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Abstract

In this paper, we focus on the space-inhomogeneous three-state on the one-
dimension lattice, a one-phase model and a two-phase model include. By us-
ing the transfer matrices method by Endo et al, we calculate the stationary
measure for initial state concrete eigenvalue. Finally we found the transfer
matrices method is more effective for the three-state quantum walks than the
method obtained by Kawai et al
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1. Introduction

There is an abundance of research on discrete-time quantum walks since 1993
[1] [2] [3]. Then quantum walks as a quantum mechanical attract large number
of scholars [4] [5] [6]. For instance, the two-phase quantum walks are related to
the research of topological insulator [7] [8], and one-defect quantum walks are
applied to quantum search algorithms [9] [10].

Recently, the asymptotic behaviors of the quantum walks have received much
attention [11] [12]. Konno gave the uniform measure as a stationary measure of
the one-dimensional discrete-time quantum walks [13]. Endo ef al, solve the ei-
genvalue problem and present a stationary measure by using SGF method [14].
Then Wang et al, obtain the stationary measures of three-state Wojcik walk by
adopting SGF method [15]. Shortly afterwards, Kawai et al raised Reduced ma-
trix method [16]. Lately, Endo et al got the transfer matrices and solve the ei-

genvalue [17]. In this paper, we will use this method to further derive one-phase
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and two-phase model of space-inhomogeneous three-state quantum walks.

2. Three-State Discrete-Time Quantum Walks

In this section, we give the definition of three-state quantum walk on Z , where
Z is the set of integers. The discrete-time quantum walk on 7Z defined by a

unitary matrix;

a b ¢

U,=ld, e . (2.1)
gX hx ix

Welet N be the set of nonnegative integers, and
L 0 R T . .
¥, (x)= (‘Pn (x), ¥ (x), ¥, (x)) be the amplitude of the wave function cor-
responding to the chiralities “L”, “O”, and “R’ at position x€Z and time
n e N. Obviously, for each position xeZ, the matrix U, can be divided into
three parts.

U,=U; +U? +U; (2.2)
Through these matrix, we can define time evolution of a quantum walk in the
following way:
Yo (x)=ULY, (x+1)+UPY, (x)+US Y, (x-1) (2.3)
Then let

¥, = (2, (-1).,(0).%, (1)

vl ut, o o o
R o L
v, v, U, O O 0 00 (2.4)
uY=l... o vt u¢ vt oo --,0=[0 0 0
o o0 Ul Ut ur 0 0 0
o o o Ut v?
Then the sate at time n can be expressed as
¥, =(U) wy,n=0 (2.5)

where W is the initial state.

Definition 2.1. The one-phase model of space-inhomogeneous three-state
quantum walk is defined on the set Z of integers. which is characterized by a
chirality-state space {|L>,|O>,|R>} and a position space {|x> ixe Z} , and the
chiralities “L”, “R” and “O” express the left, right and neutral state for the mo-
tion of the walker. Its time evolution is determined by the following 3x3 uni-

tary matrices

JT-1 2 2
szes 2 -1 2 |,xeZ (2.6)
2 2 -1
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where

x

0 0, x=%1,42,---,
a 2nr, x=0,

with 7€(0,1), which 6, shows the phase 2n7 of the walk.

Then
=1 2 2 10 0 0 10 0 O
elﬁx o elgx R e“gx
UXL: 3 0 0 0LU; = 2 -1 2\,U;=—]0 0 0.
0 0 0 0O 0 O 2 2 -1

Definition 2.2. The two-phase model of space-inhomogeneous three-state
quantum walk is defined on the set 7Z of integers, which is characterized by a
0).|R)} and a position space {|x):xeZ}. Its time

evolution is determined by the following unitary matrices

chirality-state space {|L),

U, x2z1,
U, ={U,, x=0, (2.7)
U, x<-1,
where
l+g, h, 1-g, |
h2 V2 hz : -1 2 2
U, = £ 2. £ LU, =22 -1 2| (2.8)
Sl V2 V2ot
2 2 -1
l-g, n, _l+gi
2 2 2
where g, =cosy,,h, =siny,,y, €[0,2n),& =e*™,7€(0,1). Then
UQ, x>1, Ug, x>1, Uf+, x>1,
Uf: U)fa x:O:v Uf— U()O> x:()! U\fR_ U§3 x:O, (2'9)
U;, x<-l, Ul, x<-l, Ul, x<-l,
l+g o, 1-g ] o 0 0] [0 0 0
2 2 0 0 0
U, = V2 Uy = , g, 2 JUF = .(2.10)
: 0 0 0 N ING) 2 |1-g. h. l+g,
| 0 0o 0 | L0 0 0 L 2 2 2]
[ l+g h 1-g | [0 0 0] 0 0 0
2 2 0 0 0
Ut = V2 JU? = LS g LS JUR = .(2.11)
- 0 0 0 RIS 2 ©o|l-g. h l+g
| 0 0 | L0 0 0 | 2 2 2|
-1 2 2 0 0 0 00 0
Uozg 0 0 o,Uozgz -1 2,U0:§0 0 0] (2.12)
0 00 0 0 0 2 2 -1

3. Stationary Measure

In the present section, we first recall some fundamental notions and facts about
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Z
stationary measure. Firstly, we introduced a mapping ¢: <C3) —>R?

6() = (- O e @F Jef ) er2,

where C is the set of complex number and ||| is thenormin C* and
W= (...,‘P(—l),‘P(O),LP(l),...)T € ((C3 )Z . For every x eZ , we note that
$) ()=l (e <(e) 6.1

Then, the function x — ¢(¥)(x) givesa measure x on Z by

u()=9()() for ¥
Definition 3.1. Let

s

M = {¢(‘PO) e RZ\{0} : there exists ¥, such that
(3.2)
¢((U(f) )n l{loj =¢(¥,) for any n > 0}

where 0 is the zero vector. We call the element of M, the stationary measure
of quantum walk. If ze M, then u,=u, where u,(x)=¢(¥,(x)) is the
measure of the quantum walk at position x€Z and attime neN.

Next we consider the eigenvalue problem:

Uy =av,(1eC,|A|=1) (3.3)

4. Main Results and Proofs

In this section, we obtain the stationary measure of the three-state quantum walk
with one defect by following lemma.

Lemma 4.1. [17] Let {U y}veZ be the set of y-parameterized unitary matrices
of the three-state inhomogene;)us quantum walk, and
b (x) = [‘I’L (x),‘I’O (x),‘I’R (x)]T be the probability amplitude. Note that
there is a restriction for the initial state ¥ (0) [18] Then the solutions for

Uty :l‘I‘(‘I’ eMap(Z,(C3),/1 € Sl),where S'={3eC:[3j|=1},are

Hi=17;f+)ly(0)> x21,
¥, =1(0), x=0, (4.1)

[T, 7% (), x<-L

where Ty(t) are the transfer matrices defined by

+ + - -
Ly 4, 1o Ly b, b
N P I ] PR
Ty =y Iy Iy aT1 = Iy by, (4.2)
+ + + - - -
Ly Iy I Ly Iy I

with
N

Iy = :_hy’l[byjf)’+cy(/1_ey)]
S TN e N B PR F
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= _lyfl I:byfy +Cy (l_ey ):| £ o= lzdy +gy—1 (ayfy _Cydy)
P afa(a-e)+hd, | ala,(A-e,)+hd, ]
h,, (ayfy _cde) o Ly (ayfy _Cydy)
°v23 T
Aa,(r=e,)+bd, | 2a,(2-¢,)+bd, |

+ p—
t22 -

h .,
t3+1 = g;l 1 i{l 5t3+3 :%
and
b
=t =2 =
O ay+1(f;1_gy_iydy) O__ yﬂ(f -g,- zydy)
oang i (a-e)]T Amg, i (2]
O :/12f ~c,(f,-g,-i,d,) o m[h d, +gy(l—ey):|
» At +i(a-e)] T Al g vi(A-e)]
(-)__by”|: y+gV ﬂ“ & :| _ (ﬂ_ey)(ﬂ'z_gycyﬂ) hycyﬂd
A+ (2-e)] A ALt +i(2-e,)]

We now state the stationary measure of one-phase model with one defect.
Theorem 4.1. Let ¥, (x)= (‘I’n (x)L WP, (x)o W, (x)R) be the wave func-

tion of probability amplitude, and Wi =a, ¥ = B, ¥ =y be the initial state.
Wetake a=-y,f=0 and A=-1.Then through the definition (2.1)

-1 2 2
et6’x
U, = 2 -1 2|,xeZ
2 2 -1

where

“on 7, x=0.
We obtain the stationary measure

(2~ {(4—29%5)|a| , x=tl,

; (4.3)
2|al, others.

Proof Put o =¥"* (O),,B =y° (0) and y=9* (O) Now we take
a=-y,f=0 and A =-1, then the solutions for UMW =¥ are

[T 77w (0), x=1,

Y. = lIJ(O), x=0,

where T are
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! 0 £ o2
2_5_1 2 ¢ 3 3 3
=13 3 3pnT= ¢ 2 2 |
% 2% R
3 3 3 0 0 1
(1 0 o 12 2
1 2 1 3 3 3
=173 3 3n0= 1 20 1(b]=2).
2 2 1 3 3 3
L3 3 3 0 0 1
Then through the formula (4.1), we can obtain
[«
0 |, x| =1,
| —a
S
lI‘(x): (f—l)a , o x=1, (4.4)
| |
e ]
(1-&a|, x=-1
L _a .
Therefore the corresponding stationary measure is given by
) (4-2R¢)|af, x==1,
X)=
2|o¢|2 , others.
O

Next we state the stationary measure of two-phase model by transfer matrices

method.

Theorem 4.2. Let ¥, (x)=(‘1‘n (x)",%, (x)7, ¥, (x)R) be the wave func-
tion of probability amplitude, and Wi =, ¥ = B, ¥ =y be the initial state.

Wetake a=-y,f=0 and A=-1.Then through the definition (2.2)

where

+

U)C

U,,

+

= an

v

L
0,
-1,

= x x
Il

IA

where g, =cosy.,h, =siny,,y, €[0,2n),& =¢’™,7€(0,1). Then the statio-
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nary measure is

u(x)=(2+A)e/ (4.5)
where

2

h—’, x<l1,

2

2(1-R

—hi( f), x=-1,

(1+g7)

A=10, x=0, (4.6)

2(1-R

IR

(1+g+)

2

h—*, x<l1

2

Proof Put a=¥"(0),8="7(0) and y=¥"(0). Now we take
a=-y,f=0 and A =-1, then the solutions for UCW =¥ are

L T (0), xx1,
¥ =1%(0), x=0,
H;:-l ;7)‘1}(0)’ x<-l,
where T are
1 0 0
_h(3-2¢) 2n,& _ ng
Y= 32(1+g,) 3N2(l+g) 32(1+g,) )
_2% _% <
3 3 3
< _2 _2
3 3 3
A 2n & _h(3-2¢) |.
W2(l+g) 3W2(1+g) 3V2(1+g)
| 0 0 1 |
M1 0 0
h+ 1_g+ _ h+
=l 22 2 22|
1_g+ _ h+ 1+g+
2 V22
_l+g7 _h; _1—g7
2 2 2
0= n. 1-g n_ |(]y=2)
22 2 22
L0 0 1

Then through the formula (4.1), we can obtain
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[«
h—’a s x<-1,
V2
| —a
- ta
h’(l_f) a x=-1
\/5(1+g_) ’ '
L —-a
‘P(x)z 01, x=0,
|-
I a
h a x=1
\/§(1+g+) > >
L ¢«
[«
h al, x>1.
V2
| —a

Therefore we obtain the stationary measure

u(x)=(2+4)af

where
%, x<l1,
EO-RE)
(1+g ) ’
A =10, x=0,
nO-%¢)
(l+g+)2 ,
%, x<l1

5. S ummary

In this paper, we derive the stationary measure of three-state walks with one di-
mension via transfer matrices. As a future work, we would investigate spectral
theory and localization of three-state quantum walks.
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