteris-
tics of the UFL problem. The proposed approach for solving UFL problem is 
based on the DE algorithm. To map the variable in the DE algorithm into binary 
one, we use the activation function to transform variables. Meanwhile, to im-
prove the efficiency of the algorithm, we introduce the adaptive operator to alle-
viate the issue of being stuck in a local optimum. 

It is demonstrated that the IADEA is feasible for solving the UFL problem and 
significantly improves the optimization efficiency of the basic differential evolu-
tion algorithm. At the same time, the IADEA can obtain better target values in 
similar or shorter time compared with the hybrid ant colony algorithm. 
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Therefore, this paper provides a new solution to the UFL problem and extends 
the application of the differential evolution algorithm. Further research is re-
quired to improve the convergence speed and operational efficiency of this algo-
rithm. 
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