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Abstract 
The purpose of this paper is to show the preconditioned BMinPert algorithm 
and analyse the practical implementation. Then a posteriori backward error 
for BGMRES is given. Furthermore, we discuss their applications in color 
image restoration. The key differences between BMinPert and other methods 
such as BFGMRES-S(m, pf), GsGMRES and BGMRES are illustrated with nu-
merical experiments which expound the advantages of BMinPert in the pres-
ence of sensitive data with ill-condition problems. 
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1. Introduction 

Many large scientific and industrial applications, such as chemistry, structures 
and control, radar cross section calculation in electromagnetism, wave scattering 
and wave propagation in acoustics, and various source locations in seismic and 
parametric studies in general, require the solution of a sequence of linear sys-
tems with several right-hand sides given simultaneously such that 

  for and , ,N N N s N sAX B A B X× × ×= ∈ ∈ ∈              (1.1) 

where the matrix A is nonsingular and typically sparse, N is large as far as many 
practical problems are concerned. Direct methods, although attractive for mul-
tiple right-hand sides, cannot be used because of the size of the matrix. Iterative 
methods provide the only means for solving these problems. We know that 
block Krylov approaches are attractive not only because of this numerical feature 
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(larger search space), but also from a computational view point as they enable 
the use of BLAS3-like implementation. 

In order to overcome the disadvantage of using the residual error as a stop-
ping criteria in block Krylov approaches, we [1] proposed BMinPert algorithm, 
based on Fischer’s theorem [2] and the condition when the left and right equali-
ties of Neumann inequality [3] are satisfied, to treat nonsymmetric linear system 
with multiple right-hand sides. This method enables one to analyze the behavior 
of block Krylov subspace methods to a problem with sensitive dependence on 
the data, which generalizes the MinPert method [4] to a linear system with mul-
tiple right-hand sides. 

The focus of this paper is on preconditioning techniques for improving the 
performance and reliability of Krylov subspace methods. It is widely recognized 
that preconditioning is the most critical ingredient in the development of effi-
cient solvers for challenging problems in scientific computation, and that the 
importance of preconditioning is destined to increase even further. Color image 
restoration is an important problem in image processing. We find that our algo-
rithms can be applied, for instance, to multi-channel image restoration when the 
image degradation model is described by a linear system of equations with mul-
tiple right-hand sides that are contaminated by errors. So, the applications of 
BMinPert algorithm and its preconditioning techniques in color image restora-
tion are discussed. The purpose of this paper is to give the preconditioned tech-
nology for BMinPert algorithm to deal with the ill-posed problems that are more 
sensitive to the original data, and use it for color processing to enhance the 
processing ability. 

The following is a brief synopsis of this paper. Section 2 shows the precondi-
tioned BMinPert algorithm. Section 3 analyses practical implementation. Then a 
posteriori backward error for BGMRES [5] [6] [7] [8] is given in Section 4. Their 
applications in color image restoration are discussed in Section 5. The key dif-
ferences between BMinPert and others methods such as BFGMRES-S (m, pf) [6], 
GsGMRES [9], Bl-BiCG-rQ [10] and BGMRES are illustrated with numerical 
experiments in Section 6. Finally, the conclusions appear in Section 7. 

Throughout the paper we make use of the Frobenius norm for matrices 
( )1T 2

FA tr A A= , which corresponds to the Euclidean norm 
2a  for vector a. 

We designate the exact solution by * 1X A B−=  while mX  is used to denote an 
approximate solution. The notation ( ),A B  will be used for the pair of matrices 
or associated to the generalized eigenvalue problem Ax Bxλ= . We use ( )i Aσ  
to denote the ith singular value of matrix A, furthermore, ia  denotes its the ith 
column, while ,i ja  denotes the jth element of ia . Matrix 1E  denotes the first 
s columns of the identity matrix ( )1m sI + . s  means a set of unitary matrices 
with grade s. Finally, superscript ∗  denotes the complex conjugate (transpose, 
when applied to vectors or matrices). 

2. Preconditioned BMinPert Algorithm 

Among block krylov subspace methods, An essential component is the block 
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Aronoldi procedure [11] [12] [13]. The columns of the matrix ( )1, ,m mV V= �  
form an orthonormal basis of the block Krylov subspace  

{ }1
1 1 1, , , m

m span V AV A V−= � . To this end, one employs the block Arnoldi 
process to compute a matrix ( )1 2, , ,m mV V V= � , N s

iV R ×∈  for 1, ,i m= � . By 
construction the Arnoldi process yields a block upper Hessenberg matrix 

( )1m s ms
mH R + ×∈�  which satisfies 

1m m mA H+= �                           (2.1) 
T

1 1,m m m m m mH V H E+ += +                      (2.2) 

and from which mH  is obtained by deleting the last s row. We need  

1,
s s

j jH R ×
+ ∈  for 1,2, ,j m= �  are nonsingular throughout the paper, where 

1,j jH +  is the ( )1,j j+  block of mH� . 
It is well known that the performance of Krylov subspace methods may be 

enhanced via the application of preconditioners. Presently, much effort is di-
rected at developing efficient preconditioning techniques which achieve good 
convergence rates for Krylov subspace methods, Saad [7] presented a few novel 
approaches well suited to parallel machines. Here, attention is focused on right 
preconditioning provided by the matrix M which has the property of making the 
modified system 

( )1AM MX B− =  

easier to solve than the original problem stated in (1.1). Suppose that the initial 
solution estimate is 0X , then we wish to compute a solution  

1
0m m mX X M Y−= +   with ms s

mY R ×∈  such that 

( )( ) ( )1
0A m m BA X M Y B−− ∆ + = + ∆                 (2.3) 

which minimises ( ),A B F
∆ ∆ . Let 0 0R B AX= −  and 1 1 0V B R=  be a  

rank-revealing QR decomposition of 0R  (suppose 0R  is column full rank  
throughout the paper), where 1

N sV R ×∈  and 1
s sB R ×∈ . In this setting, the Ar-

noldi process computes an orthogonal basis for the preconditioned Krylov sub-
space ( ) ( ){ }11 1 1

1 1 1 1, , , ,
m

m AM V span V AM V AM V
−− − −= � . As was demonstrated 

in Proposition 3.1 in [1], one may parameterise all perturbations which satisfy 
(2.3) by the set 

mXΩ  where 

( ) ( ) ( ){ }1 1 1 :
m

N N s
X m m mH Y E B W P I WW P R × ++ +

+Ω = − + − ∈�       (2.4) 

in which ( )TT ,mW X I= , 1
0m m mX X M Y−= +  . It’s easy to know that the BMin-

Pert approximate solution may be considered as minimizing perturbations on 
the data given in A and B into a single algorithm. Observe that P is the only free 
parameter in (2.4), thus a natural objective is to get the element of the smallest 
Frobenius norm in 

mXΩ . Following the development in Section 3 in [1], one 
may demonstrate that the smallest element of 

mXΩ  (in the Frobenius norm) is 

( )
( )( ) ( )

, , 1 1 1

1T T
1 1 1  ,

A B m m m m

m m m m m m

H Y E B W

H Y E B I X X X I

+
+

−

+

∆ = −

= − +

�

�




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where mY  and , ,A B m F
∆  are given in the following theorem. 

Theorem 2.1. Suppose that m steps of the block Arnoldi process have been 
taken. Let { } ( )1, , 1

,i i i m s
zλ

= +�
 be the eigenpairs of ( )T T,m m m mL L G G  with 1i iλ λ +≥  

for ( )1, , 1i m s= +� . Suppose ( ) ( )( )TT T
1 2 1 1, ,ms m sZ Z Z z z+ += = � , and if 

1
s sZ R ×∈  is nonsingular, then the minimizing solution to (1.1) is given by 

1
0m m mX X M Y−= +  , where 

1
2 1 .mY Z Z −=                           (2.5) 

Furthermore 
( )1

2
, ,

1
.

m s

A B m iF
i ms

λ
+

= +

∆ = ∑                       (2.6) 

The matrices ( ) ( )1 1m s m s
mL R + × +∈  and ( ) ( )1 1N s m s

mG R + × +∈  are defined such that 

( )
1

0
1 1,   and  .

0
m

m m m
s

X M
L E B H G

I

− 
= − =  

 
� 

             (2.7) 

The procedure is an outline of the proposed method, see Algorithm 2.1 as 
follow. 

 
Algorithm 2.1. PBMinPert. 

1: Initialize: Choose 0X , compute 0 0:R B AX= − , 1 1 0:V B R=  and set 1 1: V= . 
2: Arnoldi process: Perform m steps of the block Arnoldi process to compute 1m+  

and mH� . 
3: Solve the generalized eigenvalue problem 

 (2.8)                        T T ,m m i m m iL L z G G zλ=  

 to get the s smallest generalized eigenvalues, where mL  and mG  is defined in 
(2.7). 

4: Scale block components of Z as shown in theorem 2.1 and form  
1

0m m mX X M Y−= +  . 

 
It’s clear that we face the practical difficulties when the number of iterations k 

increases the number of matrices requiring storage increases like k and the  

number of multiplications like 21
2

k N . To remedy this difficulty, we can use the  

algorithm every m steps, where m is some fixed integer parameter. This restarted 
version of PBMinPert denoted by PBMinPert(m) is omitted here. 

In practice, appropriately selecting m is essential because a low value of m 
leads to an inaccurate solution while a large value may take up computational 
resources without improving the accuracy of the approximate solution. Key to 
any iterative process are computable a posteriori error expressions which are 
used to gauge the algorithms progress for increasing m. 

3. Practical Implementation 
It is important to observe that to evaluate the minimum in (2.6), one computes 
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the s smallest eigenvalues and eigenvectors associated with the generalised ei-
genvalue problem of (2.8). In a practical implementation, one would therefore 
seek to compute the s smallest eigenvalues of the matrix pair ( )T T,m m m mL L G G  
without evaluating all the eigenvalues. Whether the PBMinPert solution is 
unique is determined by the multiplicity of iλ  for ( )1, , 1i ms m s= + +� . The 
following lemma is needed in the derivation of the main result of this section. 

Lemma 3.1. Suppose that m steps of the block Arnoldi process have been tak-
en. Then the matrix T

m mG G  is nonsingular for any choice of initial solution es-
timate 0X . 

Proof. The proof is similar to that of Lemma 3.1 in [1] and we omit it here. 
A consequence of Lemma 3.1 is that (2.8) is a well-posed generalized eigenva-

lue problem. By Lemma 3.1, (2.8) reduce to the following singuar value problem 

( )

( )
( )

1
1 2T 1 T T 1 T T

10 0

1T T 1 T T
0

0
.N m m m m s

m i i i

m m m

X I M M M M X I
L z w

C M M M X C

ξ
−− − − −

−

−− − −

 
  − +   = 
  
 

   

  

 (3.1) 

where iz  and iw  are the right and left singular vectors, respectively, and iξ  is 
the associated singular value, the matrix m mC R ×∈  stems from the Cholesky 
factorisation T T T 1

m mC C V M M− −=  . The cost of forming the left-hand side of 
(3.1) may be checked by saving the vectors { }l

j j l m
M v−

= �
 into a matrix mZ . In 

the course of the Arnoldi process, such measures enable one to efficiently update 
the matrix entries. Finally, the GMBACK solution is concisely expressed as 

0m m mX X Z Y= + . A key feature of GMBACK is that it permits flexible precondi-
tioning; namely, the preconditioner may vary at each step of the Arnoldi process 
without requiring additional storage. 

Then one can obtain the flexible BMinPert(m) algorithm as Algorithm 3.1. 
 
Algorithm 3.1. Flexible BMinPert(m). 

1: Initialize: Choose 0X , compute 0 0:R B AX= − , 1 1 0:V B R=  and set 1 1: V= . 
2: Flexible Arnoldi process: Perform m steps of the block Arnoldi process to com-

pute 1m+  and mH�  
 for : 1, ,j m= � , compute 1:j jZ M V−= , 

 accumulate 1 2: , , ,j jZ Z Z =  � , 

 compute : jW AZ= , 

 for : 1, ,i j= � , 

 , ,: , :i j i i i jH V W W W V H= ∗ = − ∗ . 

3: PBMinPert solution: 
 If 1, 0j jH + = , then 

 compute the exact solution 1
0 1 1j j jX X Z H E B−= + ; stop. 

 If 1, 0j jH + ≠ , then 

 compute the Cholesky decomposition T T
m mQ Q Z Z=  and update 1

mL− , 
 compute the largest singular value and the associated right singular vector 
 for 
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Continued 

( )
( )

( )

1
1 2T 1 T T 1 T T

10 0

1T T 1 T T
0

0
.N m m m m s

m i i i

m m m

X I M M M M X I
L z w

C M M M X C
ξ

−− − − −
−

−− − −

 
  − +   = 
 
 

   

  

  (3.2) 

 normalise the last s component of ( ) 1
i m iu L z−=  following (2.5) and form the 

approximate solution 0m m mX X Z Y= + . 

4: Set 
( )1

2 2
, ,

1

m s

A B m iF
i ms

ξ
+

= +

∆ = ∑  if satisfied, stop, else set 0 : mX X= , compute  

0 0:R B AX= − , 1 1 0:V B R=  and set 1 1: V=  and go to step 2. 

 
Finally, observe that m  has linearly independent columns since M is non-

singular, T
m mZ Z  is therefore positive definite, thus the Cholesky factors and the 

left-hand side of (3.2) are well defined provided that mH�  is nonsingular. A 
singular mH�  indicates that 1, 0m mH + =  which signals finite termination. 

Of course, one can also use other methods to solve the generalized eigenvalue 
problem. 

4. A Posteriori Backward Error for BGMRES 

In a practical implementation, the quality of A
mX  may be gauged by periodically 

evaluating a posteriori backward error norm in Theorem 2.1. Observe that the 
most expensive part of evaluating , ,

A
A B m F

∆  consists of forming and normalis-
ing A

mX . However, if 0 0X = , the minimum backward error norm simplifies to  

( )( ) ( )( )1T TT 1
, , 1,  A A A A A

A B m m m m m m m m mF
H E Y I Y Y M Y I

−
−

+∆ = +   which may be eva-

luated easier to compute. 
Next, we consider the backward error propagation for the BGMRES linear 

system solver, it is shown that GM
mX  satisfies a perturbed set of linear equations 

of the form ( ) ( )GM
A m BA X B− ∆ = + ∆ , then a parameterisation for all such per-

turbations is given and a computable expression for , ,
GM
A B m F

∆  is derived. 
Theorem 4.1. Suppose that m steps of the block Arnoldi process have been 

taken and that the block GMRES solution is given by 1
0

GM GM
m m mX X M Y−= +  , 

then the set of all perturbations GM
mX

Ω  such that ( ) ( )GM
A m BA X B− ∆ = + ∆  

may be parameterised by 

( ) ( ) ( ){ }1 1 1 : ,GM
m

N N sGM
m m mX

H Y E B W P I WW P R × ++ +
+Ω = − + − ∈�  

in which ( )( )TT
,GM

mW X I= , mE  denotes the last s columns of the identity 

matrix msI . The smallest perturbation (in the Frobenius norm) then satisfies 

( )

( ) ( )( ) ( )( )
, , 1 1

1T T

1 1  .

GM GM GM
A B m m m mF FF

GM GM GM GM
m m m m m

F

H Y E B W R W

H Y E B I X X X I

+ +

−

∆ = − =

= − +

�

�
 

where 
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( )
( ) ( )( ) ( )( )

, , 1 1 1

1T T

1 1 1  .

GM GM
A B m m m m

GM GM GM GM
m m m m m m

H Y E B W

H Y E B I X X X I

+
+

−

+

∆ = −

= − +

�

�




 

Here GM GM
m mR B AX= −  is the block GMRES residual error. 

Proof. The proof is essentially the same as that of Theorem 2.2 in [1] except 
that 1

0
GM GM
m m mX X M Y−= +   where 1 1arg min

N s
m

GM
m m m FY R

Y H Y E B
×∈

= −� . 

Last, if we consider the backward error propagation for other methods as in-
dicated above linear system solvers, we can find that the conclusions are very 
similar to the result as sown in Theorem 4.1 except let the corresponding ap-
proximate solution mX  is used instead of the solution GM

mX . 

5. Applications to Color Image Processing 

It is well known that each pixel of a color image is constructed by three basic 
colors, that is, the red, green and blue in fixed proportion. A quaternion q is 
made of one real and three imaginary parts. By using the character of quaternion, 
Pei first gave quaternion model for color image in 1996 [14]. In this model, the 
red, green and blue values of each pixel of a color image are represented as a sin-
gle pure imaginary quaternion valued pixel, and an n m×  color image is then 
represented as a pure imaginary quaternion image:  

( ) ( ) ( ) ( ), , , ,q x y r x y i g x y j b x y k= + + , where  
( ) ( ) ( ) { }, , , , , 0,1, 2, , 255r x y g x y j b x y ∈ �  are respectively the red, green and 

blue components of the pixel at position ( ),x y  in the image ( ),q x y . Thus, 
the color image is an n m×  pure imaginary quaternion matrix over the quater-
nion field. Image restoration is the process of removing or minimizing degrada-
tions in an observed image. A linear discrete model of image restoration is the 
matrix-vector equation g Kf n= + , where g is the observed image, f is the true 
or ideal image, n is additive noise, and K is a matrix that represents the blurring 
phenomena. Image restoration methods attempt to construct an approximation 
to f given g, K, and in some cases statistical information about the noise. 

In color image processing area, one would like to segment an image into sev-
eral parts and analyze them independently. It is well known that a color image 
can be represented by a pure imaginary quaternion matrix. In the following ex-
ample, we use = r g bF F i F j F k+ +  to denote the image matrix of “Onion” 
(198 × 135) as shown in Figure 1. Let r g bf f i f j f k= + +  be the column vector 
of F , which can be regarded as a quaternion signal. So we get the data samples of 
198 quaternion signals. 

By adopting the filter fspecial (‘motion’, len, theta), we blur the signal rf  to 
obtain a blurred signal df . Then we take  

( ) ( )( )198,1d rK f pinv f diag rand= ∗ +  to disturb the quaternion signal f, or by 
using ( ),K rand m n= , we disturb the image f such that  

( ) ( ), , , ,r g b r g bg g g g K f f f= = ∗ . We compute pure imaginary quaternion solu-
tions of 
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Figure 1. Comparison of four images. 

 

,Kf g=                             (5.1) 

then obtain the restored quaternion signals. And we know, in these cases, the 
matrices K can be real. So the system (5.1) can be treated as a nonsymmetric li-
near system with multiple right-hand sides. We aim to blur these quaternion 
signals at first and then restore them by BMinPert and PBMinPert algorithms. 

By BMinPert and PBMinPert algorithms, we compute the solutions of 
Kf g= , then obtain the restored quaternion signals. Eventually, the restoration 
images are obtained for comparison, as shown in Figure 1, PBMinPert can reach 
the required accuracy within an average of 9 iterations while the number of ite-
rations to get the required accuracy for BMinPert takes an average of 45 itera-
tions. For “Coffee” (1920 × 1080) as shown in Figure 2, PBMinPert and BMin-
Pert can reach the required accuracy within an average of 11 and 136 iterations 
respectively. We can get the conclusion that the larger the dimension of matrix is, 
the more superiority of PBMinPert algorithm is shown. 

6. Numerical Example 

All the experiments are performed using Matlab R2015a with unit round off 
2.2204e−16. Throughout, attention is focused on the evolution of the true rela-
tive residual. The suite of numerical experiments presented solves several sensi-
tive linear systems with strongly nonnormal A. The right-hand side and the 
starting approximate solution have been selected to highlight the advantages of-
fered by considering a minimum perturbation approach in Example 6.1. 

In the following figures, PBMinPert represents BMinPert with preconditioner 
and the same as PBFGMRES for BFGMRES. Moreover, we take preconditioner 

1
iM −  for 1,2,i = �  with 1 1

iM M− −= , where ( ) ( )1M D E D D F−= − − , 
A D E F= − − , in which E−  is the strict lower part of A, F−  is the strict up-

per part of A, and D is the diagonal of A. Given the numerical examples in [6], 
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Figure 2. Comparison of four images. 

 

 
(a) 

 
(b) 

Figure 3. Example. Norm of residual for PBFGMRES, BFGMRES, PBMinPert, BMinPert, 
GsGMRES and Bl-BiCG-rQ: (a) 1000N = , 20s = , 5m = ; (b) 1000N = , 40s = , 5m = . 
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we also use inner iterative number 5m =  for PBFGMRES and BFGMRES algo-
rithms, whereas we use PBMinPert and BMinPert algorithms with no restart. 

Example 6.1 let the linear system with coefficient matrix  
( ),A gallery 'gcdmat N′= , B and initial solution 0X  are random matrices. The 

condition number of ( ),1000A gallery 'gcdmat′=  is about 8.3776e+04. 
From the two figures (Figure 3) above we know that PBMinPert and BMin-

Pert converge to the requested tolerance after 26 iterations except when the 
number of right-hand sides s is 20, whereas PBFGMRES and BFGMRES stagnate 
with relative forward errors. Along with the increase of s, there presents a closer 
and closer trend of convergence of PBMinPert and BMinPert. 

7. Conclusion 

This paper shows the preconditioned BMinPert algorithm and analyses the prac-
tical implementation. Then, a posteriori backward error for BGMRES is given. 
Furthermore, we discuss their applications in color image restoration. The key 
differences between BMinPert and other methods such as BFGMRES-S(m, pf), 
GsGMRES, Bl-BiCG-rQ, BGMRES and BArnoldi are illustrated with numerical 
experiments expounding the advantages of BMinPert in the presence of sensitive 
data with ill-condition problems, which is shown commendably within the nu-
merical examples. 
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